
CO750 Packing and Covering

Ahmad Abdi

October 29, 2018

Contents

1 What is packing and covering? 3

1.1 A packing example: Menger’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 A covering example: Dilworth’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 A review of integral polyhedra and totally dual integral linear systems 6

3 Packing and covering models 7

3.1 The set covering polyhedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 The set packing polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Balanced matrices 10

4.1 A bicoloring characterization of balanced matrices . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Integral polyhedra associated with balanced matrices . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 Hall’s theorem for balanced hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Perfect graphs 17

5.1 The max-max inequality and the weak perfect graph theorem . . . . . . . . . . . . . . . . . . . 19

5.2 Odd holes and odd antiholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3 Star cutsets and antitwins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.4 The strong perfect graph theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Perfect matrices 25

6.1 Perfection implies total dual integrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 The pluperfect graph theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 Clutters and antiblockers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1



7 Integral and totally dual integral set covering programs 31

7.1 Clutters and blockers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Packing and covering parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.3 The width-length inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.4 Deletions, contractions and minors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Ideal clutters 37

8.1 Dicuts and dijoins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.2 T -joins and T -cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.3 Testing idealness is co-NP-complete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9 Minimally non-ideal clutters 46

9.1 The deltas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9.2 The other minimally non-ideal clutters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9.3 Immediate applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

10 Weakly bipartite graphs 57

10.1 Signed graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

10.2 The whirlpool lemma and pseudo-odd-K5’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10.3 A signed graph without an odd-K5 minor is weakly bipartite. . . . . . . . . . . . . . . . . . . . 62

11 Cube-ideal sets 66

11.1 Ideal cuboids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

11.2 The sums of circuits property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2



1 What is packing and covering?

1.1 A packing example: Menger’s theorem

Let G = (V,E) be a loopless graph, and take distinct vertices s, t ∈ V . An st-path is a minimal edge subset

connecting s and t. What is the maximum number of (pairwise) disjoint st-paths? In other words, how many

st-paths can we pack? Denote by ν the maximum number of disjoint st-paths.

An st-cut is an edge subset of the form

δ(U) := {e ∈ E : |e ∩ U | = 1}

where U ⊆ V satisfies U ∩ {s, t} = {s}. We will refer to U and V − U as the shores of G. Notice that every

st-path intersects an st-cut. Thus, ν is at most the cardinality of any st-cut. Let τ be the minimum cardinality

of an st-cut. Then

τ ≥ ν.

Theorem 1.1 (Menger 1927). Let G = (V,E) be a loopless graph, and take distinct vertices s, t ∈ V . Then the

maximum number of disjoint st-paths is equal to the minimum cardinality of an st-cut, that is, τ = ν.

Proof. We prove this by induction on |V |+ |E| ≥ 3. The result is obvious for |V |+ |E| = 3. For the induction

step, assume that |V |+ |E| ≥ 4. Let τ be the minimum cardinality of an st-cut. We may assume that τ ≥ 1. We

will find τ disjoint st-paths.

Claim 1. If an edge e does not appear in a minimum st-cut, then G has τ disjoint paths.

Proof of Claim. Notice that the cardinality of a minimum st-cut in G \ e is still τ . As a result, the induction

hypothesis implies the existence of τ disjoint st-paths in G \ e, and therefore in G. ♦

We may therefore assume that every edge appears in a minimum st-cut. An st-cut δ(U) is trivial if either

|U | = 1 or |V − U | = 1.

Claim 2. If there is a minimum st-cut which is not trivial, then G has τ disjoint paths.

Proof of Claim. Let δ(U), s ∈ U ⊆ V − {t} be a minimum st-cut which is non-trivial. Let G1 be the graph

obtained from G by shrinking U to a single vertex s′, and let G2 be the graph obtained from G after shrinking

V − U to a single vertex t′. Since δ(U) is non-trivial, it follows that |V (Gi)| + |E(Gi)| < |V | + |E|, for each

i ∈ [2]. We may therefore apply the induction hypothesis to G1 and G2. Notice that τ is still the minimum

cardinality of an s′t-cut in G1 and of an st′-cut in G2. Thus, by the induction hypothesis, G1 has τ disjoint

s′t-paths and G2 has disjoint st′-paths. Gluing these paths along the edges of δ(U) gives us τ disjoint st-paths

in G. ♦

We may therefore assume that every minimum st-cut is trivial. Since every edge appears in a minimum

st-cut, it follows that every edge has either s or t as an end. In this case, G has a special form and it is clear that

τ = ν for this graph, thereby completing the induction step.
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This result was the first of many packing theorems. Just to mention a few, we will see some of these packing

results:

• Given a connected loopless graph G and distinct vertices s, t, the maximum number of disjoint st-cuts is

equal to the minimum cardinality of an st-path.

