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8 Ideal clutters

We will see two rich classes of ideal clutters that are quite different in nature, suggesting that ideal clutters form

a much richer class than perfect clutters. Unfortunately for us, it also suggests that studying general ideal clutters

is more complicated than perfect clutters. Indeed, this is confirmed by a negative complexity result on detecting

idealness that we will mention at the end of this chapter.

8.1 Dicuts and dijoins

Let D = (V,A) be a digraph. We say that D is strongly connected if for all distinct vertices s, t ∈ V , there is an

(s, t)-dipath. Take a nonempty and proper subset U of V . We say that the cut δ+(U) is a dicut if δ−(U) = ∅;
that is, δ+(U) is a dicut if it has no incoming arc; we will refer to U as an out-shore of δ+(U).

Remark 8.1. A digraph is strongly connected if, and only if, it has no dicut.

Proof. Take a digraph D = (V,A). Suppose first that D is strongly connected. Let δ+(U) be a cut, and take

vertices t ∈ U and s ∈ V − U . Since there is an (s, t)-dipath, it follows that δ−(U) 6= ∅, implying in turn that

δ+(U) is not a dicut. Suppose conversely that D is not strongly connected. Then there are distinct vertices s, t

without an (s, t)-dipath. Let U be the set of all vertices that can be reached from s. Clearly, s ∈ U and t /∈ U ,

and by construction, δ−(U) = δ+(U) = ∅, so δ+(U) is a dicut.

Given a digraph, what is the minimum number of arcs whose contraction makes the digraph strongly con-

nected? By the remark above, we can rephrase the question as, what is the covering number of the clutter of

dicuts of a digraph? In this chapter, we will answer this question by showing that in a digraph, the clutter of

dicuts packs. To prove this, we will need a coloring lemma.

Let V be a finite set, and let S be a family of subsets of V , where some subsets may be equal. We say that

two sets S, S′ ∈ S are crossing if the four sets S1 ∩ S2, S1 − S2, S2 − S1, V − (S1 ∪ S2) are nonempty. Notice

that if S1, S2 are crossing, then so are S1, S2. We say that S is cross-free if it has no crossing sets, that is, for all
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S1, S2 ∈ S, either S1 ∩ S2 = ∅, S1 ⊆ S2, S2 ⊆ S1 or S1 ∪ S2 = V . Observe that if S is cross-free, then so is

any family obtained from S after complementing some sets. We will need the following dicut coloring lemma:1

Lemma 8.2 (Lucchesi and Younger 1978 [2]). Let D = (V,A) be a digraph, and F a family of (possibly equal)

dicuts whose out-shores form a cross-free family. Take an integer k ≥ 1. If every arc appears in at most k dicuts

of F , then the dicuts of F can be k-colored so that dicuts of the same color are arc-disjoint.

Proof. Denote by S the family of the out-shores of F . By definition, S is a cross-free family. In particular, if an

arc belongs to dicuts δ+(U1), δ
+(U2) ∈ F , then either U1 ⊆ U2 or U2 ⊆ U1. As a result,

(?) given the dicuts of F containing a fixed arc, their out-shores are nested.

This observation is crucial to the proof. Take an arbitrary vertex r ∈ V , and let S ′ be obtained from S after

complementing each out-shore containing r. Clearly, S ′ is a cross-free family, and as no set contains r, it follows

that for all S1, S2 ∈ S ′, either S1 ∩ S2 = ∅, S1 ⊆ S2 or S2 ⊆ S1. That is, S ′ is a laminar family. We may

therefore represent S ′ by an r-arborescence T ′ whose arcs are in a one-to-one correspondence with the sets

of S ′. Let T be the directed tree obtained from T ′ as follows: for every set S′ ∈ S ′ obtained by complementing

an out-shore of S, flip the arc of T ′ corresponding to S′. Notice the one-to-one correspondence between the arcs

of T and the out-shores of S. Notice further that by (?), the dicuts of F containing a fixed arc correspond to a

directed path in T of length at most k. Thus, to prove the lemma, it suffices to k-color the arcs of T so that in

every directed path of length at most k, the arcs get different colors. To this end, partition the vertices of T into

layers L0, L1, L2, . . . so that each arc of T goes from some layer Li+1 to the layer Li. Color the arcs going from

layer Li+1 to layer Li with color i (mod k), for each i ≥ 0. It is then easy to see that the arcs of a directed path

of length at most k get different colors, as required.

Let D = (V,A) be a digraph. A dijoin of D is an arc subset B such that D/B is strongly connected. Notice

that by Remark 8.1, an arc subset is a dijoin if and only if it intersects every dicut. In other words, the dijoins

of D are precisely the covers of the clutter of dicuts. The proof we present of the following theorem is due to

Lovász 1976 [1].

