47853 Packing and Covering: Lecture 1

Ahmad Abdi

January 15, 2019

1 What is packing and covering?

1.1 Menger's theorem and its dual

Let G = (V, E) be a graph, and take distinct vertices $s, t \in V$.¹ An *st-path* is a minimal edge subset connecting s and t. An *st-cut* is an edge subset of the form

$$\delta(U) := \{ e \in E : |e \cap U| = 1 \}$$

where $U \subseteq V$ satisfies $U \cap \{s, t\} = \{s\}$. We will refer to U and V - U as the *shores* of G. Notice that every st-path intersects every st-cut.

What is the maximum number of (pairwise) disjoint *st*-paths? In other words, how many *st*-paths can we *pack*?

Theorem 1.1 (Menger 1927 [10]). Let G = (V, E) be a graph, and take distinct vertices $s, t \in V$. Then the maximum number of disjoint st-paths is equal to the minimum cardinality of an st-cut.

Proof. Every st-path intersects an st-cut, so the maximum number of disjoint st-paths is at most the minimum cardinality of an st-cut. We prove the other inequality by induction on $|V| + |E| \ge 3$. The result is obvious for |V| + |E| = 3. For the induction step, assume that $|V| + |E| \ge 4$. Let τ be the minimum cardinality of an st-cut. We may assume that $\tau \ge 1$. We will find τ disjoint st-paths.

Claim 1. If an edge e does not appear in a minimum st-cut, then G has τ disjoint st-paths.

Proof of Claim. Notice that the cardinality of a minimum st-cut in $G \setminus e$ is still τ . As a result, the induction hypothesis implies the existence of τ disjoint st-paths in $G \setminus e$, and therefore in G.

We may therefore assume that every edge appears in a minimum st-cut. An st-cut $\delta(U)$ is trivial if either |U| = 1 or |V - U| = 1.

Claim 2. If there is a minimum st-cut that is not trivial, then G has τ disjoint st-paths.

¹We allow parallel edges but disallow loops, until further notice.

Proof of Claim. Let $\delta(U), s \in U \subseteq V - \{t\}$ be a minimum st-cut that is non-trivial. Let G_1 be the graph obtained from G by shrinking U to a single vertex s', and let G_2 be the graph obtained from G after shrinking V - U to a single vertex t'. Since $\delta(U)$ is non-trivial, it follows that $|V(G_i)| + |E(G_i)| < |V| + |E|$, for each $i \in [2]$. We may therefore apply the induction hypothesis to G_1 and G_2 . Notice that τ is still the minimum cardinality of an s't-cut in G_1 and of an st'-cut in G_2 . Thus, by the induction hypothesis, G_1 has τ disjoint s't-paths and G_2 has disjoint st'-paths. Gluing these paths along the edges of $\delta(U)$ gives us τ disjoint st-paths in G.

We may therefore assume that every minimum st-cut is trivial. Since every edge appears in a minimum st-cut, it follows that every edge has either s or t as an end. In this case, G has a special form and it is clear that $\tau = \nu$ for this graph, thereby completing the induction step.

On the other hand, how many st-cuts can we pack?

Theorem 1.2. Let G = (V, E) be a connected graph G, and take distinct vertices $s, t \in V$. Then the maximum number of disjoint st-cuts is equal to the minimum cardinality of an st-path.

Proof. Clearly, the maximum number of disjoint *st*-cuts is at most the minimum cardinality of an *st*-path. To prove the other inequality, let $\tau \ge 1$ be the minimum cardinality of an *st*-path. We will find τ disjoint *st*-cuts. Notice that τ is equal to the distance between *s* and *t*. For each $i \in \{0, 1, ..., \tau - 1\}$, let U_i be the set of vertices at distance at most *i* from *s*. Notice that $\{s\} = U_0 \subsetneq U_1 \subsetneq \cdots \subsetneq U_{\tau-1} \subseteq V - \{t\}$. Our definition implies that $\delta(U_0), \delta(U_1), \ldots, \delta(U_{\tau-1})$ are disjoint *st*-cuts, as required.

These results are two of many packing theorems. Just to mention a few, we will see some of these packing results:

- Lucchesi and Younger 1978 [9]: given a directed graph G, the maximum number of disjoint dicuts is equal to the minimum cardinality of a dijoin.
- Conjecture (Woodall 1978 [13]): given a directed graph G, the maximum number of disjoint dijoins is equal to the minimum cardinality of a dicut.
- Edmonds and Johnson 1973 [4]: given a graph G and even subset T of vertices, the maximum value of a fractional packing of T-joins is equal to the minimum cardinality of a T-cut.
- Guenin 2001 [7]: in a signed graph without an odd- K_5 minor, the maximum value of a fractional packing of odd circuits is equal to the minimum cardinality of a signature.

1.2 Dilworth's theorem and its dual

Take a partially ordered set (E, \leq) , that is, the following statements hold for all $a, b, c \in E$:

• $a \leq a$,

- if $a \leq b$ and $b \leq a$, then a = b,
- if $a \leq b$ and $b \leq c$, then $a \leq c$.

We say that a, b are *comparable* if $a \ge b$ or $b \ge a$; otherwise they are *incomparable*. A *chain* is a set of pairwise comparable elements. An *antichain* is a set of pairwise incomparable elements. Notice that every antichain intersects every chain at most once.

What is the minimum number of (not necessarily disjoint) chains whose union is *E*? That is, what is the least number of chains needed to *cover* the ground set?

Theorem 1.3 (Dilworth 1950 [2]). Let (E, \leq) be a partially ordered set. Then the minimum number of chains needed to cover *E* is equal to the maximum cardinality of an antichain.

