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4 Balanced matrices

Recall the following theorem we proved last time:

Theorem 4.5 (Fulkerson, Hoffman, Oppenheim 1974 [3]). Let

AB
C

 be a balanced matrix. Then the polyhe-

dron

P = {x ≥ 0 : Ax ≥ 1, Bx ≤ 1, Cx = 1}

is integral. In particular, the set packing polytope and the set covering polyhedron corresponding to a balanced

matrix are both integral.

We will need this result today.

4.3 Hall’s theorem for balanced hypergraphs

Let G = (V,E) be a hypergraph. A matching is a packing of pairwise disjoint edges. A perfect matching is

a matching that uses every vertex. Recall Hall’s condition for the existence of perfect matchings in bipartite

graphs:

Theorem 4.6 (Hall 1935 [4]). Let G be a bipartite graph. Then the following statements are equivalent:

• G has no perfect matching,

• there exist disjoint vertex sets R,B such that |R| > |B| and every edge with an end in R has an end in B.

We will see a generalization of this to balanced hypergraphs. We will need two lemmas.

Lemma 4.7. Let A be a balanced matrix. Then the polyhedron

P = {x, s, t ≥ 0 : Ax+ Is− It = 1}

is integral.
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Proof. Denote by m the number of rows of A, and for each i ∈ [m], denote by ai the ith row of A. Take an

extreme point (x?, s?, t?) of P . Since the corresponding columns of
(
A I −I

)
are linearly dependent, we

see that s?i t
?
i = 0 for each i ∈ [m]. As a result, x? is also an extreme point of the polyhedronx ≥ 0 :

a>i x ≤ 1 ∀i ∈ [m] s.t. s?i > 0

a>i x ≥ 1 ∀i ∈ [m] s.t. t?i > 0

a>i x = 1 otherwise.


By Theorem 4.5, this polyhedron is integral, implying in turn that x? is integral. This easily implies that

(x?, s?, t?) is also integral, thereby finishing the proof.

Lemma 4.8. Let A be a balanced matrix. Then the linear system x, s, t ≥ 0, Ax+ Is− It = 1 is totally dual

integral.

Proof. We prove this by induction on the number of rows of A. The base case is obvious. For the induction step,

consider for integral weights b, c, d the primal program

(P )

max b>x+ c>s+ d>t

s.t. Ax+ Is− It = 1

x, s, t ≥ 0

and the dual

(D)

min 1>y

s.t. A>y ≥ b
y ≥ c
−y ≥ d.

We will construct an integral optimal solution to (D). To this end, take an optimal solution ȳ to (D). If ȳ is

integral, we are done. Otherwise, we may assume that ȳ1 is fractional. Write ȳ = (ȳ1, z̄). Let a be the first row

of A, and let A′ (resp. c′, d′) be the matrix (resp. vector) obtained from A (resp. c, d) after removing the first

row. Consider the program

(D′)

min 1>z

s.t. A′>z ≥ b− dȳ1ea
z ≥ c′
−z ≥ d′.

Since ȳ = (ȳ1, z̄) is feasible for (D), we get that z̄ is feasible for (D′). Our induction hypothesis implies that

(D′) has an integral optimal solution z?. In particular,

1>z̄ ≥ 1>z?.

As z? is feasible for (D′), and c, d are integral, it follows that (dȳ1e, z?) is feasible for (D), so

dȳ1e+ 1>z? ≥ 1>ȳ = ȳ1 + 1>z̄.

Combining the preceding two inequalities yields

dȳ1e+ 1>z? ≥ 1>ȳ ≥ ȳ1 + 1>z?.
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By Lemma 4.7, (P ) has an integral optimal solution, so as b, c, d are integral, (P ) has an integer optimal value.

Thus, 1>ȳ is an integer by LP Strong Duality. Hence, the inequalities above imply that dȳ1e+ 1>z? = 1>ȳ, so

(dȳ1e, z?) is an integral optimal solution for (D), as required. This completes the induction step.

We are now ready to prove the following generalization of Theorem 4.6:

Theorem 4.9 (Conforti, Cornuéjols, Kapoor, Vus̆ković 1996 [2]). Let G = (V,E) be a balanced hypergraph.

