47853 Packing and Covering: Lecture 10

Ahmad Abdi

February 19, 2019

8.2 T-joins and T-cuts

Let $G=(V, E)$ be a graph where loops and parallel edges are allowed; however, loops are thought of as vertexless edges. For an edge subset $J \subseteq E$, denote by $\operatorname{odd}(J) \subseteq V$ the set of vertices incident with an odd number of edges of J. Clearly $\operatorname{odd}(J)$ has even cardinality. Notice that

$$
\operatorname{odd}\left(J_{1}\right) \triangle \operatorname{odd}\left(J_{2}\right)=\operatorname{odd}\left(J_{1} \triangle J_{2}\right) \quad J_{1}, J_{2} \subseteq E
$$

where \triangle is the symmetric difference operator. A subset $C \subseteq E$ is a cycle if $\operatorname{odd}(C)=\emptyset$. Observe that \emptyset and loops are cycles. A circuit is a nonempty cycle that does not properly contain another nonempty cycle. We leave the following as an exercise:

Remark 8.6. Let $G=(V, E)$ be a graph, and take a nonempty subset $C \subseteq E$. The C is a cycle if, and only if, C is a disjoint union of circuits.

We will use this basic observation without reference. Take a subset $T \subseteq V$ of even cardinality. A T-join is an edge subset $J \subseteq E$ such that $\operatorname{odd}(J)=T$. For instance, \emptyset-joins are precisely cycles, and for distinct vertices $s, t \in V$, every st-path is an $\{s, t\}$-join.

Remark 8.7. Take a graph $G=(V, E)$, a subset $T \subseteq V$ of even cardinality, and a T-join J. Then

$$
\left\{J^{\prime} \subseteq E: J^{\prime} \text { is a } T \text {-join }\right\}=\{J \triangle C: C \text { is a cycle }\}
$$

Proof. Suppose first that $J^{\prime} \subseteq E$ is a T-join. Then $\operatorname{odd}\left(J^{\prime} \triangle J\right)=\operatorname{odd}\left(J^{\prime}\right) \triangle \operatorname{odd}(J)=T \triangle T=\emptyset$, so $J^{\prime} \triangle J$ is a cycle, and as $J^{\prime}=J \triangle\left(J^{\prime} \triangle J\right)$, we are done. Conversely, take a cycle C. Then odd $(J \triangle C)=$ $\operatorname{odd}(J) \triangle \operatorname{odd}(C)=T \triangle \emptyset=T$, so $J \triangle C$ is a T-join and we are done.

Given a graph and a vertex subset T of even cardinality, what is the minimum cardinality of a T-join? When $T=\emptyset$, the answer is zero as \emptyset is a T-join. We may therefore focus on nonempty T. The two remarks above provide the following partial answer to this question:

Remark 8.8 (Sebő 1987 [1]). Take a graph $G=(V, E)$, a nonempty subset $T \subseteq V$ of even cardinality, and a T-join J. Define weights $w \in\{-1,1\}^{E}$ as follows: for each $e \in J$ set $w_{e}:=-1$, and for each $e \in E-J$ set $w_{e}:=1$. Then the following statements are equivalent:

- J is a minimum T-join,
- there is no cycle of total negative weight,
- there is no circuit of total negative weight.

Take a graph $G=(V, E)$ and a nonempty subset $T \subseteq V$ of even cardinality. A T-cut is a cut of the form $\delta(U) \subseteq E$ where $|U \cap T|$ is odd. For instance, for distinct vertices s, t of G, an st-cut is an $\{s, t\}$-cut.

Proposition 8.9. Take a graph $G=(V, E)$ and a nonempty subset $T \subseteq V$ of even cardinality. Let \mathcal{C} be the clutter of minimal T-joins over ground set E. Then $b(\mathcal{C})$ is the clutter of minimal T-cuts.

