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9 Minimally nonideal clutters

Recall that a clutter is minimally nonideal (mni) if it is nonideal but every proper minor is ideal. There are two

classes of mni clutters that behave quite differently from one another. Last time we introduced the first class.

9.1 The deltas

Take an integer n ≥ 3. Recall that ∆n is the clutter over ground set [n] whose members are {1, 2}, {1, 3}, . . . ,
{1, n}, {2, 3, . . . , n}. We proved the following theorem last time:

Theorem 9.2. Take an integer n ≥ 3. Then,

(1) b(∆n) = ∆n,

(2) min{1>x : M(∆n)x ≥ 1, x ≥ 0} has no integral optimal solution, and

(3) ∆n is minimally nonideal.

The deltas form an important class of mni clutters that is tractable, in the sense that it is easy to see whether

a clutter has a delta minor or not. To see why, we need the following result:

Theorem 9.3 (Abdi, Cornuéjols, Pashkovich 2018 [1]). Take a clutter C over ground set E. If there exist an

element e and distinct members C1, C2, C such that e ∈ C1 ∩ C2, e /∈ C and C1 ∪ C2 ⊆ C ∪ {e}, then C has a

delta minor through e that can be found in time O(|E|2|C|2).

Proof. Let us call (C1, C2, C) a bad triple through e. We may assume that in every proper minor of C where e is

present, no bad triple through e exists. We will prove that C itself is a delta. The minimality assumption implies

that

(1) C1 ∩ C2 = {e},

because for I := (C1 ∩ C2)− {e}, the minor C/I has the bad triple (C1 − I, C2 − I, C − I) through e.

The minimality assumption also implies that
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(2) {e} ∪ C = E,

because for J := E − ({e} ∪ C), C \ J has the same bad triple (C1, C2, C) through e.

Next we claim that

(3) |C1| = |C2| = 2.

To see this, suppose for a contradiction that one of C1, C2, say C1, has cardinality at least 3. Pick an element

h ∈ C1 − {e}, and note that h /∈ C2 by (1). Consider the minor C′ := C/h, for which C ′1 := C1 − {h} and

C ′ := C −{h} are members. Notice that C2 contains a member C ′2 of C′, for which it is easy to see that e ∈ C ′2
and C ′2 6= {e}. But now C′ has a bad triple (C ′1, C

′
2, C

′) through e, a contradiction to our minimality assumption.

This proves (3).

Now let X :=
{
f ∈ E : {e, f} is a member

}
. So |X| ≥ 2 by (3), and X ⊆ C by (2). Our last claim is that

(4) X = C.

For if not, pick an element h ∈ C − X , and note that C/h has a bad triple (C1, C2, C − {h}) through e,

contradicting the minimality assumption. Thus X = C. Hence,

C ⊇ {{e, f} : f ∈ C} ∪ {C}.

Since {e} ∪C = E by (2), and C is a clutter, equality must hold above, implying in turn that C indeed is a delta,

as required.

We are now ready to prove the following:

Theorem 9.4 (Abdi, Cornuéjols, Pashkovich 2018 [1]). There is an algorithm that given a clutter C over ground

set E finds in time O(|E|4|C|4) a delta minor or certifies that none exists.

Proof. We claim that the following statements are equivalent:

(i) C does not have a delta minor,

(ii) for all distinct members C1, C2 with C1 ∩ C2 6= ∅ and for all elements e, f, g with e ∈ C1 ∩ C2, f ∈
C1 − C2, g ∈ C2 − C1, the following holds: for X := (C1 ∪ C2)− {e, f, g} and C′ := C/X ,

• {e, f} /∈ C′,

• {e, g} /∈ C′, or

• {f, g} is not contained in a member of C′.

(i)⇒ (ii): Assume that (i) holds. Take C1, C2, e, f, g,X, C′ as in (ii) where {e, f} ∈ C′ and {e, g} ∈ C′. Since

C has no delta minor, neither does C′, so by Theorem 9.3, {f, g} is not contained in a member of C′, so (ii)

holds. (ii)⇒ (i): Assume that (i) does not hold. Suppose C has a delta minor obtained after deleting I ⊆ E and

contracting J ⊆ E. Pick elements e, f, g ∈ E− (I ∪ J) such that {e, f}, {e, g} are members of the delta minor.
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Notice that {f, g} is contained in a member of the delta minor, so {f, g} is contained in a member of C. Let

C1, C2 be members of C such that {e, f} ⊆ C1 ⊆ {e, f} ∪ J and {e, g} ⊆ C2 ⊆ {e, g} ∪ J . It can be readily

checked that C1, C2 and e, f, g do not satisfy (ii). Thus (ii) does not hold.