• Ford and Fulkerson 1956: given a directed graph G and distinct vertices s, t, the maximum number of

disjoint directed (s, t)-paths is equal to the minimum cardinality of an (s, t)-cut.

• Edmonds 1972: given a directed graph G and a root r, the maximum number of disjoint spanning r-

arborescences is equal to the minimum cardinality of an r-cut.

• Edmonds and Johnson 1973: given a graph G and even subset T of vertices, the maximum value of a

fractional packing of T -joins is equal to the minimum cardinality of a T -cut.

• Lucchesi and Younger 1976: given a directed graph G, the maximum number of disjoint dicuts is equal to

the minimum cardinality of a dijoin.

• Conjecture (Woodall 1978): given a directed graph G, the maximum number of disjoint dijoins is equal to

the minimum cardinality of a dicut.

• Guenin 2001: in a signed graph without an odd-K5 minor, the maximum value of a fractional packing of

odd circuits is equal to the minimum cardinality of a signature.

1.2 A covering example: Dilworth’s theorem

Take a partially ordered set (E,≤), that is, the following statements hold for all a, b, c ∈ E:

• a ≤ a,

• if a ≤ b and b ≤ a, then a = b,

• if a ≤ b and b ≤ c, then a ≤ c.

We say that a, b are comparable if a ≥ b or b ≥ a; otherwise they are incomparable. A chain is a set of pairwise

comparable elements. What is the minimum number of (not necessarily disjoint) chains whose union is E? That

is, what is the least number of chains needed to cover the ground set? Let θ be the minimum size of a covering.

An antichain is a set of pairwise incomparable elements. Given an antichain A, every chain picks at most

one element from A. Thus, θ is at least the cardinality of an antichain. Let α be the maximum cardinality of an

antichain. Then

θ ≥ α.

Theorem 1.2 (Dilworth 1950). Let (E,≤) be a partially ordered set. Then the minimum number of chains

needed to cover E is equal to the maximum cardinality of an antichain. That is, θ = α.
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Proof. We prove this by induction on |E|. The base case |E| = 1 is obvious. For the induction step, assume that

|E| ≥ 2. Let α be the maximum cardinality of an antichain. We will find α chains covering E. If α = |E|, then

θ = α = |E| and we are done. Otherwise, α < |E|, implying in turn that there is a chain {a, b} where a is a

minimal element and b is a maximal element. Let E′ := E − {a, b}.

Claim. If the maximum cardinality of an antichain of (E′,≤) is α− 1, then there are α chains covering E.

Proof of Claim. By the induction hypothesis, there are α − 1 chains of E′ covering E − {a, b}. Together with

{a, b}, we get a covering of E using α chains. ♦

We may therefore assume that E′ has an antichain A such that |A| = α. Let

E+ := A ∪ {x ∈ E −A : x ≥ z for some z ∈ A}

E− := A ∪ {y ∈ E −A : y ≤ z for some z ∈ A}.

SinceA is an antichain,E+∩E− = A, and since it is a maximum antichain,E+∪E− = E. As a is minimal and

a /∈ A, it follows that a /∈ E+. As b is maximal and b /∈ A, we get that b /∈ E−. In particular, |E+|, |E−| < |E|.
Thus, by the induction hypothesis, E+ has α chains covering it, and E− has α chains covering it. Gluing these

chains together, we get α chains covering E+ ∪ E− = E, thereby completing the induction step.

This result was the first of many covering results. To name a few:

• In a partially ordered set, the minimum number of antichains needed to cover the ground set is equal to

the maximum cardinality of a chain.

• Kőnig 1931: In a bipartite graph, the minimum number of colors needed for an edge-coloring is equal to

the maximum degree of a vertex.

• Kőnig 1931: In a bipartite graph, the minimum number of vertices needed to cover the edges is equal to

the maximum cardinality of a matching.

• Gallai 1962, Suranyi 1968: In a chordal graph, the minimum number of cliques needed to cover the

vertices is equal to the maximum cardinality of a stable set.

• Sachs 1970: In a chordal graph, the minimum number of colors needed for a vertex-coloring is equal to

the maximum cardinality of a clique.

