47853 Packing and Covering: Lecture 1

Ahmad Abdi

January 15, 2019

1 What is packing and covering?

1.1 Menger's theorem and its dual

Let $G=(V, E)$ be a graph, and take distinct vertices $s, t \in V .{ }^{1}$ An st-path is a minimal edge subset connecting s and t. An st-cut is an edge subset of the form

$$
\delta(U):=\{e \in E:|e \cap U|=1\}
$$

where $U \subseteq V$ satisfies $U \cap\{s, t\}=\{s\}$. We will refer to U and $V-U$ as the shores of G. Notice that every $s t$-path intersects every st-cut.

What is the maximum number of (pairwise) disjoint st-paths? In other words, how many st-paths can we pack?

Theorem 1.1 (Menger 1927 [10]). Let $G=(V, E)$ be a graph, and take distinct vertices $s, t \in V$. Then the maximum number of disjoint st-paths is equal to the minimum cardinality of an st-cut.

Proof. Every st-path intersects an st-cut, so the maximum number of disjoint st-paths is at most the minimum cardinality of an st-cut. We prove the other inequality by induction on $|V|+|E| \geq 3$. The result is obvious for $|V|+|E|=3$. For the induction step, assume that $|V|+|E| \geq 4$. Let τ be the minimum cardinality of an st-cut. We may assume that $\tau \geq 1$. We will find τ disjoint $s t$-paths.

Claim 1. If an edge e does not appear in a minimum st-cut, then G has τ disjoint st-paths.
Proof of Claim. Notice that the cardinality of a minimum st-cut in $G \backslash e$ is still τ. As a result, the induction hypothesis implies the existence of τ disjoint st-paths in $G \backslash e$, and therefore in G.

We may therefore assume that every edge appears in a minimum st-cut. An st-cut $\delta(U)$ is trivial if either $|U|=1$ or $|V-U|=1$.

Claim 2. If there is a minimum st-cut that is not trivial, then G has τ disjoint st-paths.

[^0]Proof of Claim. Let $\delta(U), s \in U \subseteq V-\{t\}$ be a minimum st-cut that is non-trivial. Let G_{1} be the graph obtained from G by shrinking U to a single vertex s^{\prime}, and let G_{2} be the graph obtained from G after shrinking $V-U$ to a single vertex t^{\prime}. Since $\delta(U)$ is non-trivial, it follows that $\left|V\left(G_{i}\right)\right|+\left|E\left(G_{i}\right)\right|<|V|+|E|$, for each $i \in[2]$. We may therefore apply the induction hypothesis to G_{1} and G_{2}. Notice that τ is still the minimum cardinality of an $s^{\prime} t$-cut in G_{1} and of an $s t^{\prime}$-cut in G_{2}. Thus, by the induction hypothesis, G_{1} has τ disjoint $s^{\prime} t$-paths and G_{2} has disjoint $s t^{\prime}$-paths. Gluing these paths along the edges of $\delta(U)$ gives us τ disjoint st-paths in G.

We may therefore assume that every minimum st-cut is trivial. Since every edge appears in a minimum $s t$-cut, it follows that every edge has either s or t as an end. In this case, G has a special form and it is clear that $\tau=\nu$ for this graph, thereby completing the induction step.

On the other hand, how many st-cuts can we pack?
Theorem 1.2. Let $G=(V, E)$ be a connected graph G, and take distinct vertices $s, t \in V$. Then the maximum number of disjoint st-cuts is equal to the minimum cardinality of an st-path.

Proof. Clearly, the maximum number of disjoint $s t$-cuts is at most the minimum cardinality of an st-path. To prove the other inequality, let $\tau \geq 1$ be the minimum cardinality of an $s t$-path. We will find τ disjoint $s t$-cuts. Notice that τ is equal to the distance between s and t. For each $i \in\{0,1, \ldots, \tau-1\}$, let U_{i} be the set of vertices at distance at most i from s. Notice that $\{s\}=U_{0} \subsetneq U_{1} \subsetneq \cdots \subsetneq U_{\tau-1} \subseteq V-\{t\}$. Our definition implies that $\delta\left(U_{0}\right), \delta\left(U_{1}\right), \ldots, \delta\left(U_{\tau-1}\right)$ are disjoint $s t$-cuts, as required.

