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2 A review of integral polyhedra and totally dual integral linear systems

Take integers m,n ≥ 1, a rational m× n matrix M , and a rational m-dimensional (column) vector b. The set

P :=
{
x ∈ Rn : Mx ≥ b

}
is called a polyhedron. If P is a bounded set, then it is called a polytope. If P does not contain a line, then it is

pointed. For instances, polytopes are pointed, as well as polyhedra contained in the nonnegative orthant.

If every face of P contains an integral point, then P is an integral polyhedron.

Theorem 2.1 (Hoffman 1974 [5], Edmonds and Giles 1977 [3]). Let P be a polyhedron. Then the following

statements are equivalent:

• P is integral,

• for all w ∈ Zn, the program min{w>x : x ∈ P}, if feasible and finite, has an integral optimal solution,

• for all w ∈ Zn, min{w>x : x ∈ P} ∈ Z ∪ {±∞}.

For a variable cost vector w ∈ Zn, consider the primal linear program

(P )
min w>x

s.t. Mx ≥ b

and the dual linear program

(D)

max b>y

s.t. M>y = w

y ≥ 0.

Here and throughout the rest of the document, 0 denotes the all-zeros vector of appropriate dimension. By LP

Strong Duality, the optimal values of these two programs are equal, whenever the primal (P) is feasible and has a

finite optimum. We say that the linear system Mx ≥ b is totally dual integral (TDI) if, for all w ∈ Zn for which

the primal (P) is feasible and has a finite optimum, the dual (D) has an integral optimal solution. The following

is a consequence of Theorem 2.1:
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Corollary 2.2. If Mx ≥ b is a rational totally dual integral linear system and b is integral, then {x : Mx ≥ b}
is an integral polyhedron.

Proof. Assume that Mx ≥ b is a TDI linear system with n variables, and b is integral. Pick w ∈ Zn such that

(P) is feasible and has a finite optimum. Since Mx ≥ b is TDI, (D) has an integral optimal solution, and since

b is integral, (D) has an integer optimal value, implying by LP Strong Duality that (P) has an integer optimal

value. It now follows from Theorem 2.1 that {x : Mx ≥ b} is an integral polyhedron.

As an immediate consequence of Theorem 2.1 and Corollary 2.2,

Corollary 2.3. Let Mx ≥ b be a rational linear system, where b is integral. Then the following statements are

equivalent:

• Mx ≥ b is totally dual integral,

• for all w ∈ Zn for which the primal (P) is feasible and has a finite optimum, both the primal (P) and the

dual (D) have integral optimal solutions.

We will always be working with nonempty, full-dimensional and pointed polyhedra P . For such polyhedra,

integrality has a better definition. A vertex, or a basic feasible solution or an extreme point, of P is a point

x? ∈ P satisfying any of the following equivalent conditions:

• if for x1, x2 ∈ P we have x? = 1
2x1 +

1
2x2, then x1 = x2 = x?,

• there is a row subsystem M ′x ≥ b′ of Mx ≥ b where rank(M ′) = n and M ′x? = b′,

• there exists an integral cost vector w ∈ Zn such that x? is the unique optimal solution to the linear program

min
{
w>x : x ∈ P

}
.

Theorem 2.4 (see [2], Theorem 3.33). Let P be a nonempty, full-dimensional and pointed polyhedron. Then P

is integral if, and only if, every vertex is integral.

3 Packing and covering models

There are mainly two polyhedra that we are interested in. Let A,B be 0 − 1 matrices, where B has no column

of all zeros. We will call

{x ≥ 0 : Ax ≥ 1}

the set covering polyhedron, and

{x ≥ 0 : Bx ≤ 1}

the set packing polytope. Here, 1 is the all-ones vectors of appropriate dimension. When are these polyhedra

integral? When are the associated linear systems TDI? These questions will form the underlying theme of the

entire course. The short answers are, the questions have been answered for the set packing case, and they are

widely open for the set covering case. But first, why are we even interested?

2



3.1 The set covering polyhedron

Let A be a 0− 1 matrix. Consider the set covering program

(P )

min w>x

s.t. Ax ≥ 1

x ≥ 0

and its dual

(D)

max 1>y

s.t. A>y ≤ w

y ≥ 0

for an integral cost vector w.1 Notice that if w has a negative entry, then (P) does not have a finite optimum. We

may therefore focus on nonnegative cost vectors w.

Packing st-paths. Let G = (V,E) be a graph and take distinct vertices s, t. Let A be the 0 − 1 matrix whose

columns are labeled by E and whose rows are the incidence vectors of st-paths. Let w ∈ ZE
+. Then the set

covering program (P) can be rewritten as

min
∑

(wexe : e ∈ E)

s.t.
∑

(xe : e ∈ P ) ≥ 1 ∀ st-paths P
xe ≥ 0 ∀e ∈ E.

Note that every st-cut gives a feasible solution to (P). In particular, the minimum weight of an st-cut is an upper-

bound on the optimal value of (P). Let Gw be the graph obtained from G after replacing each edge e by we

parallel edges. Then the minimum weight of an st-cut in G is simply the minimum cardinality of an st-cut in

Gw. Consider now the dual program (D), which may be rewritten as

max
∑

(yP : P is an st-path)
s.t.

