47853 Packing and Covering: Lecture 3

Ahmad Abdi

January 22, 2019

4 Balanced matrices

Recall that an odd square matrix of the form

$$
\left(\begin{array}{cccccc}
1 & 1 & & & & \\
& 1 & 1 & & & \\
& & 1 & 1 & & \\
& & & \ddots & & \\
& & & & 1 & 1 \\
1 & & & & & 1
\end{array}\right)
$$

with at least three columns is called an odd circuit matrix (all the other entries are set to 0). Recall that a $0-1$ matrix is balanced if it has no odd circuit submatrix, even after rearranging its rows and columns.

4.1 A bicoloring characterization of balanced matrices

A bicoloring of a $0-1$ matrix is a partition of the columns into two color classes, where every row with at least two 1s gets both colors. For instance, $R=\{1,4\}$ and $B=\{2,3\}$ yields a bicoloring of the matrix

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

whose columns are labeled $1,2,3,4$ from left to right.
Theorem 4.1 (Berge 1972 [1]). A $0-1$ matrix is balanced if, and only if, every submatrix has a bicoloring.
Proof. Let A be a $0-1$ matrix. (\Leftarrow) Since an odd circuit is not bipartite, an odd circuit matrix is not bicolorable. So, if every submatrix of A is bicolorable, A must be balanced. (\Rightarrow) Suppose otherwise. We may assume that A is a balanced matrix that is not bicolorable, but every proper submatrix is bicolorable. In particular, every row of A has at least two 1s. Let V collect the column labels of A.

Claim. For every $v \in V$, there exist rows of the form $\{v, u\},\{v, w\}$ for some distinct $u, w \in V-\{v\}$.

Proof of Claim. For if not, bicolor the column submatrix of A corresponding to the columns $V-\{v\}$. Our contrary assumption allows us to extend this bicoloring to a bicoloring of A, a contradiction.

Let G be the graph on vertices V whose edges correspond to the rows in A with exactly two 1 s. Since A is balanced, and the edge-vertex incidence matrix of G is a submatrix of A, it follows that G is bipartite. By the claim above, every vertex of G has at least two distinct neighbors, so every connected component of G has at least four vertices. Pick a vertex v_{0} of G that is not a cut-vertex. Now bicolor (R, B) the column submatrix of A corresponding to the columns $V-\left\{v_{0}\right\}$. Since G is bipartite, and v_{0} is not a cut-vertex, the neighbors of v_{0} get the same color, say R. Observe now that $\left(R, B \cup\left\{v_{0}\right\}\right)$ is a bicoloring of A, a contradiction to our assumption. This finishes the proof of Theorem 4.1.

A hypergraph is a pair $G=(V, E)$ where V is a finite set of vertices, and each element of E is a nonempty subset of V, called an edge. A hypergraph is balanced if its incidence matrix is balanced.

Corollary 4.2 (Berge 1972 [1]). Let $G=(V, E)$ be a balanced hypergraph, and let $k \geq 2$ be the minimum cardinality of an edge. Then there exists a partition of V into k color classes where every edge gets at least one vertex of each color.

Proof. For $k=2$, the result follows immediately from Theorem 4.1. We may therefore assume that $k \geq 3$. Let $\left(S_{1}, \ldots, S_{k}\right)$ be an arbitrary partition of V. For each edge e, let

$$
k_{e}:=\left|\left\{i \in[k]: e \cap S_{i} \neq \emptyset\right\}\right| \in\{1, \ldots, k\} .
$$

If each k_{e} is k, then we have a k-coloring. Otherwise, assume that $k_{g}<k$ for some edge g. Since $|g| \geq k$, we may assume that

$$
\left|g \cap S_{k-1}\right| \geq 2 \quad \text { and } \quad g \cap S_{k}=\emptyset
$$

Let A be the edge-vertex incidence matrix of G. Since A is balanced, by Theorem 4.1, we may bicolor the column submatrix of A corresponding to $S_{k-1} \cup S_{k}$ and get a bicoloring $S_{k-1}^{\prime} \cup S_{k}^{\prime}$. Consider now the partition $\left(S_{1}, \cdots, S_{k-2}, S_{k-1}^{\prime}, S_{k}^{\prime}\right)$. Notice that g intersects $k_{g}+1$ many of these parts, and every other edge e intersects at least k_{e} many of these parts. By applying this argument recursively, we will achieve the desired k-coloring.

