47853 Packing and Covering: Lecture 11

Ahmad Abdi

February 21, 2019

8.2 T-joins and T-cuts

Last time we proved the following theorem:
Theorem 8.10 (Seymour 1981 [7]). Take a bipartite graph $G=(V, E)$, and a nonempty subset $T \subseteq V$ of even cardinality. Then the minimum cardinality of a T-join is equal to the maximum number of disjoint T-cuts. That is, the clutter of minimal T-cuts of a bipartite graph packs.

This result is actually sufficient to guarantee certificates of optimality for minimum T-joins in general graphs:
Theorem 8.11. Take a graph $G=(V, E)$ and a nonempty subset $T \subseteq V$ of even cardinality. Denote by \mathcal{C} be the clutter of minimal T-cuts over ground set E. Then the following statements hold:
(1) (Seymour 1981 [7]) For weights $w \in \mathbb{Z}_{+}^{E}$ where every cycle has total even weight, the minimum weight of a T-join is equal to the maximum size of a weighted packing of T-cuts:

$$
\tau(\mathcal{C}, w)=\nu(\mathcal{C}, w)
$$

(2) (Lovász 1975 [4]) For arbitrary weights $w \in \mathbb{Z}_{+}^{E}$, the minimum weight of $a T$-join is equal to the maximum value of a half-integral weighted packing of T-cuts:

$$
\tau(\mathcal{C}, w)=\max _{2 y \in \mathbb{Z}_{+}^{\mathcal{C}}}\left\{\mathbf{1}^{\top} y: \sum\left(y_{C}: e \in C \in \mathcal{C}\right) \leq w_{e} \forall e \in E\right\}
$$

(3) (Edmonds and Johnson 1973 [3]) The clutter \mathcal{C} of minimal T-cuts is ideal, that is, the polyhedron

$$
\left\{x \geq 0: \sum\left(x_{e}: e \in B\right) \geq 1 \forall T \text {-cuts } B\right\}
$$

is integral, and its vertices are the incidence vectors of the minimal T-joins.
Proof. (1) If there is a T-join of weight 0 , then there is nothing to show. We may therefore assume that the minimum weight of a T-join is nonzero. Let $\left(G^{\prime}, T^{\prime}\right)$ be the pair obtained from (G, T) after contracting all edges of weight 0 , and for each edge e with $w_{e} \geq 1$, replacing e by w_{e} edges in series (the intermediate vertices will not be included in T^{\prime}). Notice that every cycle C in G corresponds to a cycle in G^{\prime} of length $w(C)$, and
conversely, every cycle C^{\prime} in G^{\prime} corresponds to a cycle in G of weight $\left|C^{\prime}\right|$. Thus, since every cycle of G has even weight, it follows that G^{\prime} is a bipartite graph. Moreover, it is clear that every T-join J in G corresponds to a T^{\prime}-join in G^{\prime} of length $w(J)$, and conversely, every T^{\prime}-join J^{\prime} in G^{\prime} corresponds to a T-join in G of weight $\left|J^{\prime}\right|$. In particular, $T^{\prime} \neq \emptyset$. It therefore follows from Theorem 8.10 that the minimum cardinality of a T^{\prime}-join in G^{\prime} is equal to the maximum number of disjoint T^{\prime}-cuts of G^{\prime}. As every packing of T^{\prime}-cuts in G^{\prime} corresponds to a weighted packing of T-cuts in G, it follows that $\tau(\mathcal{C}, w)=\nu(\mathcal{C}, w)$, as required. (2) Take arbitrary weights $w \in \mathbb{Z}_{+}^{E}$. It follows from (1) that

$$
2 \tau(\mathcal{C}, w)=\tau(\mathcal{C}, 2 w)=\nu(\mathcal{C}, 2 w)=\max _{y \in \mathbb{Z}_{+}^{\mathcal{C}}}\left\{\mathbf{1}^{\top} y: \sum\left(y_{C}: e \in C \in \mathcal{C}\right) \leq 2 w_{e} \forall e \in E\right\},
$$

thereby proving (2). (3) follows immediately from (2).
After applying Theorem 7.8 to part (3), we get the following:
Corollary 8.12. Take a graph $G=(V, E)$ and a nonempty subset $T \subseteq V$ of even cardinality. Then the clutter of minimal T-joins is ideal. That is, for all weights $w \in \mathbb{Z}_{+}^{E}$, the minimum weight of $a T$-cut is equal to the maximum value of a fractional weighted packing of T-joins.