Proof. We need to show that (a) every T-cut is a cover of \mathcal{C}, and (b) every cover of \mathcal{C} contains a T-cut. (a) Take a T-cut $\delta(U)$. We need to show that $\delta(U)$ intersects every T-join. Suppose otherwise. Take a T-join J such that $J \cap \delta(U)=\emptyset$. Then the odd-degree vertices of $J \cap E(G[U])$ are precisely $T \cap U$, a contradiction as $|T \cap U|$ is odd. (b) Conversely, let $B \subseteq E$ be a cover of \mathcal{C}. Then the graph $H:=G \backslash B$ does not contain a T-join. To prove that B contains a T-cut of G, it suffices to argue why H has an empty T-cut. To this end, let A be the vertex-edge incidence matrix of H, and let $b \in\{0,1\}^{V}$ be the incidence vector of $T \subseteq V$. (So the loops of H are the zero columns of A.) Since H has no T-join, it follows that the system

$$
A x \equiv b \quad(\bmod 2)
$$

has no $0-1$ solution. By the Farkas Lemma for binary spaces, there is a certificate $c \in\{0,1\}^{V}$ such that

$$
c^{\top} A \equiv \mathbf{0} \quad \text { and } \quad c^{\top} b \equiv 1 \quad(\bmod 2)
$$

Pick $U \subseteq V$ such that $c=\chi_{U}$. The second equation implies that $|U \cap T|$ is odd, while the first equation implies that $\delta(U)$ is an empty cut of H, so $\delta(U)$ is an empty T-cut of H, as required.

Let's see what minors of the clutter of minimal T-joins correspond to in terms of the graph. Let $G=(V, E)$ be a graph and take a possibly empty subset $T \subseteq V$ of even cardinality. Let \mathcal{C} be the clutter of minimal T-joins over ground set E. Take an edge $e \in E$. The deletion $(G, T) \backslash e$ is the pair $(G \backslash e, T)$. It is clear that the minimal T-joins of $(G, T) \backslash e$ are the members of $\mathcal{C} \backslash e$. The contraction $(G, T) / e$ is the pair $\left(G / e, T^{\prime}\right)$ where ${ }^{1}$

$$
T^{\prime}= \begin{cases}T-e & \text { if }|e \cap T| \text { is even } \\ (T-e) \cup\{\text { shrunk vertex }\} & \text { if }|e \cap T| \text { is odd } .\end{cases}
$$

Observe that T^{\prime} is a set of even cardinality. Notice that if J is a T-join of G, then $J-\{e\}$ is a T^{\prime}-join of G / e. Conversely, if J^{\prime} is a T^{\prime}-join of G / e, then $J^{\prime} \cup\{e\}$ contains a T-join of G. Hence, the minimal T^{\prime}-joins of $(G, T) / e$ are the members of \mathcal{C} / e. For disjoint subsets $I, J \subseteq E$, the minor $(G, T) \backslash I / J$ is what is obtained after deleting I and contracting J. Notice that the minimal T^{\prime}-joins of $\left(G \backslash I / J, T^{\prime}\right):=(G, T) \backslash I / J$ are the members of $\mathcal{C} \backslash I / J$.

[^0]Let's get back to our question regarding minimum T-joins. Notice that the minimum cardinality of a T join is equal to the covering number of the clutter of minimal T-cuts. So does the clutter of minimal T-cuts necessarily pack? Consider the complete graph K_{4} on 4 vertices, let $T:=V\left(K_{4}\right)$, and let \mathcal{C} be its clutter of minimal T-cuts. Then \mathcal{C} consists of the claws of K_{4}, and the blocker $b(\mathcal{C})$ - the minimal T-joins - consists of the claws as well as the perfect matchings. So $\tau(\mathcal{C})=2$, and as there are no disjoint claws, it follows that $\nu(\mathcal{C})=1$, so \mathcal{C} does not pack. Despite this shortcoming, we can prove the following result. The proof we present is due to Sebő 1987 [1].

Theorem 8.10 (Seymour 1981 [2]). Take a bipartite graph $G=(V, E)$, and a nonempty subset $T \subseteq V$ of even cardinality. Then the minimum cardinality of a T-join is equal to the maximum number of disjoint T-cuts. That is, the clutter of minimal T-cuts of a bipartite graph packs.

Proof. We proceed by induction on the number of vertices of G. The base case $|V|=2$ holds trivially. For the induction step, assume that $|V| \geq 3$. Denote by τ the minimum cardinality of a T-join. We will construct τ disjoint T-cuts. If $\tau=1$, then we are done. We may therefore assume that $\tau \geq 2$. Among all minimum T-joins, pick the one J whose longest path is the longest compared to the other ones. Define weights $w \in\{-1,1\}^{E}$ as follows: for each $e \in J$ set $w_{e}:=-1$, and for each $e \in E-J$ set $w_{e}:=1$. By Remark 8.8, G has no negative cycle, and as G is bipartite, every cycle has even weight.