These results are two of many packing theorems. Just to mention a few, we will see some of these packing results:

- Lucchesi and Younger 1978 [9]: given a directed graph G, the maximum number of disjoint dicuts is equal to the minimum cardinality of a dijoin.
- Conjecture (Woodall 1978 [13]): given a directed graph G, the maximum number of disjoint dijoins is equal to the minimum cardinality of a dicut.
- Edmonds and Johnson 1973 [4]: given a graph G and even subset T of vertices, the maximum value of a fractional packing of T-joins is equal to the minimum cardinality of a T-cut.
- Guenin 2001 [7]: in a signed graph without an odd- K_{5} minor, the maximum value of a fractional packing of odd circuits is equal to the minimum cardinality of a signature.

1.2 Dilworth's theorem and its dual

Take a partially ordered set (E, \leq), that is, the following statements hold for all $a, b, c \in E$:

- $a \leq a$,
- if $a \leq b$ and $b \leq a$, then $a=b$,
- if $a \leq b$ and $b \leq c$, then $a \leq c$.

We say that a, b are comparable if $a \geq b$ or $b \geq a$; otherwise they are incomparable. A chain is a set of pairwise comparable elements. An antichain is a set of pairwise incomparable elements. Notice that every antichain intersects every chain at most once.

What is the minimum number of (not necessarily disjoint) chains whose union is E ? That is, what is the least number of chains needed to cover the ground set?

Theorem 1.3 (Dilworth 1950 [2]). Let (E, \leq) be a partially ordered set. Then the minimum number of chains needed to cover E is equal to the maximum cardinality of an antichain.

Proof. Since every chain intersects every antichain at most once, the minimum number of chains needed to cover E is greater than or equal to the maximum cardinality of an antichain. We will prove the other inequality by induction on $|E|$. The base case $|E|=1$ is obvious. For the induction step, assume that $|E| \geq 2$. Let α be the maximum cardinality of an antichain. We will find α chains covering E. If $\alpha=|E|$, then we are clearly done. Otherwise, $\alpha<|E|$, implying in turn that there is a chain $\{a, b\}$ where a is a minimal element and b is a maximal element. Let $E^{\prime}:=E-\{a, b\}$.

Claim. If the maximum cardinality of an antichain of $\left(E^{\prime}, \leq\right)$ is $\alpha-1$, then there are α chains covering E.
Proof of Claim. By the induction hypothesis, there are $\alpha-1$ chains of E^{\prime} covering $E-\{a, b\}$. Together with $\{a, b\}$, we get a covering of E using α chains.

We may therefore assume that E^{\prime} has an antichain A such that $|A|=\alpha$. Let

$$
\begin{aligned}
& E^{+}:=A \cup\{x \in E-A: x \geq z \text { for some } z \in A\} \\
& E^{-}:=A \cup\{y \in E-A: y \leq z \text { for some } z \in A\}
\end{aligned}
$$

Since A is an antichain, $E^{+} \cap E^{-}=A$, and since it is a maximum antichain, $E^{+} \cup E^{-}=E$. As a is minimal and $a \notin A$, it follows that $a \notin E^{+}$. As b is maximal and $b \notin A$, we get that $b \notin E^{-}$. In particular, $\left|E^{+}\right|,\left|E^{-}\right|<|E|$. Thus, by the induction hypothesis, E^{+}has α chains covering it, and E^{-}has α chains covering it. Gluing these chains together, we get α chains covering $E^{+} \cup E^{-}=E$, thereby completing the induction step.

