47853 Packing and Covering: Lecture 7

Ahmad Abdi

February 7, 2019

6 Perfect matrices

Let A be a $0-1$ matrix without a column of all zeros. We say that A is perfect if the associated set packing polytope $\{x \geq 0: A x \leq 1\}$ is integral. Last time we proved the following:

Corollary 6.1. Let G be a perfect graph. Then the set packing system corresponding to the stable sets of G is totally dual integral. In particular, the incidence matrix of the stable sets of G is a perfect matrix.

Today we will see that these are essentially the only examples of integral set packing polytopes and totally dual integral set packing systems!

6.1 Perfection implies total dual integrality.

From Corollary 6.1 it seems more natural to call a matrix perfect when the corresponding set packing system is totally dual integral. The following amazing result justifies our choice of terminology:

Theorem 6.2 (Fulkerson 1972 [3]). Let A be a perfect matrix. Then the linear system $x \geq \mathbf{0}, A x \leq \mathbf{1}$ is totally dual integral.

Proof. Denote by E the column labels of A. Consider the set packing primal-dual pair
$\begin{array}{llll} & \max & c^{\top} x & \\ \text { s.t. } & A x \leq \mathbf{1} \\ & x \geq \mathbf{0} & \text { and }\end{array}$
$\min \quad \mathbf{1}^{\top} y$
s.t. $\quad A^{\top} y \geq c \quad c \in \mathbb{Z}^{E}$. $y \geq \mathbf{0}$

As A is perfect, (P) has an integral optimal solution for all $c \in \mathbb{Z}^{E}$. We will prove by induction on the optimal value $\omega \in \mathbb{Z}_{+}$of (P) that (D) has an integral dual solution for all $c \in \mathbb{Z}^{E}$. If $\omega=0$ for some $c \in \mathbb{Z}^{E}$, then as A has no column of all zeros, it follows that $c \leq \mathbf{0}$, implying in turn that $\mathbf{0}$ is an optimal solution for (D). For the induction step, assume that $\omega \geq 1$ for some $c \in \mathbb{Z}^{E}$. Take an arbitrary row a of A such that

$$
a^{\top} x^{\star}=1 \quad \text { for all optimal solutions } x^{\star} \text { of }(P)
$$

(To find this row, take an optimal dual solution y^{\star}, and pick a so that $y_{a}^{\star}>0$; apply the complementary slackness conditions.) We may assume that a is the first row of A. Consider the set packing primal-dual pair

$$
\begin{array}{llllll}
& \max & (c-a)^{\top} x \\
\left(P^{\prime}\right) & \text { s.t. } & A x \leq \mathbf{1} \\
& x \geq \mathbf{0} & \text { and } & & \left(D^{\prime}\right) & \\
& & & \min ^{\top} y \\
& \text { s.t. } & A^{\top} y \geq c-a \\
& & & y \geq \mathbf{0}
\end{array}
$$

Clearly, the optimal value of $\left(P^{\prime}\right)$ is at most ω, and our choice of a implies that it is exactly $\omega-1$. Thus, by the induction hypothesis, $\left(D^{\prime}\right)$ has an integral optimal solution $\bar{y}=\left(\bar{y}_{1}, \bar{z}\right)$ of value $\omega-1$. Let $y^{\star}:=\left(\bar{y}_{1}+1, \bar{z}\right)$. Then y^{\star} is an integral feasible solution for (D) and has value ω, so it is optimal. This completes the induction step.

6.2 The pluperfect graph theorem

In an attempt to prove it, Ray Fulkerson proposed and proved a polyhedral analogue of the weak perfect graph theorem, and he called it the pluperfect graph theorem. To prove his theorem, we will need two ingredients. Let A be a nonnegative matrix without a column of all zeros. Let

$$
P:=\{x \geq \mathbf{0}: A x \leq \mathbf{1}\}
$$

The antiblocker of P is the set

$$
a(P):=\left\{y \geq \mathbf{0}: x^{\top} y \leq 1 \quad \forall x \in P\right\}
$$

Proposition 6.3. Let A be a nonnegative matrix without a column of all zeros. Let B be the matrix whose rows are the extreme points of $P:=\{x \geq \mathbf{0}: A x \leq \mathbf{1}\}$. Then B is nonnegative, has no column of all zeros, and

$$
\begin{aligned}
a(P) & =\{y \geq \mathbf{0}: B y \leq \mathbf{1}\} \\
a(a(P)) & =P
\end{aligned}
$$