Let Q be the longest path contained in J and let u, v be its ends. As Q is the longest path in J, and as G has no negative cycle, it follows that u, v each have degree 1 in J. In particular, $u, v \in \operatorname{odd}(J)=T$. Let e^{\star} be the edge of Q incident with u. Then $J \cap \delta(u)=\left\{e^{\star}\right\}$.

Claim 1. If C is a circuit such that $C \cap \delta(u) \neq \emptyset$ and $e^{\star} \notin C$, then $w(C) \geq 2$.
Proof of Claim. Suppose otherwise. Since $w(C) \geq 0$ and $w(C)$ is even, it follows that $w(C)=0$. So $J \triangle C$ is another minimum T-join, and as Q cannot be extended to a longer path in $J \triangle C, Q$ and C must share a vertex other than u. Among all the vertices in $V(Q)-\{u\}$ that also belong to $V(C)$, pick the one w that is closest to u on Q. Let Q^{\prime} be the $u w$-path in Q; as $e^{\star} \notin C$, it follows that $Q^{\prime} \neq \emptyset$ and $Q^{\prime} \cap C=\emptyset$. Let P_{1}, P_{2} be the two $u w$-paths partitioning C. Since $w\left(P_{1}\right)+w\left(P_{2}\right)=w(C)=0$ and $w\left(Q^{\prime}\right)<0$, it follows that one of $P_{1} \cup Q^{\prime}, P_{2} \cup Q^{\prime}$ is a negative circuit, a contradiction.

Claim 2. u cannot be adjacent to all the other vertices in T.
Proof of Claim. Suppose otherwise. In particular, u and v are adjacent, and as G has no negative cycle, Q has length 1 . Since Q is the longest path in J, it follows that J is a matching, and as $\tau \geq 2$, the matching has an edge other than the edge of Q. Since u is adjacent to the other matched vertices, G has a triangle, a contradiction as G is bipartite.

Let $\left(G^{\prime}, T^{\prime}\right):=(G, T) / \delta(u)$. Notice that G^{\prime} is still a bipartite graph, and by Claim $2, T^{\prime} \neq \emptyset$. Let $J^{\prime}:=J-\delta(u)$. Then J^{\prime} is a T^{\prime}-join of G^{\prime} of length $\tau-1$. In fact,

Claim 3. J^{\prime} is a minimum T^{\prime}-join of G^{\prime}.

Proof of Claim. Define weights $w^{\prime} \in\{-1,1\}^{E\left(G^{\prime}\right)}$ on the edges of G^{\prime} as follows: for each $e \in J^{\prime}$ set $w^{\prime}(e):=$ -1 , and for each $e \in E\left(G^{\prime}\right)-J^{\prime}$ set $w^{\prime}(e):=1$. Notice that w^{\prime} is simply the restriction of w to $E-\delta(u)=$ $E\left(G^{\prime}\right)$. To prove that J^{\prime} is a minimum T^{\prime}-join of G^{\prime}, it suffices by Remark 8.8 to show that G^{\prime} does not have a negative circuit. To this end, let C^{\prime} be a circuit of G^{\prime}, and let C be a circuit of G such that $C^{\prime} \subseteq C \subseteq C^{\prime} \cup \delta(u)$. If $C=C^{\prime}$ or $e^{\star} \in C$, then $w^{\prime}\left(C^{\prime}\right)=w(C) \geq 0$. Otherwise, $C \cap \delta(u) \neq \emptyset$ and $e^{\star} \notin C$. It therefore follows from Claim 1 that

$$
w^{\prime}\left(C^{\prime}\right)=w(C)-2 \geq 0
$$

as required.
Thus, by the induction hypothesis, G^{\prime} has $\tau-1$ disjoint T-cuts; these are also disjoint T-cuts of G, and together with $\delta(u)$, they give τ disjoint T-cuts in G, thereby completing the induction step. This finishes the proof.

References

[1] Sebő, A.: A quick proof of Seymour's theorem on T-joins. Discrete Math. 64, 101-103 (1987)
[2] Seymour, P.D.: On odd cuts and plane multicommodity flows. Proc. London Math. Soc. 42(1), 178-192 (1981)

[^0]: ${ }^{1}$ In this setting, to contract a loop is to delete it.