Proof. Since every chain intersects every antichain at most once, the minimum number of chains needed to cover E is greater than or equal to the maximum cardinality of an antichain. We will prove the other inequality by induction on |E|. The base case |E| = 1 is obvious. For the induction step, assume that $|E| \ge 2$. Let α be the maximum cardinality of an antichain. We will find α chains covering E. If $\alpha = |E|$, then we are clearly done. Otherwise, $\alpha < |E|$, implying in turn that there is a chain $\{a, b\}$ where a is a minimal element and b is a maximal element. Let $E' := E - \{a, b\}$.

Claim. If the maximum cardinality of an antichain of (E', \leq) is $\alpha - 1$, then there are α chains covering E.

Proof of Claim. By the induction hypothesis, there are $\alpha - 1$ chains of E' covering $E - \{a, b\}$. Together with $\{a, b\}$, we get a covering of E using α chains.

We may therefore assume that E' has an antichain A such that $|A| = \alpha$. Let

$$E^+ := A \cup \{x \in E - A : x \ge z \text{ for some } z \in A\}$$
$$E^- := A \cup \{y \in E - A : y \le z \text{ for some } z \in A\}.$$

Since A is an antichain, $E^+ \cap E^- = A$, and since it is a maximum antichain, $E^+ \cup E^- = E$. As a is minimal and $a \notin A$, it follows that $a \notin E^+$. As b is maximal and $b \notin A$, we get that $b \notin E^-$. In particular, $|E^+|, |E^-| < |E|$. Thus, by the induction hypothesis, E^+ has α chains covering it, and E^- has α chains covering it. Gluing these chains together, we get α chains covering $E^+ \cup E^- = E$, thereby completing the induction step.

On the other hand, what is the least number of antichains needed to cover the ground set?

Theorem 1.4. Let (E, \leq) be a partially ordered set. Then the minimum number of antichains needed to cover *E* is equal to the maximum cardinality of a chain.

Proof. Clearly, the minimum number of antichains needed to cover E is greater than or equal to the maximum cardinality of a chain. To prove the other inequality, let α denote the maximum cardinality of a chain. We will find α antichains whose union is E. Let A_1 denote the set of all minimal elements of E. For each $i \ge 2$, let A_i denote the set of all minimal elements of E. For each $i \ge 2$, let A_i denote the set of all minimal elements of E. For each $i \ge 2$, let A_i

- $E = \bigcup_{i \ge 1} A_i$,
- each A_i is an antichain,
- if $i \ge 2$ and $a \in A_i$, then there is a $b \in A_{i-1}$ such that $a \ge b$, and so
- if $A_i \neq \emptyset$, then there is a chain of cardinality *i*.

As a result, since α is the maximum cardinality of a chain, it follows that $\emptyset = A_{\alpha+1} = A_{\alpha+2} = \cdots$. Thus, E is the union of the α antichains A_1, \ldots, A_{α} , as required.

These results are two of many covering results. To name a few:

- Kőnig 1931 [8]: In a bipartite graph, the minimum number of colors needed for a proper edge-coloring is equal to the maximum degree of a vertex.
- Gallai 1962 [6], Surányi 1968 [12]: In a chordal graph, the minimum number of cliques needed to cover the vertices is equal to the maximum cardinality of a stable set.
- Sachs 1970 [11]: In a chordal graph, the minimum number of colors needed for a proper vertex-coloring is equal to the maximum cardinality of a clique.
- Chudnovsky, Robertson, Seymour and Thomas 2006 [1]: In a graph without an odd hole or an odd hole complement, the minimum number of cliques needed to cover the vertices is equal to the maximum cardinality of a stable set.

References

- Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164(1), 51–229 (2006)
- [2] Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51(1), 161–166 (1950)
- [3] Edmonds, J.: Edge-disjoint branchings, in Combinatorial Algorithms (ed. Rustin, R.). Algorithmics Press, New York, 91–96 (1973)
- [4] Edmonds, J. and Johnson, E.L.: Matchings, Euler tours and the Chinese postman problem. Math. Prog. 5, 88–124 (1973)
- [5] Ford, L.R. and Fulkerson, D.R.: Maximal flow through a network. Canadian J. Math. 8, 399-404 (1956)
- [6] Gallai, T.: Graphen mit triangulierbaren ungeraden Vielecken. A Magyar Tud. Akad. Mat. Kutato Int. Kozl. 7, 3–36 (1962)
- [7] Guenin, B.: A characterization of weakly bipartite graphs. J. Combin. Theory Ser. B 83, 112–168 (2001)

- [8] Kőnig, D.: Graphs and matrices (in Hungarian). Matematikai és Fizikai Lapok 38:116–119 (1931)
- [9] Lucchesi, C.L. and Younger, D.H.: A minimax relation for directed graphs. J. London Math. Soc. 17 (2), 369–374 (1978)
- [10] Menger, K.: Zur allgemeinen Kurventheorie. Fundamenta Mathematicae 10, 96–115 (1927)
- [11] Sachs, H.: On the Berge conjecture concerning perfect graphs, in Combinatorial Structures and Their Applications (eds. Guy, R., Hanani, H., Sauer, N., Schönheim, J.). Gordon and Breach, New York, 377– 384 (1970)
- [12] Surányi, L.: The covering of graphs by cliques. Studia Sci. Math. Hungar. 3, 345–349 (1968)
- [13] Woodall, D.R.: Minimax theorems in graph theory, in Selected Topics in Graph Theory (eds. Beineke, L.W. and Wilson, R.J.). Academic Press, London, 237–269 (1978)