Proof. Clearly, B is a nonnegative matrix. Since A has no column of all zeros, P is a polytope, so every point of P can be written as a convex combination of the rows of B - this has two consequences. First, as $\epsilon \mathbf{1} \in P$ for a sufficiently small $\epsilon>0, B$ cannot have a column of all zeros. Secondly, $\{y \geq \mathbf{0}: B y \leq \mathbf{1}\} \subseteq a(P)$. As the reverse inclusion holds trivially, we see that $a(P)=\{y \geq \mathbf{0}: B y \leq \mathbf{1}\}$. For the next equation, by definition

$$
a(a(P))=\left\{x \geq \mathbf{0}: y^{\top} x \leq 1 \quad \forall y \in a(P)\right\} .
$$

So clearly, $P \subseteq a(a(P))$. To prove the reverse inclusion, it suffices to show that every row a of A belongs to $a(P)$. Since $a \geq 0$ and $B a \leq \mathbf{1}$, the result follows.

Next we study the extreme points of the antiblocker. Let's see an example first. Consider the matrix

$$
A:=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) .
$$

Then the extreme points of $P:=\{x \geq \mathbf{0}: A x \leq \mathbf{1}\}$ are the rows of the matrix

$$
B:=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

By Proposition 6.3, the antiblocker of P is the polytope $a(P)=\{x \geq \mathbf{0}: B x \leq \mathbf{1}\}$. Aside from the three rows of A, the extreme points of $a(P)$ are (100), (010), (001), (000), which are all orthogonal projections of the rows of A. We will show that this is true in general. Given vectors x, y of the same dimension, if x is obtained from y after setting some of the coordinates to 0 , then we say that x is a projection of y.

Proposition 6.4. Let A be a nonnegative matrix and let $P:=\left\{x \in \mathbb{R}_{+}^{n}: A x \leq 1\right\}$. Then the following statements hold:
(1) Let \bar{x} be an extreme point of P for which

$$
\bar{x} \leq \sum_{i=1}^{k} \lambda_{i} x^{i}
$$

for some points $x^{1}, \ldots, x^{k} \in P$ and scalars $\lambda_{1}, \ldots, \lambda_{k}>0$ with $\sum_{i=1}^{k} \lambda_{i}=1$. Then \bar{x} is a projection of each x^{i}.
(2) Suppose that A has no column of all zeros. Then every extreme point of $a(P)$ is a (possibly trivial) projection of a row of A.

Proof. (1) If $\bar{x}=\mathbf{0}$, then we are done. Otherwise, after possibly rearranging the coordinates, we have $\bar{x}=(\bar{z}, \mathbf{0})$ for some $\ell \geq 1$ and $\bar{z} \in \mathbb{R}^{\ell}$ such that $\bar{z}>\mathbf{0}$. For each $i \in[k]$, denote by z^{i} the vector consisting of the first ℓ coordinates of x^{i}. Then

$$
\bar{z} \leq \sum_{i=1}^{k} \lambda_{i} z^{i}=: z
$$

Notice that z consists of the first ℓ coordinates of $\sum_{i=1}^{k} \lambda_{i} x^{i}$. As \bar{x} is an extreme point of P, there is an $\ell \times \ell$ nonsingular submatrix E of A such that $E \bar{z}=1$. On the one hand, as E is nonnegative and $z \geq \bar{z}$, it follows that $E z \geq E \bar{z}=1$. On the other hand, as $A x \leq 1$, it follows that $E z \leq 1$. Thus, $E z=E \bar{z}=1$, implying in turn that $z=\bar{z}$. As a result,

$$
\bar{x}=(\bar{z}, \mathbf{0})=(z, \mathbf{0})=\sum_{i=1}^{k} \lambda_{i}\left(z^{i}, \mathbf{0}\right)
$$

Since \bar{x} is an extreme point, and each $\left(z^{i}, \mathbf{0}\right)$ belongs to P, it follows that $\bar{x}=\left(z^{1}, \mathbf{0}\right)=\cdots=\left(z^{k}, \mathbf{0}\right)$, as required.
(2) Denote by B the matrix whose rows are the extreme points of the polytope P. Then by Proposition 6.3 , B is a nonnegative matrix without a column of all zeros, and $a(P)=\{y \geq \mathbf{0}: B y \leq \mathbf{1}\}$. Denote by A^{\prime} the matrix whose rows are the extreme points of the polytope $a(P)$. Then by Proposition 6.3,

$$
\{x \geq \mathbf{0}: A x \leq \mathbf{1}\}=a(a(P))=\left\{x \geq \mathbf{0}: A^{\prime} x \leq \mathbf{1}\right\}
$$

Take an extreme point a^{\prime} of $a(P)$, which is also a row of A^{\prime}. Since $a^{\prime \top} x \leq \mathbf{1}$ is valid for $\{x \geq \mathbf{0}: A x \leq \mathbf{1}\}$, it follows that a^{\prime} is bounded above by a convex combination of the rows of A. Applying (1) to $a(P)$, we see that a^{\prime} must be a projection of a row of A, as required.

