47853 Packing and Covering: Lecture 5

Ahmad Abdi

January 29, 2019

5 Perfect graphs

Let $G=(V, E)$ be a simple graph. Recall that G is perfect if, for every induced subgraph G^{\prime} of $G, \chi\left(G^{\prime}\right)=$ $\omega\left(G^{\prime}\right)$. (Notice that G^{\prime} may be G.) In words, a simple graph is perfect if in each induced subgraph, the maximum cardinality of a clique is equal to the chromatic number. Last time we proved the following:

Corollary 5.4. The following graphs are perfect:
(1) bipartite graphs, and their complements,
(2) line graphs of bipartite graphs, and their complements,
(3) comparability graphs, and their complements.

The obvious question this corollary leads to is, does complementation preserve perfection? Claude Berge asked the same question in 1961 [1]. Today we will see that the answer is surprisingly yes!

5.1 The max-max inequality and the weak perfect graph theorem

The proof we present of the following result is due to Gasparian 1996 [4]:
Theorem 5.5 (Lovász 1972 [5]). Let G be a simple graph. The following statements are equivalent:
(i) G is perfect,
(ii) $\omega(H) \cdot \alpha(H) \geq|V(H)|$ for every induced subgraph H.

Proof. (i) \Rightarrow (ii): Let H be an induced subgraph. By definition, $\chi(H)=\omega(H)$, that is, $V(H)$ can be covered by $\omega(H)$ stable sets. Since each stable set has cardinality at most $\alpha(H)$, it follows that

$$
|V(H)| \leq \omega(H) \cdot \alpha(H)
$$

(ii) \Rightarrow (i): Suppose for a contradiction that G is not perfect. Let H be an induced subgraph of G that is not perfect, but every proper induced subgraph of H is perfect. Let $\omega:=\omega(H), \alpha:=\alpha(H)$ and $n:=|V(H)|$. Note that $n>1$. Clearly,

$$
\omega \geq \omega(H \backslash S) \geq \omega-1 \quad \text { for every nonempty stable set } S \subseteq V(H)
$$

since $H \backslash S$ is perfect and H is not, it follows that

$$
\omega(H \backslash S)=\omega \quad \text { for every nonempty stable set } S \subseteq V(H)
$$

Let S_{0} be a maximum stable set of H. Then for every vertex $v \in S_{0}, H \backslash v$ is perfect, so its vertices can be partitioned into $\omega(H \backslash v)=\omega$ nonempty stable sets. As S_{0} has α vertices, we get $\alpha \omega$ stable sets $S_{1}, \ldots, S_{\alpha \omega}$.

Claim. Every maximum clique of H intersects all but one of $S_{0}, S_{1}, \ldots, S_{\alpha \omega}$ exactly once.

Proof of Claim. Let C be a maximum clique of H. Clearly C intersects each one of $S_{0}, S_{1}, \ldots, S_{\alpha \omega}$ at most once. For a vertex $v \in S_{0}$, if

- $v \in C$: then C intersects all but one stable set in every partition of $V(H \backslash v)$ into ω stable sets,
- $v \notin C$: then C intersects all stable sets in every partition of $V(H \backslash v)$ into ω stable sets.

This observation immediately implies the claim.
For each $i \in\{0,1, \ldots, \alpha \omega\}$, let C_{i} be a maximum clique of $H \backslash S_{i}$; notice that $\left|C_{i}\right|=\omega$. Let A be the 0-1 matrix whose columns are labeled by $V(H)$, and whose rows are the incidence vectors of $S_{0}, S_{1}, \ldots, S_{\alpha \omega}$. Let B be the $0-1$ matrix whose columns are labeled by $V(H)$, and whose rows are the incidence vectors of $C_{0}, C_{1}, \ldots, C_{\alpha \omega}$. It then follows from the claim above that $A B^{\top}=J-I$, where J is the all-ones matrix and I the identity matrix of appropriate dimensions. Since $J-I$ is a nonsingular $(\alpha \omega+1) \times(\alpha \omega+1)$ matrix, it follows that both A and B have full row rank, implying in turn that

$$
|V(H)|=n \geq \alpha \omega+1=\alpha(H) \cdot \omega(H)+1>|V(H)|
$$

a contradiction.
As a consequence, we get the weak perfect graph theorem:
Theorem 5.6 (Lovász 1972 [6]). If a graph is perfect, then so is its complement.
Proof. Suppose that G is perfect. Then by Theorem 5.5, for every induced subgraph H of G,

$$
\omega(H) \cdot \alpha(H) \geq|V(H)|
$$

implying in turn that for every induced subgraph \bar{H} of \bar{G},

$$
\alpha(\bar{H}) \cdot \omega(\bar{H}) \geq|V(\bar{H})|
$$

so by Theorem $5.5, \bar{G}$ is perfect, as required.

5.2 Odd holes and odd antiholes

We say that a simple graph is minimally imperfect if it is not perfect, but every proper induced subgraph is perfect. Equivalently, a simple graph G is minimally imperfect if $\chi(G)>\omega(G)$, but for every proper induced subgraph $G^{\prime}, \chi\left(G^{\prime}\right)=\omega\left(G^{\prime}\right)$. The latter implies that a minimally imperfect graph is always connected.