For an integer $k \geq 2$, a hypergraph is k-partite if its vertices can be partitioned into k parts such that every edge intersects each part at most once. As an immediate consequence of the preceding result, we have the following:

Corollary 4.3. Take an integer $k \geq 2$ and a hypergraph where every edge has cardinality k. If G is balanced, then it is k-partite.

4.2 Integral polyhedra associated with balanced matrices

Take a $0-1$ matrix A with column labels E, and consider the polytope

$$
P(A):=\{\mathbf{1} \geq x \geq \mathbf{0}: A x=\mathbf{1}\}
$$

Notice that for each $e \in E$,

$$
P(A) \cap\left\{x: x_{e}=0\right\}=P\left(A^{\prime}\right) \quad \text { and } \quad P(A) \cap\left\{x: x_{e}=1\right\}=P\left(A^{\prime \prime}\right)
$$

where $A^{\prime}, A^{\prime \prime}$ are appropriate submatrices of A. (Equality holds above after extending $P\left(A^{\prime}\right), P\left(A^{\prime \prime}\right)$ to \mathbb{R}^{E} by setting new coordinates to either 0 or 1.)

Proposition 4.4. Let A be a balanced matrix. Then the polytope $P(A)$ is integral.
Proof. Suppose otherwise. Let E be the column labels of A. We may assume that $P(A)$ is not integral, but for every proper submatrix A^{\prime} of $A, P\left(A^{\prime}\right)$ is integral. In particular, for every $e \in E$, the two polytopes

$$
P(A) \cap\left\{x: x_{e}=0\right\} \quad \text { and } \quad P(A) \cap\left\{x: x_{e}=1\right\}
$$

are integral. Let x^{\star} be a fractional extreme point of $P(A)$. Since the polytopes above are integral, it follows that $\mathbf{1}>x^{\star}>\mathbf{0}$. Our minimality assumption implies that A is a square nonsingular matrix.

Claim. Every row of A has exactly two 1 s.
Proof of Claim. Since $1>x^{\star}$, every row of A has at least two 1s. Let A^{\prime} be the matrix obtained from A after removing the first row. Since $P\left(A^{\prime}\right)$ is integral and $x^{\star} \in P\left(A^{\prime}\right)$, it follows that x^{\star} lies on an edge of $P\left(A^{\prime}\right)$. So for some vertices $\chi_{S}, \chi_{T} \in P\left(A^{\prime}\right)$ and $\lambda \in(0,1)$,

$$
x^{\star}=\lambda \chi_{S}+(1-\lambda) \chi_{T} .
$$

Since $\mathbf{1}>x^{\star}>\mathbf{0}$, it follows that $S \cap T=\emptyset$ and $S \cup T=E$. Since $A^{\prime} \chi_{S}=\mathbf{1}=A^{\prime} \chi_{T}$, every row of A other than the first row has exactly two 1s. A similar argument applied to the second row implies that even the first row has exactly two 1 s .

Since A is balanced, it is the incidence edge-vertex incidence matrix of a bipartite graph G. As A is a square matrix, G has an even circuit, which in turn contradicts the nonsingularity of A. This finishes the proof of Proposition 4.4.

Theorem 4.5 (Fulkerson, Hoffman, Oppenheim 1974 [2]). Let $\left(\begin{array}{l}A \\ B \\ C\end{array}\right)$ be a balanced matrix. Then the polyhedron

$$
P=\{x \geq \mathbf{0}: A x \geq \mathbf{1}, B x \leq \mathbf{1}, C x=\mathbf{1}\}
$$

is integral. In particular, the set packing polytope and the set covering polyhedron corresponding to a balanced matrix are both integral.

Proof. Let x^{\star} be an extreme point of P. Observe that $x^{\star} \leq 1$, and that x^{\star} is also an extreme point of the polytope $\{\mathbf{1} \geq x \geq \mathbf{0}: D x=\mathbf{1}\}$, where D is the row submatrix of $\left(\begin{array}{l}A \\ B \\ C\end{array}\right)$ corresponding to the constraints of
$A x \geq 1, B x \leq 1, C x=1$ that are tight at x^{\star}. Since $\left(\begin{array}{l}A \\ B \\ C\end{array}\right)$ is balanced, so is D, so by Proposition $4.4, x^{\star}$ is integral, as required.

In fact, the linear system above is totally dual integral. We will prove a similar result next time.

References

[1] Berge, C.: Balanced matrices. Math. Program. 2(1), 19-31 (1972)
[2] Fulkerson, D.R., Hoffman, A., Oppenheim, R.: On balanced matrices. Math. Prog. Study 1, 120-132 (1974)