• Chudnovski, Robertson, Thomas and Seymour 2006: In a graph without an odd hole or an odd hole com-

plement, the minimum number of cliques needed to cover the vertices is equal to the maximum cardinality

of a stable set.
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2 A review of integral polyhedra and totally dual integral linear systems

Take integers m,n ≥ 1, a rational m× n matrix M , and a rational m-dimensional (column) vector b. The set

P :=
{
x ∈ Rn : Mx ≥ b, x ≥ 0

}
is called a polyhedron. Hereinafter, 0 is the all-zeros vector of appropriate dimension. If P is a bounded set, then

it is called a polytope. We will always be working with non-empty and full-dimensional polyhedra. A vertex, or

an extreme point, of P is a point x? ∈ P satisfying any of the following equivalent conditions:

• if for x1, x2 ∈ P we have x? = 1
2x1 + 1

2x2, then x1 = x2 = x?,

• there is a row subsystem M ′x ≥ b′ of
(
M

I

)
x ≥

(
b

0

)
, where rank(M ′) = n and M ′x? = b′,

• there exists an integral cost vectorw ∈ Zn such that x? is the unique optimal solution to the linear program

min
{
w>x : x ∈ P

}
.

We say that P is integral if all its vertices are integral.

For a variable cost vector w ∈ Zn, consider the primal linear program

(P )

min w>x

s.t. Mx ≥ b
x ≥ 0

and the dual linear program

(D)

max b>y

s.t. M>y ≤ w
y ≥ 0.

By LP Strong Duality, the optimal values of these two programs are equal, whenever the primal (P) is feasible

and has a finite optimum. We say that the linear system Mx ≥ b, x ≥ 0 is totally dual integral (TDI) if, for

all w ∈ Zn for which the primal (P) is feasible and has a finite optimum, the primal (P) and the dual (D) have

integral optimal solutions. (Warning: this definition is not standard!) By definition, if Mx ≥ b, x ≥ 0 is TDI,

then the polyhedron {x ≥ 0 : Mx ≥ b} is integral.

Theorem 2.1 (Hoffman 1974, Edmonds and Giles 1977). The following statements are equivalent:

• Mx ≥ b, x ≥ 0 is totally dual integral,

• for all w ∈ Zn for which the primal (P) is feasible and has a finite optimum, the dual (D) has an integral

optimal solution.
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3 Packing and covering models

There are only two polyhedra that we are interested in. Let A,B be 0 − 1 matrices, where B has no column of

all zeros. We will call

{x ≥ 0 : Ax ≥ 1}

the set covering polyhedron, and

{x ≥ 0 : Bx ≤ 1}

the set packing polytope. Here, 1 is the all-ones vectors of appropriate dimension. When are these polyhedra

integral? When are the associated linear systems TDI? These questions will form the underlying theme of the

entire course. The short answers are, the questions have been answered for the set packing case, and they are

widely open for the set covering case. But first, why are we even interested?

3.1 The set covering polyhedron

Let A be a 0− 1 matrix. Consider the set covering program

(P )

min w>x

s.t. Ax ≥ 1

x ≥ 0

and its dual

(D)

max 1>y

s.t. A>y ≤ w
y ≥ 0

for an integral cost vector w.1 Notice that if w has a negative entry, then (P) does not have a finite optimum. We

may therefore focus on non-negative cost vectors w.

Packing st-paths. Let G = (V,E) be a graph and take distinct vertices s, t. Let A be the 0 − 1 matrix whose

columns are labeled by E and whose rows are the incidence vectors of st-paths. Let w ∈ ZE+. Then the set

covering program (P) can be rewritten as

min
∑

(wexe : e ∈ E)

s.t.
∑

(xe : e ∈ P ) ≥ 1 ∀ st-paths P
xe ≥ 0 ∀e ∈ E.

Note that every st-cut gives a feasible solution to (P). In particular, the minimum weight of an st-cut is an upper-

bound on the optimal value of (P). Let Gw be the graph obtained from G after replacing each edge e by we
parallel edges. Then the minimum weight of an st-cut in G is simply the minimum cardinality of an st-cut in

1Believe it or not, Fulkerson (1970) called this dual LP the “packing program” for reasons that will become clear soon. Why are we then

calling (P) the set covering program? That will become clear in the next section.
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Gw. Consider now the dual program (D), which may be rewritten as

max
∑

(yP : P is an st-path)

s.t.
∑

(yP : P is an st-path such that e ∈ P ) ≤ we ∀e ∈ E
yP ≥ 0 ∀ st-paths P.