Remark 5.7. A graph is perfect if, and only if, it has no minimally imperfect induced subgraph.
Let H be an odd circuit with at least 5 vertices. Then $3=\chi(H)>\omega(H)=2$, so G is imperfect. Since every proper induced subgraph of H is bipartite, and therefore perfect, it follows that H is minimally imperfect. Notice that Theorem 5.6 equivalently states that,

Corollary 5.8. The complement of a minimally imperfect graph is also minimally imperfect.
Thus, the complement of an odd circuit with at least 5 vertices is also minimally imperfect. Let G be a simple graph. We say that G has an odd hole if it has as an induced subgraph an odd circuit with at least 5 vertices, and we say that G has an odd antihole if \bar{G} has an odd hole. It follows from the preceding remark that,

Remark 5.9. A perfect graph has no odd hole and no odd antihole.
In 1961, Claude Berge conjectured that the converse of this statement is also true [1]. In 2006, this conjecture was proved by Chudnovsky, Robertson, Seymour and Thomas, and their theorem is referred to as the strong perfect graph theorem [2]. We will see some of the milestones and highlights leading to the proof, as well as a sketch of the proof.

5.3 Star cutsets and antitwins

Let $G=(V, E)$ be a simple graph. A star cutset is a nonempty $X \subseteq V$ such that

- $G \backslash X$ has more connected components than G, and
- a vertex of X is adjacent to all the other vertices in X.

Lemma 5.10 (Chvátal 1985 [3]). A minimally imperfect graph does not have a star cutset.
Proof. Let $G=(V, E)$ be a minimally imperfect graph, and let $\omega:=\omega(G)$. Then

$$
\omega(G \backslash S)=\omega \quad \text { for every stable set } S \subseteq V .
$$

Suppose for a contradiction that G has a star cutset $X \subseteq V$. Then the vertices of $G \backslash X$ can be partitioned into nonempty parts V_{1}, V_{2} such that G has no edge between V_{1} and V_{2}. Since every proper induced subgraph of G is perfect, for each $i \in[2]$, there is a vertex-coloring $f_{i}: X \cup V_{i} \rightarrow[\omega]$ of the induced subgraph $G\left[X \cup V_{i}\right]$. Since X is a star cutset, it has a vertex v that is adjacent to all other vertices of X. For $i \in[2]$, let $S_{i}:=\{w \in$ $\left.X \cup V_{i}: f_{i}(w)=f_{i}(v)\right\}$. Clearly, each S_{i} is stable and $S_{i} \cap X=\{v\}$. Moreover, since there are no edges
between V_{1} and V_{2}, it follows that $S:=S_{1} \cup S_{2}$ is also stable. In particular, $\omega(G \backslash S)=\omega$, so $G \backslash S$ has a clique C of cardinality ω. However, either $C \subseteq X \cup V_{1}$ or $C \subseteq X \cup V_{2}$, implying in turn that C is an ω-clique of some $G\left[X \cup V_{i}\right] \backslash S_{i}$, which has an $(\omega-1)$-vertex-coloring, a contradiction.

This lemma was a key milestone for what led to the proof of the strong perfect graph theorem. To demonstrate the power of this lemma, let us see some applications of it. Let G_{1} be a perfect graph, and take a vertex $v \in V\left(G_{1}\right)$. To duplicate v is to introduce a new vertex \bar{v}, join it to all the neighbors of v, and then join it to \bar{v}. More generally, given another perfect graph G_{2} over a disjoint vertex set, to substitute G_{2} for v is to remove v, and join every vertex of G_{2} to all the neighbors of v in $G_{1} \backslash v$.

Theorem 5.11 (Lovász 1972 [6]). Let G_{1}, G_{2} be perfect graphs over disjoint vertex sets. If G is obtained by substituting G_{2} for a vertex v of G_{1}, then G is perfect. In particular, duplication preserves perfection.

Proof. Suppose otherwise. Since every induced subgraph of G is either an induced subgraph of G_{1}, or of G_{2}, or arises from induced subgraphs of G_{1}, G_{2} by substitution, we may assume that G is minimally imperfect. Clearly, G_{2} has at least two vertices, and $G_{1} \backslash v$ has at least one vertex. Take an arbitrary vertex u of G_{2}, and denote by N its neighbors of G in $V\left(G_{1} \backslash v\right)$. Notice that for each vertex in $V\left(G_{2}\right)$, its neighbors of G in $V\left(G_{1} \backslash v\right)$ is precisely N. As G is minimally imperfect, \bar{G} is minimally imperfect by Corollary 5.8 , so \bar{G} is connected, implying in turn that $V\left(G_{1} \backslash v\right)-N \neq \emptyset$. Let $X:=\{u\} \cup N$. Then X is a star cutset as u is adjacent to all the vertices in N, and in $G \backslash X$, there are no edges between $V\left(G_{2}\right)-\{u\}$ and $V\left(G_{1} \backslash v\right)-N$. This contradicts the Star Cutset Lemma 5.10.

Next time we will see another important lemma about minimally imperfect graphs.

References

[1] Berge, C.: Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind. Technical report, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10, 114 (1961)
[2] Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164(1), 51-229 (2006)
[3] Chvátal, V.: Star-cutsets and perfect graphs. J. Combin. Theory Ser. B 39(3), 189-199 (1985)
[4] Gasparian, G.S.: Minimal imperfect graphs: a simple approach. Combinatorica 16(2), 209-212 (1996)
[5] Lovász, L.: A characterization of perfect graphs. J. Combin. Theory Ser. B 13(2), 95-98 (1972)
[6] Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Disc. Math. 2(3), 253-268 (1972)