Theorem 8.3 (Lucchesi and Younger 1978 [2]). In a digraph, the maximum number of disjoint dicuts is equal

to the minimum cardinality of a dijoin. That is, the clutter of dicuts of a digraph packs.

Proof. Let D = (V,A) be a digraph. We will prove by induction on |A| ≥ 1 that the clutter of dicuts packs. The

base case |A| = 1 is trivial. For the induction step, assume that |A| ≥ 2. We may assume that the underlying

undirected graph of D is connected, and that D is not strongly connected. Let ν be the maximum size of a

packing of dicuts. Let us say that an arc is essential if it is used in every maximum packing of dicuts.

Claim. D has an an essential arc.
1Lucchesi and Younger called this the disjunctive partition property.
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Proof of Claim. Suppose otherwise. Then for each arc, we have a packing of ν disjoint dicuts of D excluding

the arc. Doing this for every arc of D, we get a family F such that

(?) F is a family of dicuts ofD such that |F| = |A| ·ν, and every arc ofD is used in at most |A|−1

dicuts of F .

We will recursively update the family F so that each intermediate family satisfies (?), and at the end, the out-

shores form a cross-free family. If the out-shores of F form a cross-free family, then we are done. Otherwise,

take dicuts δ+(U1), δ
+(U2) ∈ F where U1, U2 are crossing. Then δ+(U1 ∩ U2), δ

+(U1 ∪ U2) are also dicuts

such that

δ+(U1 ∩ U2) ∩ δ+(U1 ∪ U2) ⊆ δ+(U1) ∩ δ+(U2) and δ+(U1 ∩ U2) ∪ δ+(U1 ∪ U2) ⊆ δ+(U1) ∪ δ+(U2).

We update F by replacing the dicuts δ+(U1), δ
+(U2) by the dicuts δ+(U1 ∩ U2), δ

+(U1 ∪ U2). The inclusions

above imply that F still satisfies (?). Since at each iteration, the potential
∑
δ+(U)∈F |U |2 strictly increases,

we will eventually reach a family F satisfying (?) whose out-shores form a cross-free family. Therefore, by

the Dicut Coloring Lemma 8.2, we may (|A| − 1)-color the dicuts of F so that each color class is a packing of

dicuts. One of the color classes has cardinality at least |A|·ν|A|−1 > ν, implying in turn that D has a packing of ν+1

dicuts, a contradiction. Thus, D has an essential arc. ♦

Let e be an essential arc of D, and let C1, . . . , Cν be a maximum packing of dicuts such that e ∈ Cν .

To complete the induction step, it suffices to exhibit a dijoin of cardinality ν. As e is essential, the dicuts

C1, . . . , Cν−1 give a maximum packing of dicuts of D/e. Thus, by the induction hypothesis, D/e has a dijoin

B′ of cardinality ν − 1. Notice that B′ ∪ {e} is a dijoin of D of cardinality ν, as required. This completes the

induction step.

Using this result, we can prove the following:

Corollary 8.4. The clutter of dicuts of a digraph is Mengerian, and therefore ideal.

Proof. Let C be the clutter of dicuts of a digraph D = (V,A). To prove that C is Mengerian, take weights

w ∈ ZA+. We need to show that τ(C, w) = ν(C, w), that is, the minimum weight of a dijoin is equal to the

maximum size of a weighted packing of dicuts. Construct a digraph D′ starting from D as follows: for each arc

ewithwe = 0 contract arc e, and for each arcw withwe ≥ 1 replace arc e bywe arcs in series forming a directed

path. Then τ(C, w) is equal to the minimum cardinality of a dijoin ofD′, while ν(C, w) is equal to the maximum

number of disjoint dicuts of D′. Therefore, Theorem 8.3 implies that τ(C, w) = ν(C, w), as required.

Together with Theorem 7.8, this result implies that,

Corollary 8.5. The clutter of dijoins of a digraph is ideal.

Schrijver 1980 [3] showed that in contrast to dicuts, the clutter of dijoins is not necessarily Mengerian. For

instance, let D = (V,A) be the digraph displayed in Figure 1, let w ∈ ZA+ assign a weight of 1 to the solid arcs
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Figure 1: A digraph whose clutter of dijoins is not Mengerian.

and a weight of 0 to the dashed arcs, and let C be the clutter of dijoins of D. Then τ(C, w) = 2 > 1 = ν(C, w).
As a result, C is not Mengerian.

Nevertheless, Woodall 1978 [4] conjectures that the clutter of dijoins always packs. (Why would Woodall’s

conjecture not imply that the clutter of dijoins is Mengerian?)
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