Seymour 1979 [6] conjectures that in the above corollary, the minimum weight of a T-cut should be equal to the maximum value of a quarter-integral weighted packing of T-joins. In contrast to T-cuts, packing T-joins is a difficult problem. To illustrate this, we need a definition. A 3-graph is a connected bridgeless graph $G=(V, E)$ where every vertex has degree 3 .

Proposition 8.13. Let $G=(V, E)$ be a plane 3-graph. Then the following statements are equivalent:
(i) G has three disjoint perfect matchings,
(ii) G has two disjoint V-joins,
(iii) G has a proper 4 -face-coloring.

Proof. (i) \Rightarrow (ii) holds trivially. (ii) \Rightarrow (iii): Suppose that G has disjoint minimal V-joins J_{1}, J_{2}. Let $G^{\star}=$ (V^{\star}, E) be the plane dual of G, and notice that every face of G^{\star} is a triangle. Notice that the V-cuts of G are in correspondence with the cycles of G^{\star} bounding an odd number of triangles, implying in turn that the V-cuts of G are in correspondence with the odd cycles of G^{\star}. Since each J_{i} is a minimal cover of the V-cuts of G, each J_{i} is also a minimal cover of the odd cycles of G^{\star}, implying in turn that there is a nonempty cut $\delta\left(U_{i}\right), U_{i} \subseteq V^{\star}$ of G^{\star} such that $\delta\left(U_{i}\right)=E-J_{i}$. Since $J_{1} \cap J_{2}=\emptyset$, it follows that $U_{1} \cap U_{2}, U_{1} \cap \overline{U_{2}}, \overline{U_{1}} \cap U_{2}, \overline{U_{1}} \cap \overline{U_{2}}$ are stable sets of G^{\star}, thereby yielding a proper 4 -vertex-coloring of G^{\star}, and hence a proper 4 -face-coloring of G. (iii) \Rightarrow (i): Let $h \in\{(0,0),(0,1),(1,0),(1,1)\}^{\{\text {faces }\}}$ be a proper 4 -face-coloring of G. For each edge e, whose neighboring faces are F_{1} and F_{2}, let

$$
g(e):=h\left(F_{1}\right)+h\left(F_{2}\right) \quad(\bmod 2) .
$$

Since F_{1}, F_{2} are adjacent faces, and therefore have different colors, it follows that $g(e) \in\{(0,1),(1,0),(1,1)\}$. Let

$$
\begin{aligned}
J_{1} & :=\{e \in E: g(e)=(0,1)\} \\
J_{2} & :=\{e \in E: g(e)=(1,0)\} \\
J_{3} & :=\{e \in E: g(e)=(1,1)\}
\end{aligned}
$$

We claim that each J_{i} is a perfect matching. To see this, take an arbitrary vertex v, whose neighboring faces are F_{1}, F_{2}, F_{3}. Then the three edges incident with v have g-values $h\left(F_{1}\right)+h\left(F_{2}\right), h\left(F_{2}\right)+h\left(F_{3}\right), h\left(F_{3}\right)+h\left(F_{1}\right)$ $(\bmod 2)$. As $h\left(F_{1}\right), h\left(F_{2}\right), h\left(F_{3}\right)$ are pairwise distinct, we get that the g-values of the three edges incident with v are different, so v is indicent with exactly one edge from each J_{i}. As this is true for each vertex, it follows that each J_{i} is a perfect matching, as required.