Then a packing of st-paths in Gw gives a feasible solution to (D). We will think of a packing of st-paths in Gw
as a weighted packing of st-paths in G (where each edge e appears in at most we many st-paths, and where an

st-path may be packed more than once). Hence, the maximum value of a weighted packing of st-paths in G is a

lower-bound on the optimal value of (D). It therefore follows from Theorem 1.1 that,

Corollary 3.1. Let G be a graph and take distinct vertices s, t. Then the set covering system corresponding to

the st-paths of G is totally dual integral. In particular, the set covering polyhedron{
x ∈ RE+ :

∑
(xe : e ∈ P ) ≥ 1 ∀ st-paths P

}
is integral.

3.2 The set packing polytope

Let B be a 0− 1 matrix without a column of all zeros. Consider the set packing program

(P )

max w>x

s.t. Bx ≤ 1

x ≥ 0

and its dual

(D)

min 1>y

s.t. B>y ≥ w
y ≥ 0

for an integral cost vector w.2 Notice that if w has a negative entry, then the corresponding variable in an optimal

solution will always be set to 0. We may therefore focus on non-negative cost vectors w.

Covering with chains. Let (E,≤) be a partially ordered set. Let B be the 0 − 1 matrix whose columns are

labeled by E and whose rows are the incidence vectors of chains. Then the set packing program (P) can be

rewritten as
max

∑
(wexe : e ∈ E)

s.t.
∑

(xe : e ∈ C) ≤ 1 ∀ chains C
xe ≥ 0 ∀e ∈ E.

Observe that an antichain gives a feasible solution to (P). In particular, the maximum weight of an antichain is

a lower-bound on the optimal value of (P). Let (Ew,≤) be the partially ordered set obtained from (E,≤) after

replacing each element e by we pairwise incomparable copies. Then the maximum weight of an antichain of

2Fulkerson (1970) called this dual LP the “covering program”.
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(E,≤) is simply the maximum cardinality of an antichain of (Ew,≤). Consider now the dual program (D),

rewritten as
min

∑
(yC : C is a chain)

s.t.
∑

(yC : C is a chain such that e ∈ C) ≥ we ∀e ∈ E
yC ≥ 0 ∀ chains C.

Then a covering of Ew with chains gives a feasible solution to (D). We will think of a covering of Ew with

chains as a weighted covering of E with chains (where each element e is covered at least we times, and chains

can be used in a covering more than once). Thus, the minimum value of a weighted covering of E with chains is

an upper-bound on the optimal value of (D). It therefore follows from Theorem 1.2 that,

Corollary 3.2. Let (E,≤) be a partially ordered set. Then the set packing system corresponding to the chains

of (E,≤) is totally dual integral. In particular, the set packing polytope{
x ∈ RE+ :

∑
(xe : e ∈ C) ≤ 1 ∀ chains C

}
is integral.
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4 Balanced matrices

Let A,B be 0− 1 matrices, where B has no column of all zeros. Why is

{x ≥ 0 : Ax ≥ 1}

called the set covering polyhedron and

{x ≥ 0 : Bx ≤ 1}

the set packing polytope? There is a neat way to look at these polyhedra that explains the terminology and gives

us good intuition about what is coming. Take a loopless graph G = (V,E). Let A be the edge-vertex incidence

matrix of G, that is, the columns are labeled by V and the rows are the incidence vectors of the edges. Then the

0− 1 points of

{x ≥ 0 : Ax ≥ 1}

correspond to the vertex covers of G, hence the “set covering polyhedron”. (A vertex cover of a graph is a set of

vertices whose deletion makes the graph stable.) Let B be the vertex-edge incidence matrix of G, i.e. B = A>.

Then the 0− 1 points of

{x ≥ 0 : Bx ≤ 1}

correspond to the matchings of G, hence the “set packing polytope”.

It follows from various well-known theorems of Kőnig (1931) that if G is bipartite, then the set covering and

the set packing systems associated to the (edge-vertex or vertex-edge) incidence matrix are totally dual integral.

Well, in general, we can think of any 0 − 1 matrix as the (vertex-edge or edge-vertex) incidence matrix of a

“hypergraph”. How can we generalize the notion of bipartite-ness to hypergraphs? However way we do this, we

want the definition to be invariant of taking matrix transpose.

An odd square matrix of the form 

1 1

1 1

1 1
. . .