∑
(yP : P is an st-path such that e ∈ P ) ≤ we ∀e ∈ E

yP ≥ 0 ∀ st-paths P.

Then a packing of st-paths in Gw gives a feasible solution to (D). We will think of a packing of st-paths in Gw

as a weighted packing of st-paths in G (where each edge e appears in at most we many st-paths, and where an

st-path may be packed more than once). Hence, the maximum value of a weighted packing of st-paths in G is a

lower-bound on the optimal value of (D). It therefore follows from Theorem 1.1 that,

Corollary 3.1. Let G be a graph and take distinct vertices s, t. Then the set covering system corresponding to

the st-paths of G is totally dual integral. In particular, the set covering polyhedron{
x ∈ RE

+ :
∑

(xe : e ∈ P ) ≥ 1 ∀ st-paths P
}

is integral.
1Fulkerson 1971 [4] called this dual LP the “packing program” for reasons that will become clear soon. However, in the current literature,

the primal LP is referred to as the “set covering program”. One possible explanation for this will be provided in the next chapter.
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3.2 The set packing polytope

Let B be a 0− 1 matrix without a column of all zeros. Consider the set packing program

(P )

max w>x

s.t. Bx ≤ 1

x ≥ 0

and its dual

(D)

min 1>y

s.t. B>y ≥ w

y ≥ 0

for an integral cost vector w.2 Notice that if w has a negative entry, then the corresponding variable in an optimal

solution will always be set to 0. We may therefore focus on nonnegative cost vectors w.

Covering with chains. Let (E,≤) be a partially ordered set. Let B be the 0 − 1 matrix whose columns are

labeled by E and whose rows are the incidence vectors of chains. Then the set packing program (P) can be

rewritten as
max

∑
(wexe : e ∈ E)

s.t.
∑

(xe : e ∈ C) ≤ 1 ∀ chains C
xe ≥ 0 ∀e ∈ E.

Observe that an antichain gives a feasible solution to (P). In particular, the maximum weight of an antichain is

a lower-bound on the optimal value of (P). Let (Ew,≤) be the partially ordered set obtained from (E,≤) after

replacing each element e by we pairwise incomparable copies. Then the maximum weight of an antichain of

(E,≤) is simply the maximum cardinality of an antichain of (Ew,≤). Consider now the dual program (D),

rewritten as
min

∑
(yC : C is a chain)

s.t.
∑

(yC : C is a chain such that e ∈ C) ≥ we ∀e ∈ E

yC ≥ 0 ∀ chains C.

Then a covering of Ew with chains gives a feasible solution to (D). We will think of a covering of Ew with

chains as a weighted covering of E with chains (where each element e is covered at least we times, and chains

can be used in a covering more than once). Thus, the minimum value of a weighted covering of E with chains is

an upper-bound on the optimal value of (D). It therefore follows from Theorem 1.3 that,

Corollary 3.2. Let (E,≤) be a partially ordered set. Then the set packing system corresponding to the chains

of (E,≤) is totally dual integral. In particular, the set packing polytope{
x ∈ RE

+ :
∑

(xe : e ∈ C) ≤ 1 ∀ chains C
}

is integral.
2Fulkerson 1971 [4] called this dual LP the “covering program”.
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4 Balanced matrices

Let A,B be 0− 1 matrices, where B has no column of all zeros. Why is

{x ≥ 0 : Ax ≥ 1}

called the set covering polyhedron and

{x ≥ 0 : Bx ≤ 1}

the set packing polytope? There is a neat way to look at these polyhedra that explains the terminology and gives

us a good intuition about what is coming. Take a graph G = (V,E). Let A be the edge-vertex incidence matrix

of G, that is, the columns are labeled by V and the rows are the incidence vectors of the edges. Then the 0 − 1

points of

{x ≥ 0 : Ax ≥ 1}

correspond to the vertex covers of G, hence the “set covering polyhedron”. Let B be the vertex-edge incidence

matrix of G, i.e. B = A>. Then the 0− 1 points of

{x ≥ 0 : Bx ≤ 1}

correspond to the matchings of G, hence the “set packing polytope”.

It follows from well-known theorems of Kőnig 1931 [6] that if G is bipartite, then the set covering and the

set packing systems associated to the (edge-vertex or vertex-edge) incidence matrix are totally dual integral.

Well, in general, we can think of any 0 − 1 matrix as the (vertex-edge or edge-vertex) incidence matrix of a

“hypergraph”. How can we then generalize the notion of bipartiteness to hypergraphs? However way we do this,

we want the definition to be invariant of taking matrix transpose.

An odd square matrix of the form 

1 1

1 1

1 1
. . .

1 1

1 1


with at least three columns is called an odd circuit matrix. A 0 − 1 matrix is balanced if it has no odd circuit

submatrix, even after rearranging its rows and columns. Observe that if a matrix is balanced, then so is its trans-

pose. Notice that an odd circuit matrix is the incidence matrix of a graph odd circuit. As a result, the incidence

matrix of a bipartite graph is always balanced. We may therefore think of balanced matrices as generalizations

of bipartite graphs.
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