It is widely known that properly 4 -face-coloring plane 3 -graphs is just as general as properly 4 -face-coloring arbitrary plane graphs. Thus, the implication (ii) \Rightarrow (iii) implies that finding just two disjoint T-joins in a graph can be a difficult problem. Appel and Haken 1977 [1], and again Robertson, Sanders, Seymour and Thomas 1996 [5], proved that plane graphs are properly 4 -face-colorable. As a consequence, the implication (iii) \Rightarrow (i) implies that,

Theorem 8.14. The clutter of minimal T-joins of a planar 3-graph packs.
This result does not extend to non-planar 3-graphs. For instance, the Petersen graph is a 3-graph whose clutter of minimal T-joins does not pack, as it is not properly 3 -edge-colorable.

8.3 Testing idealness is co-NP-complete.

We saw two different classes of ideal clutters, namely the clutter of dijoins of a digraph and the clutter of T-joins of a graph. These examples demonstrate that idealness is a rich and complex property, and suggest that idealness as a property is hard to recognize. This is indeed the case. To elaborate, let A be a $0-1$ matrix. Consider the following problem:

Is A an ideal matrix?
This is a co-NP problem: to certify that A is nonideal, all we need is a fractional point $x^{\star} \in Q(A)=\{x \geq \mathbf{0}$: $A x \geq \mathbf{1}\}$ along with a full-rank row subsystem $A^{\prime} x \geq b^{\prime}$ of $x \geq \mathbf{0}, A x \geq b$ such that $A^{\prime} x^{\star}=b^{\prime}$. In fact, as the following result claims, this problem is one of the most difficult problems in the co-NP class:

Theorem 8.15 (Ding, Feng, Zang 2008 [2]). Let A be a $0-1$ matrix, where every column has exactly two 1 s. Then the problem

Is A an ideal matrix?

is co-NP-complete.

In other words, given a general $0-1$ matrix that is a priori ideal, we cannot convince an adversary in polynomial time that A is indeed an ideal matrix, unless P and co-NP are equal. This means that unlike perfect clutters, ideal clutters do not admit a polynomial characterization. (The authors above proved that "Is A a Mengerian matrix?" is also a co-NP-complete problem.)

9 Minimally nonideal clutters

By Remark 7.11, we know that if a clutter is ideal, then so is any minor of it. In other words, the class of ideal clutters is minor-closed. As a result, we may indirectly study the class by characterizing the excluded minors defining the class. We say that a clutter is minimally nonideal (mni) if it is nonideal, and every proper minor of it is ideal. Observe that every mni clutter has at least 3 elements, and that the only mni clutter with 3 elements is $\{\{a, b\},\{b, c\},\{c, a\}\}$. It follows from Remark 7.11 and Theorem 7.8 that,

Remark 9.1. The following statements hold:

- a nonideal clutter is minimally nonideal if every single deletion and contraction minor is ideal,
- a clutter is ideal if, and only if, it has no minimally nonideal minor,
- if a clutter is minimally nonideal, then so is its blocker.

As we will see, mni clutters split into two classes that behave quite differently from one another. We will study each class separately.

9.1 The deltas

Two clutters $\mathcal{C}, \mathcal{C}^{\prime}$ are isomorphic, written as $\mathcal{C} \cong \mathcal{C}^{\prime}$, if one is obtained from the other after relabeling its ground set. Take an integer $n \geq 3$. Consider the clutter over ground set $[n]:=\{1,2,3, \ldots, n\}$ whose members are

$$
\Delta_{n}:=\{\{1,2\},\{1,3\}, \ldots,\{1, n\},\{2,3, \ldots, n\}\}
$$

and whose incidence matrix is

$$
M\left(\Delta_{n}\right)=\left(\begin{array}{ccccc}
1 & 1 & & & \\
1 & & 1 & & \\
\vdots & & & \ddots & \\
1 & & & & 1 \\
& 1 & 1 & \cdots & 1
\end{array}\right)
$$

We refer to Δ_{n}, and any clutter isomorphic to it, as a delta of dimension n. Notice that the elements and members of Δ_{n} correspond to the points and lines of a degenerate projective plane. ${ }^{1}$

Theorem 9.2. Take an integer $n \geq 3$. Then,

[^0](1) $b\left(\Delta_{n}\right)=\Delta_{n}$,
(2) $\min \left\{\mathbf{1}^{\top} x: M\left(\Delta_{n}\right) x \geq \mathbf{1}, x \geq \mathbf{0}\right\}$ has no integral optimal solution, and
(3) Δ_{n} is minimally nonideal.