Since (ii) may be verified in time O(|E|4|C|4), and if (ii) does not hold, a delta minor can be found in time

O(|E|2|C|2) using Theorem 9.3, we can find a delta minor or certify that none exists in time O(|E|4|C|4).

9.2 The other minimally nonideal clutters

We now move on to the mni clutters different from the deltas. Take an odd integer n ≥ 5. Consider the clutter

over ground set [n] whose members are

C2n := {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}} .

The clutter C2n, and any clutter isomorphic to it, is called an odd hole of dimension n. It may be readily checked

that odd holes are mni. In contrast to Theorem 9.4,

Theorem 9.5 (Ding, Feng, Zang 2008 [2]). Let C be a clutter over ground set E. Then the problem

Does C have an odd hole minor?

is NP-complete.

That is, unless P and NP are equal, there is no algorithm for finding an odd hole minor in a clutter C over ground

set E, whose running time is polynomial in |E| and |C|. Theorems 9.4 and 9.5 highlight the difference between

the deltas and the other mni clutters. There are many mni clutters: other than the infinite class {C22n−1 : n ≥ 3}
of mni clutters and their blockers {b(C22n−1) : n ≥ 3}, there are at least two other blocking infinite classes of

mni clutters different from the deltas [5], as well as many sporadic examples. For instance, the clutter of the

lines of the Fano plane

L7 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 7}, {2, 5, 6}, {3, 4, 6}, {3, 5, 7}} = b(L7),

as well as C29 ∪ {{3, 6, 9}} are mni [4]. It may now seem that there is no good characterization of the mni

clutters different from the deltas, but this is not the case! Alfred Lehman provided powerful geometric and

combinatorial characterizations of these clutters [3]. Before getting to his characterizations, let us briefly study

the geometric aspects of ideal clutters and of minor operations. First off, it is easier to work with polytopes rather

than polyhedra:

Proposition 9.6. Take a clutter C over ground set E. Then C is ideal if, and only if, {1 ≥ x ≥ 0 : M(C)x ≥ 1}
is an integral polytope.

Proof. This is left as an exercise.

For a clutter C, denote by P (C) the set covering polytope {1 ≥ x ≥ 0 : M(C)x ≥ 1}. Notice that the covers

of C are precisely the integer points of P (C), and that every integer point of P (C) is an extreme point. Moreover,

the minors of C have a natural geometric interpretation in terms of P (C):
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Remark 9.7. Let C be a clutter over ground set E, and take an element e ∈ E. Then the following statements

hold:

• P (C \ e) is the restriction P (C) ∩ {x : xe = 1} after dropping coordinate xe.

• P (C/e) is the restriction P (C) ∩ {x : xe = 0} after dropping coordinate xe.

We can now delve into Lehman’s characterizations. First up is a lemma that will be very useful. Take an

integer n ≥ 2, and let A be an n × n matrix with 0 − 1 entries and without a row or a column of all ones. We

say that A is cross regular if whenever Aij = 0, the number of ones in column j is equal to the number of ones

in row i.

Lemma 9.8. The following statements hold:

(1) Take an integer n ≥ 2, and letA be a 0−1 n×nmatrix without a row or a column of all ones, and whenever

Aij = 0, the number of ones in column j is greater than or equal to the number of ones in row i. Then A is

cross regular.

(2) Cross regular matrices cannot differ in just one row.

Proof. (1) Suppose A is an n× n matrix. For each row i ∈ [n] and column j ∈ [n], denote by ri the number of

ones in row i and by cj the number of ones in column j. Then∑
j∈[n]

cj =
∑
j∈[n]

∑
i∈[n]:Aij=0

cj
n− cj

≥
∑
j∈[n]

∑
i∈[n]:Aij=0

ri
n− ri

=
∑
i∈[n]

∑
j∈[n]:Aij=0

ri
n− ri

=
∑
i∈[n]

ri.

