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4 Balanced matrices

Recall that an odd square matrix of the form

1 1

1 1

1 1
. . .

1 1

1 1


with at least three columns is called an odd circuit matrix (all the other entries are set to 0). Recall that a 0 − 1

matrix is balanced if it has no odd circuit submatrix, even after rearranging its rows and columns.

4.1 A bicoloring characterization of balanced matrices

A bicoloring of a 0− 1 matrix is a partition of the columns into two color classes, where every row with at least

two 1s gets both colors. For instance, R = {1, 4} and B = {2, 3} yields a bicoloring of the matrix
1 0 0 0

1 0 1 0

0 1 0 1

0 0 1 1


whose columns are labeled 1, 2, 3, 4 from left to right.

Theorem 4.1 (Berge 1972 [1]). A 0− 1 matrix is balanced if, and only if, every submatrix has a bicoloring.

Proof. LetA be a 0−1 matrix. (⇐) Since an odd circuit is not bipartite, an odd circuit matrix is not bicolorable.

So, if every submatrix of A is bicolorable, A must be balanced. (⇒) Suppose otherwise. We may assume that

A is a balanced matrix that is not bicolorable, but every proper submatrix is bicolorable. In particular, every row

of A has at least two 1s. Let V collect the column labels of A.

Claim. For every v ∈ V , there exist rows of the form {v, u}, {v, w} for some distinct u,w ∈ V − {v}.
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Proof of Claim. For if not, bicolor the column submatrix of A corresponding to the columns V − {v}. Our

contrary assumption allows us to extend this bicoloring to a bicoloring of A, a contradiction. ♦

Let G be the graph on vertices V whose edges correspond to the rows in A with exactly two 1s. Since A is

balanced, and the edge-vertex incidence matrix of G is a submatrix of A, it follows that G is bipartite. By the

claim above, every vertex of G has at least two distinct neighbors, so every connected component of G has at

least four vertices. Pick a vertex v0 of G that is not a cut-vertex. Now bicolor (R,B) the column submatrix of A

corresponding to the columns V − {v0}. Since G is bipartite, and v0 is not a cut-vertex, the neighbors of v0 get

the same color, say R. Observe now that (R,B ∪ {v0}) is a bicoloring of A, a contradiction to our assumption.

This finishes the proof of Theorem 4.1.

A hypergraph is a pair G = (V,E) where V is a finite set of vertices, and each element of E is a nonempty

subset of V , called an edge. A hypergraph is balanced if its incidence matrix is balanced.

Corollary 4.2 (Berge 1972 [1]). Let G = (V,E) be a balanced hypergraph, and let k ≥ 2 be the minimum

cardinality of an edge. Then there exists a partition of V into k color classes where every edge gets at least one

vertex of each color.

Proof. For k = 2, the result follows immediately from Theorem 4.1. We may therefore assume that k ≥ 3. Let

(S1, . . . , Sk) be an arbitrary partition of V . For each edge e, let

ke := |{i ∈ [k] : e ∩ Si 6= ∅}| ∈ {1, . . . , k}.

If each ke is k, then we have a k-coloring. Otherwise, assume that kg < k for some edge g. Since |g| ≥ k, we

may assume that

|g ∩ Sk−1| ≥ 2 and g ∩ Sk = ∅.

Let A be the edge-vertex incidence matrix of G. Since A is balanced, by Theorem 4.1, we may bicolor the

column submatrix of A corresponding to Sk−1 ∪Sk and get a bicoloring S′k−1 ∪S′k. Consider now the partition

(S1, · · · , Sk−2, S
′
k−1, S

′
k). Notice that g intersects kg+1 many of these parts, and every other edge e intersects at

least ke many of these parts. By applying this argument recursively, we will achieve the desired k-coloring.

For an integer k ≥ 2, a hypergraph is k-partite if its vertices can be partitioned into k parts such that every

edge intersects each part at most once. As an immediate consequence of the preceding result, we have the

following:

Corollary 4.3. Take an integer k ≥ 2 and a hypergraph where every edge has cardinality k. If G is balanced,

then it is k-partite.

4.2 Integral polyhedra associated with balanced matrices

Take a 0− 1 matrix A with column labels E, and consider the polytope

P (A) := {1 ≥ x ≥ 0 : Ax = 1}.
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Notice that for each e ∈ E,

P (A) ∩ {x : xe = 0} = P (A′) and P (A) ∩ {x : xe = 1} = P (A′′)

where A′, A′′ are appropriate submatrices of A. (Equality holds above after extending P (A′), P (A′′) to RE by

setting new coordinates to either 0 or 1.)

Proposition 4.4. Let A be a balanced matrix. Then the polytope P (A) is integral.

Proof. Suppose otherwise. Let E be the column labels of A. We may assume that P (A) is not integral, but for

every proper submatrix A′ of A, P (A′) is integral. In particular, for every e ∈ E, the two polytopes

P (A) ∩ {x : xe = 0} and P (A) ∩ {x : xe = 1}

are integral. Let x? be a fractional extreme point of P (A). Since the polytopes above are integral, it follows that

1 > x? > 0. Our minimality assumption implies that A is a square nonsingular matrix.

Claim. Every row of A has exactly two 1s.

Proof of Claim. Since 1 > x?, every row of A has at least two 1s. Let A′ be the matrix obtained from A after

removing the first row. Since P (A′) is integral and x? ∈ P (A′), it follows that x? lies on an edge of P (A′). So

for some vertices χS , χT ∈ P (A′) and λ ∈ (0, 1),

x? = λχS + (1− λ)χT .

Since 1 > x? > 0, it follows that S ∩ T = ∅ and S ∪ T = E. Since A′χS = 1 = A′χT , every row of A other

than the first row has exactly two 1s. A similar argument applied to the second row implies that even the first

row has exactly two 1s. ♦

Since A is balanced, it is the incidence edge-vertex incidence matrix of a bipartite graph G. As A is a square

matrix, G has an even circuit, which in turn contradicts the nonsingularity of A. This finishes the proof of

Proposition 4.4.

Theorem 4.5 (Fulkerson, Hoffman, Oppenheim 1974 [2]). Let

AB
C

 be a balanced matrix. Then the polyhe-

dron

P = {x ≥ 0 : Ax ≥ 1, Bx ≤ 1, Cx = 1}

is integral. In particular, the set packing polytope and the set covering polyhedron corresponding to a balanced

matrix are both integral.

Proof. Let x? be an extreme point of P . Observe that x? ≤ 1, and that x? is also an extreme point of the

polytope {1 ≥ x ≥ 0 : Dx = 1}, where D is the row submatrix of

AB
C

 corresponding to the constraints of
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Ax ≥ 1, Bx ≤ 1, Cx = 1 that are tight at x?. Since

AB
C

 is balanced, so is D, so by Proposition 4.4, x? is

integral, as required.

In fact, the linear system above is totally dual integral. We will prove a similar result next time.
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