Then the following statements are equivalent:

• G has no perfect matching,

• there are disjoint vertex sets R,B such that |R| > |B| and for every edge e, |e ∩B| ≥ |e ∩R|.

Proof. (⇐) Suppose for a contradiction that G has a perfect matching e1, . . . , ek. Then

|R| =
k∑

i=1

|ei ∩R| ≤
k∑

i=1

|ei ∩B| = |B| < |R|,

a contradiction. (⇒) Suppose G has no perfect matching. Let A be the vertex-edge incidence matrix of G.

Notice that A is a balanced matrix. Consider the linear program

(P )

max 0>x− 1>s− 1>t

s.t. Ax+ Is− It = 1

x, s, t ≥ 0

Since G has no perfect matching, (P ) has no integer feasible solution of value ≥ 0. It therefore follows from

Lemma 4.7 that the optimal value of (P ) is < 0. As a result, by Lemma 4.8, the dual program has an integral

feasible solution of negative value, that is, there is an integral point ȳ such that

1>y < 0

A>y ≥ 0

y ≤ 1

y ≥ −1

Let B := {v ∈ V : ȳv = 1} and R := {v ∈ V : ȳv = −1}. Clearly, B ∩ R = ∅. The first inequality implies

that |R| > |B| while the second inequality implies that, for each edge e, |e ∩B| ≥ |e ∩R|, as required.

This result has a nice Kőnig-type consequence. Given a hypergraph, the degree of a vertex is the number of

edges containing that vertex. For an integer d ≥ 1, a hypergraph is d-regular if every vertex has degree d.

Corollary 4.10. The edges of a balanced hypergraph with maximum degree d can be partitioned into d match-

ings.

Proof. Let G = (V,E) be a balanced hypergraph with maximum degree d ≥ 1. Let us first prove the result for

d-regular hypergraphs:
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Claim 1. If G is d-regular, then its edges can be partitioned into d perfect matchings.

Proof of Claim. We prove this by induction on d ≥ 1. The base case d = 1 is obvious. Assume that d ≥ 2. Let

us use Theorem 4.9 to find a perfect matching in G. Take disjoint vertex subsets R,B of V such that for every

edge e, |e ∩B| ≥ |e ∩R|. Then

d · |B| =
∑
e∈E
|e ∩B| ≥

∑
e∈E
|e ∩R| = d · |R|,

implying in turn that |B| ≥ |R|. It therefore follows from Theorem 4.9 that G has a perfect matching Md ⊆ E.

Notice thatG\Md is (d−1)-regular, so by the induction hypothesis, the edges ofG\Md can be partitioned into

d − 1 perfect matchings M1, . . . ,Md−1. Together with Md, we get a partition of the edges of G into d perfect

matchings, thereby completing the induction step. ♦

Claim 2. There is a d-regular balanced hypergraph H = (V,E′) such that E ⊆ E′.

Proof of Claim. To obtain H , for every vertex v of G, add d− deg(v) edges of the form {v}. It is clear that H

is a d-regular hypergraph. It is easy to see that H is a balanced hypergraph. ♦

By Claim 1, the edges ofH can be partitioned into d perfect matchings. It is easy to see that this corresponds

to a partition of the edges of G into d matchings, thereby finishing the proof.

In particular,

Theorem 4.11 (Kőnig 1931 [5]). Let G be a bipartite graph of maximum degree d. Then the edges of G can be

partitioned into d matchings, that is, G can be d-edge-colored.

5 Perfect graphs

Let G = (V,E) be a simple graph. Denote by χ(G) the minimum number of stable sets needed to cover V .

Notice that χ(G) records the chromatic number of G, i.e. the minimum number of colors needed for a proper

vertex-coloring. Denote by ω(G) the maximum cardinality of a clique. Since the vertices of a clique all get

different colors in any proper vertex-coloring, it follows that

χ(G) ≥ ω(G).