Proof. (1) As Δ_{n} does not have disjoint members, every member is also a cover, so every member of Δ_{n} contains a member of $b\left(\Delta_{n}\right)$. Conversely, let B be a minimal cover of Δ_{n}. If $1 \notin B$, then as B intersects each one of $\{1,2\},\{1,3\}, \ldots,\{1, n\}$, it follows that $\{2,3, \ldots, n\} \subseteq B$. If $1 \in B$, then as B intersects $\{2,3, \ldots, n\}$, it follows that $\{1, i\} \subseteq B$ for some $i \in\{2,3, \ldots, n\}$. In both cases, we see that B contains a member, so every member of $b\left(\Delta_{n}\right)$ contains a member of Δ_{n}. It therefore follows from Remark 6.6 that $b\left(\Delta_{n}\right)=\Delta_{n}$. (2) In particular, $\tau(\mathcal{C})=2$. Consider now the fractional feasible solution $x^{\star}:=\left(\frac{n-2}{n-1} \frac{1}{n-1} \cdots \frac{1}{n-1}\right)$. The objective value of this solution is $1+\frac{n-2}{n-1}<2=\tau(\mathcal{C})$, so (2) holds. (3) It follows from (2) that Δ_{n} is nonideal. To prove that Δ_{n} is mni, we need to show for each $e \in[n]$ that $\Delta_{n} \backslash e$ and Δ_{n} / e are ideal clutters. In fact, since

$$
\Delta_{n} \backslash e=b\left(b\left(\Delta_{n} \backslash e\right)\right)=b\left(b\left(\Delta_{n}\right) / e\right)=b\left(\Delta_{n} / e\right)
$$

by (1), it suffices by Theorem 7.8 to show that one of $\Delta_{n} \backslash e, \Delta_{n} / e$ is ideal. By the symmetry between the elements $2,3, \ldots, n$, we may assume that $e \in\{1, n\}$. Observe that

$$
\Delta_{n} \backslash 1=\{\{2,3, \ldots, n\}\}
$$

and

$$
\Delta_{n} / n=\{\{1\},\{2, \ldots, n-1\}\} .
$$

We leave it as an exercise for the reader to see that these clutters are indeed ideal. Thus, Δ_{n} is mni.

References

[1] Appel, K. and Haken, W.: Every planar map is four colorable. Part I: Discharging. Illinois J. Math. 21(3), 429-490 (1977)
[2] Ding, G., Feng, L., Zang, W.: The complexity of recognizing linear systems with certain integrality properties. Math. Program. Ser. A 114, 321-334 (2008)
[3] Edmonds, J. and Johnson, E.L.: Matchings, Euler tours and the Chinese postman problem. Math. Prog. 5, 88-124 (1973)
[4] Lovász, L.: 2-matchings and 2-covers of hypergraphs. Acta Math. Acad. Sci. Hungar. 26, 433-444 (1975)
[5] Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: A new proof of the four-colour theorem. Electronic Research Announcements of the AMS 2(1), 17-25 (1996)
[6] Seymour, P.D.: On multi-colourings of cubic graphs, and conjectures of Fulkerson and Tutte. Proc. London Math. Soc. 38(3), 423-460 (1979)
[7] Seymour, P.D.: On odd cuts and plane multicommodity flows. Proc. London Math. Soc. 42(1), 178-192 (1981)

[^0]: ${ }^{1}$ In the literature, a delta of dimension n is called a degenerate projective plane of order $n-1$. However, as there are other degenerate projective planes, we refrain from using this terminology.