On the other hand, what is the least number of antichains needed to cover the ground set?
Theorem 1.4. Let (E, \leq) be a partially ordered set. Then the minimum number of antichains needed to cover E is equal to the maximum cardinality of a chain.

Proof. Clearly, the minimum number of antichains needed to cover E is greater than or equal to the maximum cardinality of a chain. To prove the other inequality, let α denote the maximum cardinality of a chain. We will find α antichains whose union is E. Let A_{1} denote the set of all minimal elements of E. For each $i \geq 2$, let A_{i} denote the set of all minimal elements of $E-\left(A_{1} \cup \cdots \cup A_{i-1}\right)$. Observe that

- $E=\bigcup_{i \geq 1} A_{i}$,
- each A_{i} is an antichain,
- if $i \geq 2$ and $a \in A_{i}$, then there is a $b \in A_{i-1}$ such that $a \geq b$, and so
- if $A_{i} \neq \emptyset$, then there is a chain of cardinality i.

As a result, since α is the maximum cardinality of a chain, it follows that $\emptyset=A_{\alpha+1}=A_{\alpha+2}=\cdots$. Thus, E is the union of the α antichains $A_{1}, \ldots, A_{\alpha}$, as required.

These results are two of many covering results. To name a few:

- Kônig 1931 [8]: In a bipartite graph, the minimum number of colors needed for a proper edge-coloring is equal to the maximum degree of a vertex.
- Gallai 1962 [6], Surányi 1968 [12]: In a chordal graph, the minimum number of cliques needed to cover the vertices is equal to the maximum cardinality of a stable set.
- Sachs 1970 [11]: In a chordal graph, the minimum number of colors needed for a proper vertex-coloring is equal to the maximum cardinality of a clique.
- Chudnovsky, Robertson, Seymour and Thomas 2006 [1]: In a graph without an odd hole or an odd hole complement, the minimum number of cliques needed to cover the vertices is equal to the maximum cardinality of a stable set.

References

[1] Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164(1), 51-229 (2006)
[2] Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51(1), 161-166 (1950)
[3] Edmonds, J.: Edge-disjoint branchings, in Combinatorial Algorithms (ed. Rustin, R.). Algorithmics Press, New York, 91-96 (1973)
[4] Edmonds, J. and Johnson, E.L.: Matchings, Euler tours and the Chinese postman problem. Math. Prog. 5, 88-124 (1973)
[5] Ford, L.R. and Fulkerson, D.R.: Maximal flow through a network. Canadian J. Math. 8, 399-404 (1956)
[6] Gallai, T.: Graphen mit triangulierbaren ungeraden Vielecken. A Magyar Tud. Akad. Mat. Kutato Int. Kozl. 7, 3-36 (1962)
[7] Guenin, B.: A characterization of weakly bipartite graphs. J. Combin. Theory Ser. B 83, 112-168 (2001)
[8] Kőnig, D.: Graphs and matrices (in Hungarian). Matematikai és Fizikai Lapok 38:116-119 (1931)
[9] Lucchesi, C.L. and Younger, D.H.: A minimax relation for directed graphs. J. London Math. Soc. 17 (2), 369-374 (1978)
[10] Menger, K.: Zur allgemeinen Kurventheorie. Fundamenta Mathematicae 10, 96-115 (1927)
[11] Sachs, H.: On the Berge conjecture concerning perfect graphs, in Combinatorial Structures and Their Applications (eds. Guy, R., Hanani, H., Sauer, N., Schönheim, J.). Gordon and Breach, New York, 377384 (1970)
[12] Surányi, L.: The covering of graphs by cliques. Studia Sci. Math. Hungar. 3, 345-349 (1968)
[13] Woodall, D.R.: Minimax theorems in graph theory, in Selected Topics in Graph Theory (eds. Beineke, L.W. and Wilson, R.J.). Academic Press, London, 237-269 (1978)

[^0]: ${ }^{1}$ We allow parallel edges but disallow loops, until further notice.

