47853 Assignment 3

Due Tuesday, February 12, in class

The assignment will be out of 25 points. If you get more than 25 points, the extra points will be carried over to your future assignments with half the weight.

Q1. (5 points) Let $G=(V, E)$ be a simple graph. Prove the following statements:
(a) If G is a triangle-free perfect graph, then it is bipartite.
(b) If G is a minimally imperfect graph with a vertex of degree 2 , then it is an odd hole.

Q2. (5 points) Prove that a double split graph is perfect.
Q3. (5 points) Take perfect graphs G_{1}, G_{2} over disjoint vertex sets. Let C_{1}, C_{2} be cliques of G_{1}, G_{2} such that $\left|C_{1}\right|=\left|C_{2}\right|$. Let G be the graph obtained from G_{1}, G_{2} after identifying the two cliques C_{1}, C_{2}. Prove that G is perfect.

Q4. (5 points) Let $G=(V, E)$ be a graph, and let A be the $0-1$ matrix whose columns are labeled by V and whose rows are the stable sets of G. Prove that if A is a perfect matrix, then G is a perfect graph.

Q5. (5 points) Use the Star Cutset Lemma and the Weak Perfect Graph Theorem to prove Dilworth's Theorem.

Q6. (5 points) Prove that a minimally imperfect graph does not have a pair u, v of distinct vertices where u dominates v, that is, $N(v)-\{u\} \subseteq N(u)-\{v\}$.

Q7. (21 points) Let $G=(V, E)$ be a simple graph. For a nonempty set $X \subseteq V$ and a vertex $v \in V-X$, we say that v is X-universal if v is adjacent to all of X, that v is X-null if v is adjacent to none of X, and that v is X-partial if it is neither X-universal nor X-null. Recall that a pair (X_{1}, X_{2}) of disjoint nonempty vertex subsets is homogeneous if $\left|X_{1}\right|+\left|X_{2}\right| \geq 3$, $\left|V-\left(X_{1} \cup X_{2}\right)\right| \geq 2$, all X_{1}-partial vertices are in X_{2}, and all X_{2}-partial vertices are in X_{1}.

In this question, we will prove that a minimally imperfect graph $G=(V, E)$ does not have a homogeneous pair. ${ }^{1}$ Suppose for a contradiction that $\left(X_{1}, X_{2}\right)$ is a homogeneous pair.

[^0](a) Prove that X_{1} contains a vertex that is not X_{2}-null and a vertex that is not X_{2} universal.
(b) Prove that there is an X_{1}-universal X_{2}-null vertex, and that there is an X_{1}-null $X_{2^{-}}$ universal vertex.

Let H be the graph obtained from $G\left[V-\left(X_{1} \cup X_{2}\right)\right]$ after adding vertices $u_{1}, v_{1}, u_{2}, v_{2}$, and edges $\left\{u_{1}, v_{2}\right\},\left\{v_{2}, v_{1}\right\},\left\{v_{1}, u_{2}\right\}$ and $\left\{w, u_{i}\right\},\left\{w, v_{i}\right\}$ for each $i \in[2]$ and X_{i}-universal vertex $w \in V-\left(X_{1} \cup X_{2}\right)$.
(c) Prove that H is perfect. (Hint. Problem 6)

Consider the following costs defined on the vertices of H : for each $v \in V-\left(X_{1} \cup X_{2}\right)$ let $c(v):=1$, and let

$$
\begin{array}{ll}
c\left(u_{1}\right)=\omega\left(X_{1}\right) & c\left(v_{1}\right)=\omega\left(X_{1} \cup X_{2}\right)-\omega\left(X_{2}\right) \\
c\left(u_{1}\right)=\omega\left(X_{2}\right) & c\left(v_{2}\right)=\omega\left(X_{1} \cup X_{2}\right)-\omega\left(X_{1}\right) .
\end{array}
$$

Let $C_{H} \subseteq V(H)$ be a clique in H of maximum cost k.
(d) Transform C_{H} into a clique of G of cardinality k.

Let $S_{H}^{1}, \ldots, S_{H}^{k}$ be stable sets in H where every vertex v is covered by exactly $c(v)$ stable sets. We will use these stable sets to find a k-vertex-coloring of G. Let

$$
\begin{aligned}
I_{0} & :=\left\{i \in[k]: S_{H}^{i} \cap\left\{u_{1}, v_{1}\right\}=\emptyset, S_{H}^{i} \cap\left\{u_{2}, v_{2}\right\}=\emptyset\right\} \\
I_{1} & :=\left\{i \in[k]: S_{H}^{i} \cap\left\{u_{1}, v_{1}\right\} \neq \emptyset, S_{H}^{i} \cap\left\{u_{2}, v_{2}\right\}=\emptyset\right\} \\
I_{2} & :=\left\{i \in[k]: S_{H}^{i} \cap\left\{u_{1}, v_{1}\right\}=\emptyset, S_{H}^{i} \cap\left\{u_{2}, v_{2}\right\} \neq \emptyset\right\} \\
I_{3} & :=\left\{i \in[k]: S_{H}^{i} \cap\left\{u_{1}, v_{1}\right\} \neq \emptyset, S_{H}^{i} \cap\left\{u_{2}, v_{2}\right\} \neq \emptyset\right\} .
\end{aligned}
$$

Let F be the graph obtained from $G\left[X_{1} \cup X_{2}\right]$ after adding adjacent vertices x_{1}, x_{2}, and an edge $\left\{x_{i}, y\right\}$ for each $i \in[2]$ and $y \in X_{i}$.
(e) Prove that F is perfect. (Hint. The Antitwin Lemma)

Define the following costs on the vertices of F : for each $v \in X_{1} \cup X_{2}$ let $d(v):=1$, and let $d\left(x_{1}\right):=\left|I_{2}\right|$ and $d\left(x_{2}\right):=\left|I_{1}\right|$.
(f) Find stable sets $S_{F}^{1}, \ldots, S_{F}^{\left|I_{1}\right|+\left|I_{2}\right|+\left|I_{3}\right|}$ in F where every vertex v is covered by exactly $d(v)$ stable sets.
(g) Use $S_{H}^{1}, \ldots, S_{H}^{k}$ and $S_{F}^{1}, \ldots, S_{F}^{\left|I_{1}\right|+\left|I_{2}\right|+\left|I_{3}\right|}$ to find a k-vertex-coloring of G.

As a result, $k \geq \chi(G)>\omega(G) \geq k$, a contradiction. Hence, a minimally imperfect graph does not have a homogeneous pair.

[^0]: ${ }^{1}$ Each part is worth 3 points.