We are now ready for the pluperfect graph theorem:
Theorem 6.5 (Fulkerson 1972 [3]). Let A be a nonnegative matrix without a column of all zeros, and let B be the matrix whose rows are the extreme points of $\{x \geq \mathbf{0}: A x \leq \mathbf{1}\}$. If A is a $0-1$ perfect matrix, then so is B.

Proof. Suppose that A is a $0-1$ perfect matrix, that is, the set packing polytope $P:=\{x \geq \mathbf{0}: A x \leq \mathbf{1}\}$ is integral. So B is a $0-1$ matrix. By Proposition $6.3, B$ has no column of all zeros and $a(P)=\{y \geq \mathbf{0}: B y \leq \mathbf{1}\}$. Therefore, by Proposition 6.4 (2), every extreme point of $\{y \geq \mathbf{0}: B y \leq \mathbf{1}\}$ is a projection of a row of A. In particular, $\{y \geq \mathbf{0}: B y \leq \mathbf{1}\}$ is integral, that is, B is perfect.

6.3 Clutters and antiblockers

Let V be a finite set of elements, and let \mathcal{A} be a family of subsets of V, called members. We say that \mathcal{A} is a clutter over ground set V if no member is contained in another one (Edmonds and Fulkerson 1970 [2]). ${ }^{1}$ The incidence matrix of \mathcal{A}, denoted $M(\mathcal{A})$, is the $0-1$ matrix whose columns are labeled by V and whose rows are the incidence vectors of the members.

Remark 6.6. Let $\mathcal{A}_{1}, \mathcal{A}_{2}$ be clutters over the same ground set, where every member of \mathcal{A}_{1} contains a member of \mathcal{A}_{2}, and every member of \mathcal{A}_{2} contains a member of \mathcal{A}_{1}. Then $\mathcal{A}_{1}=\mathcal{A}_{2}$.

Proof. Take $A_{1} \in \mathcal{A}_{1}$. Then A_{1} contains a member A of \mathcal{A}_{2}, and A contains a member of \mathcal{A}_{1}. As \mathcal{A}_{1} is a clutter, it must be that $A_{1} \subseteq A \subseteq A_{1}$, implying in turn that $A=A_{1}$. Thus, $\mathcal{A}_{1} \subseteq \mathcal{A}_{2}$. Similarly, $\mathcal{A}_{2} \subseteq \mathcal{A}_{1}$, so $\mathcal{A}_{1}=\mathcal{A}_{2}$.

Let \mathcal{A} be a clutter over ground set V, where every element is contained in a member. Consider the set packing polytope associated with \mathcal{A} :

$$
\left\{x \in \mathbb{R}_{+}^{V}: \sum\left(x_{v}: v \in A\right) \leq 1 \forall A \in \mathcal{A}\right\}=\{x \geq \mathbf{0}: M(\mathcal{A}) x \leq \mathbf{1}\}
$$

Notice that the $0-1$ points of $P(\mathcal{A})$ correspond to the sets in

$$
\{B \subseteq V:|B \cap A| \leq 1 \quad \forall A \in \mathcal{A}\}
$$

Moreover, every $0-1$ point of $P(\mathcal{A})$ is in fact an extreme point (the proof of which is left as an exercise for the reader). We say that \mathcal{A} is a perfect clutter if the associated set packing polytope is integral, that is, when the associated incidence matrix $M(\mathcal{A})$ is perfect. Notice that an arbitrary $0-1$ matrix A is perfect if, and only if, the clutter corresponding to the maximal rows of A is perfect. As a consequence, studying perfect clutters is just as general as studying perfect matrices.

[^0]Let \mathcal{A} be a clutter over ground set V. The maximal sets of $\{B \subseteq V:|B \cap A| \leq 1 \forall A \in \mathcal{A}\}$ form another clutter over the same ground set, called the antiblocker of \mathcal{A} and denoted $a(\mathcal{A})$. If every element is used in a member of \mathcal{A}, then the members of $a(\mathcal{A})$ are precisely the maximal integral points contained in the set packing polytope. For instance,

$$
\text { the antiblocker of }\{\{1,2\},\{2,3\},\{3,1\}\}=\{\{1\},\{2\},\{3\}\}, \begin{aligned}
\text { the antiblocker of }\{\{1\},\{2\},\{3\}\} & =\{\{1,2,3\}\} \\
\text { the antiblocker of }\{\{1,2,3\}\} & =\{\{1\},\{2\},\{3\}\} .
\end{aligned}
$$

One natural question to ask is, when do we have $a(a(\mathcal{A}))=\mathcal{A}$? Perhaps surprisingly, the answer is very simple:
Proposition 6.7 (Fulkerson 1971 [4]). Let \mathcal{A} be a clutter over ground set V. Then the following statements are equivalent:
(i) $a(a(\mathcal{A}))=\mathcal{A}$,
(ii) \mathcal{A} consists of the maximal stable sets of a graph over vertex set V.