Denote by G the complement of G, that is, G has vertex set V where distinct vertices u, v are adjacent in G if

they are non-adjacent in G. Notice that the cliques and stable sets of G are precisely the stable sets and cliques

of G, respectively.

Remark 5.1. Let G = (V,E) be a simple graph. Then

θ(G) := χ(G)
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is the minimum number of cliques of G needed to cover V , and

α(G) := ω(G)

is the maximum cardinality of a stable set. In particular, θ(G) ≥ α(G).

Recall the following result from Assignment 1:

Theorem 5.2 (Kőnig 1931 [5]). In a bipartite graph, the minimum cardinality of a vertex cover is equal to the

maximum cardinality of a matching.

We will need this result moving forward, as well as a couple of notions. The line graph of a simple graph G

is the graph on vertex set E(G) where distinct e, f ∈ E(G) are adjacent if e, f share a vertex of G. Given a

partially ordered set (V,≤), its comparability graph is the graph on vertex set V where distinct u, v ∈ V are

adjacent if they are comparable.

The main theme of this section is, when does equality hold in χ ≥ ω?

Theorem 5.3. χ(G) = ω(G) if G is any of the following graphs:

(1) G or G is bipartite,

(2) G or G is the line graph of a bipartite graph,

(3) G or G is a comparability graph.

Proof. (1) Let G be a bipartite graph. Then χ(G) = 2 = ω(G). We need to show that θ(G) = α(G). Clearly,

α(G) = |V | − k

where k is the minimum cardinality of a vertex cover. Since G is bipartite,

θ(G) = |V | −m

where m is the maximum cardinality of a matching. By Theorem 5.2, m = k, implying in turn that θ(G) =

α(G), as required. (2) Let G be the line graph of a bipartite graph H . Observe that the stable sets and cliques of

G are in correspondence with the matchings and stars of H , respectively. Thus χ(G) is equal to the minimum

number of colors needed in an edge-coloring of H , while ω(G) is equal to the maximum degree of a vertex

of H . It therefore follows from Theorem 4.11 that χ(G) = ω(G). Moreover, θ(G) is equal to the minimum

cardinality of a vertex cover of H , while α(G) is equal to the maximum cardinality of a matching of H . So by

Theorem 5.2, θ(G) = α(G). (3) Let G = (V,E) be the comparability graph of a partially ordered set (V,≤).

Then the cliques and stable sets of G are in correspondence with the chains and antichains of (V,≤). It therefore

follows from Theorem 1.3 that θ(G) = α(G), and it follows from Theorem 1.4 that χ(G) = ω(G).
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Equality does not always hold in χ ≥ ω. For instance, for the odd circuit C5 on five vertices, χ(C5) = 3 >

2 = ω(C5). Can we characterize when equality does hold? Is this even a well-posed question? Let H be an

arbitrary graph, and let k := χ(H) − ω(H) ≥ 0. Let C ⊆ V (H) be a maximum clique of H . Let G be the

graph obtained from H after adding k vertices and just enough edges so as to grow C into a clique of cardinality

ω(H) + k. Notice now that χ(G) = χ(H) = ω(H) + k = ω(G). Starting from an arbitrary graph, we just

constructed a graph for which equality holds in χ ≥ ω. This construction tells us that asking when equality

holds in

χ ≥ ω

is an ill-posed question. To make sure this construction is ruled out, we will come up with a stronger notion.

Let G = (V,E) be a simple graph. For X ⊆ V , the subgraph of G induced on vertices X is called an

induced subgraph and is denoted G[X]. We say that G is perfect if, for every induced subgraph G′ of G,

χ(G′) = ω(G′). (Notice that G′ may be G.) In words, a simple graph is perfect if in each induced subgraph, the

maximum cardinality of a clique is equal to the chromatic number. It follows from the preceding theorem that,

Corollary 5.4. The following graphs are perfect:

(1) bipartite graphs, and their complements,

(2) line graphs of bipartite graphs, and their complements,

(3) comparability graphs, and their complements.

The obvious question this corollary leads to is, does complementation preserve perfection? Claude Berge

asked the same question in 1961 [1]. Although this may seem too good to be true, the answer is yes! We will

prove this next time.
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