As the left- and right-hand side terms are equal, equality must hold throughout, implying in turn that whenever

Aij = 0, then ri = cj . Thus A is cross regular. (2) Suppose for a contradiction that
(
B

a

)
,

(
B

a′

)
are cross

regular matrices and a 6= a′. We may assume that a1 = 1 and a′1 = 0. Since
(
B

a

)
is cross regular, the first

column of B has a zero entry, say it is the first entry. Let k ≥ 0 be the number of ones in the first column of B.

Then as
(
B

a

)
is cross regular, the first row of B has k+ 1 ones. However, as

(
B

a′

)
is also cross regular, the first

row of B must have k ones, a contradiction.

Given a full-dimensional polytope P ⊆ Rn and a vertex x?, we say that x? is simple if it belongs to exactly

n facets. Notice that if x? is simple, then there are exactly n edges emanating from x?, each of which is defined

uniquely by n − 1 many of the tight facets. As a result, if x? is simple, then it has exactly n adjacent vertices.

Lehman proved the following geometric characterization of the mni clutters different from the deltas:

Theorem 9.9 (Lehman 1990 [3]). Let C be a minimally nonideal clutter over ground set E that is not a delta,

and let n := |E|. Let x? be a fractional extreme point of {1 ≥ x ≥ 0 : M(C)x ≥ 1}. Then the following

statements hold:

(1) 0 < x? < 1,
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(2) x? lies on exactly n facets, that correspond to members C1, . . . , Cn ∈ C – so x? is a simple vertex,

(3) the n neighbors of x? are integral vertices, that correspond to covers B1, . . . , Bn labeled so that for distinct

i, j ∈ [n], |Ci ∩Bi| > 1 and |Ci ∩Bj | = 1,

(4) B1, . . . , Bn are minimal covers,

(5) C1, . . . , Cn are precisely the minimum cardinality members of C,

(6) x? is the unique fractional extreme point of {1 ≥ x ≥ 0 : M(C)x ≥ 1},

(7) there is an integer d ≥ 1 such that for each i ∈ [n], |Ci ∩Bi| = 1 + d.

In particular, x? is the unique fractional extreme point of {x ≥ 0 : M(C)x ≥ 1}.

Proof. Let P := P (C) = {1 ≥ x ≥ 0 : M(C)x ≥ 1}. Then for each element e ∈ E, the clutters C/e, C \ e are

ideal, so the polytopes P ∩ {x : xe = 0} and P ∩ {x : xe = 1} are integral by Remark 9.7, implying in turn for

each fractional extreme point x? that 0 < x?e < 1, so (1) holds. (The fact that C is different from a delta will be

first used in Claim 4.)

Claim 1. Let x? be a fractional extreme point of P , and let A be an n×n nonsingular submatrix of M(C) such

that Ax? = 1. Then A is cross regular.

Proof of Claim. Clearly, A has no all ones row, and since x? is the unique solution to Ax? = 1, A has no all

ones column either. To prove that A is cross regular, assume that A11 = 0. Let C be the member corresponding

to the first row of A. By Lemma 9.8 (1), it suffices to show that the number of ones in the first column is greater

than or equal to |C|. To this end, let x̂ := (1, x?2, . . . , x
?
n) ∈ P ∩ {x : x1 = 1}. Let F be the smallest face of the

polytope P ∩ {x : x1 = 1} containing x̂. Notice that a>x̂ = 1 for every row a of A whose first entry is 0. As

these rows are linearly independent, and as x̂1 = 1, it follows that

dim(F ) ≤ n− number of 0s in the first column − 1 = number of 1s in the first column − 1.

On the other hand, as P ∩ {x : x1 = 1} is an integral polytope, F is also an integral polytope, so

x̂ =

k∑
i=1

λiχBi

for some extreme points χB1
, . . . , χBk

of F and some λ > 0 such that
∑k

i=1 λi = 1. Notice for each i ∈ [k]

thatBi is a cover, and as x̂(C) = 1, we get that |Bi∩C| = 1. Since x̂ > 0, each element of C appears in at least

one Bi, so the matrix whose rows are the χBi
’s has rank at least |C|, implying in turn that the affine dimension

of the χBi
’s is at least |C| − 1. As a result,

dim(F ) ≥ |C| − 1.

Putting the last two inequalities gives the desired inequality, as desired. ♦

To be continued . . .
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