Proof. (ii) \Rightarrow (i): Suppose \mathcal{A} consists of the maximal stable sets of $G=(V, E)$. Then a vertex set intersects every stable set at most once if, and only if, it is a clique. This implies that $a(\mathcal{A})$ consists of the maximal cliques of G. Applying the same argument to \bar{G} implies that $a(a(\mathcal{A}))$ consists of the maximal stable sets of G, so $a(a(\mathcal{A}))=\mathcal{A}$. (i) \Rightarrow (ii): Suppose $a(a(\mathcal{A}))=\mathcal{A}$. Let G be the graph over vertex set V, where distinct vertices u, v are non-adjacent if there is a member containing both u, v. Clearly, every member of \mathcal{A} is a stable set of G. Conversely, let $S \subseteq V$ be a stable set of G. We claim that

$$
(\star) \quad|S \cap B| \leq 1 \quad \forall B \in a(\mathcal{A}) .
$$

Suppose otherwise. Then for distinct vertices u, v of $G,\{u, v\} \subseteq S \cap B$. However, as u and v are non-adjacent, $\{u, v\} \subseteq A$ for some member $A \in \mathcal{A}$, but then $\{u, v\} \subseteq A \cap B$, a contradiction as $B \in a(\mathcal{A})$. This proves (\star), implying in turn that S is contained in a member of $a(a(\mathcal{A}))=\mathcal{A}$. Remark 6.6 implies that \mathcal{A} consists of the maximal stable sets of G, as required.

As a consequence,
Theorem 6.8 (Padberg 1973 [5]). If a clutter is perfect, then its members are the maximal stable sets of a simple graph.

Proof. Let \mathcal{A} be a perfect clutter over ground set V, and let A be the corresponding incidence matrix. Let B be the matrix whose rows are the extreme points of $P:=\{x \geq \mathbf{0}: A x \leq \mathbf{1}\}$, and let $Q:=\{y \geq \mathbf{0}: B y \leq \mathbf{1}\}$. Then by Proposition 6.3, $a(P)=Q$ and $a(Q)=P$. Moreover, since the clutter \mathcal{A} is perfect, the matrix A is perfect, so by Theorem $6.5, B$ is a perfect matrix. Let \mathcal{B} be the clutter over ground set V whose members correspond to the maximal rows of B. Notice that $a(\mathcal{A})$ corresponds to the maximal integral extreme points of P, so $a(\mathcal{A})=\mathcal{B}$. Similarly, $a(\mathcal{B})$ corresponds to the maximal integral extreme points of Q, so $a(\mathcal{B})=\mathcal{A}$. It therefore follows from Proposition 6.7 that \mathcal{A} consists of the maximal stable sets of a graph, as required.

In fact, the simple graph above is always perfect, the proof of which is left as an exercise.

Theorem 6.9 (Chvátal 1975 [1]). Let $G=(V, E)$ be a simple graph. If the clutter of the maximal stable sets of G is perfect, then G is a perfect graph.

Summarizing the results of this section and the previous one, we get the following characterization of when the set packing polytope is integral:

Corollary 6.10. The following statements hold:
(1) Let A be a $0-1$ matrix without a column of all zeros whose set packing polytope $\{x \geq 0: A x \leq \mathbf{1}\}$ is integral. Then the linear system $x \geq 0, A x \leq 1$ is totally dual integral, the maximal rows of A correspond to the maximal stable sets of a simple graph, and the graph is perfect.
(2) Let G be a simple graph. Then G is perfect if, and only if, it has no odd hole and no odd antihole.

References

[1] Chvátal, V.: On certain polytopes related associated with graphs. J. Combin. Theory Ser. B 18(2), 138-154 (1975)
[2] Edmonds, J. and Fulkerson, D.R.: Bottleneck extrema. J. Combin. Theory Ser. B 8, 299-306 (1970)
[3] Fulkerson, D.R.: Anti-blocking polyhedra. J. Combin. Theory Ser. B 12(1), 50-71 (1972)
[4] Fulkerson, D.R.: Blocking and anti-blocking pairs of polyhedra. Math. Program. 1, 168-194 (1971)
[5] Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program. 5, 199-215 (1973)

[^0]: ${ }^{1}$ Clutters are also referred to as Sperner families.