1 1

1 1


is called an odd cycle matrix. A 0− 1 matrix is balanced if it has no odd cycle submatrix (even after rearranging

its rows and columns). Observe that if a matrix is balanced, then so is its transpose. Notice that an odd cycle

matrix is the incidence matrix of a graph odd cycle. As a result, the incidence matrix of a bipartite graph is

always balanced. We may therefore think of balanced matrices as generalizations of bipartite graphs.
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4.1 A bicoloring characterization of balanced matrices

A bicoloring of a 0− 1 matrix is a partition of the columns into two color classes, where every row with at least

two ones gets both colors. For instance, R = {1, 2} and B = {3, 4} yields a bicoloring of the matrix
1 0 0 0

1 0 1 0

0 1 0 1

0 0 1 1


whose columns are labeled 1, 2, 3, 4 from left to right.

Theorem 4.1 (Berge 1970). A 0− 1 matrix is balanced if, and only if, every submatrix has a bicoloring.

Proof. Let A be a 0− 1 matrix. (⇐) Since an odd cycle is not bipartite, an odd cycle matrix is not bicolorable.

So, if every submatrix of A is bicolorable, A must be balanced. (⇒) Suppose otherwise. We may assume that

A is a balanced matrix that is not bicolorable, but every proper submatrix is bicolorable. In particular, every row

of A has at least two ones. Let V collect the column labels of A.

Claim. For every v ∈ V , there exist rows of the form {v, u}, {v, w} for some distinct u,w ∈ V − {v}.

Proof of Claim. For if not, bicolor the column submatrix of A corresponding to the columns V − {v}. Our

contrary assumption allows us to extend this bicoloring to a bicoloring of A, a contradiction. ♦

Let G be the graph on vertices V whose edges correspond to the rows in A with exactly two ones. Since A

is balanced, and the edge-vertex incidence matrix of G is a submatrix of A, it follows that G is bipartite. By

Claim 1, every vertex of G has degree at least 2. In particular, G has a vertex v0 that is not a cut-vertex. Now

bicolor the column submatrix of A corresponding to the columns V −{v0}, and extend this bicoloring uniquely

to a bicoloring ofA, determined by the path inG\v0 between two neighbors of v0, a contradiction. This finishes

the proof of Theorem 4.1.

A hypergraph is a pair G = (V,E) where V is a finite set of vertices, and each element of E is a non-empty

subset of V , called an edge. A hypergraph is balanced if its incidence matrix is balanced.

Corollary 4.2 (Berge 1972). Let G = (V,E) be a balanced hypergraph, and let k ≥ 2 be the minimum

cardinality of an edge. Then there exists a partition of V into k color classes where every edge gets at least one

vertex of each color.

Proof. For k = 2, the result follows immediately from Theorem 4.1. We may therefore assume that k ≥ 3. Let

(S1, . . . , Sk) be an arbitrary partition of V . For each edge e, let

ke := |{i ∈ [k] : e ∩ Si 6= ∅}| ∈ {1, . . . , k}.

If each ke is k, then we have a k-coloring. Otherwise, assume that kg < k for some edge g. Since |g| ≥ k, we

may assume that

|g ∩ Sk−1| ≥ 2 and g ∩ Sk = ∅.
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Let A be the edge-vertex incidence matrix of G. Since A is balanced, by Theorem 4.1, we may bicolor the

column submatrix of A corresponding to Sk−1 ∪Sk and get a bicoloring S′k−1 ∪S′k. Consider now the partition

(S1, · · · , Sk−2, S
′
k−1, S

′
k). Notice that g intersects kg+1 many of these parts, and every other edge e intersects at

least ke many of these parts. By applying this argument recursively, we will achieve the desired k-coloring.

For an integer k ≥ 2, a hypergraph is k-partite if its vertices can be partitioned into k parts such that every

edge intersects each part at most once. As an immediate consequence of the preceding result, we have the

following:

Corollary 4.3. Take an integer k ≥ 2 and a hypergraph where every edge has cardinality k. If G is balanced,

then it is k-partite.

4.2 Integral polyhedra associated with balanced matrices

Take a 0− 1 matrix A with column labels E, and consider the polytope

P (A) := {1 ≥ x ≥ 0 : Ax = 1}.

Notice that for each e ∈ E,

P (A) ∩ {x : xe = 0} = P (A′) and P (A) ∩ {x : xe = 1} = P (A′′)

where A′, A′′ are appropriate submatrices of A. (Equality holds above after extending P (A′), P (A′′) to RE by

setting new coordinates to either 0 or 1.)

Proposition 4.4. Let A be a balanced matrix. Then the polytope P (A) is integral.

Proof. Suppose otherwise. Let E be the column labels of A. We may assume that P (A) is not integral, but for

every proper submatrix A′ of A, P (A′) is integral. In particular, for every e ∈ E, the two polytopes

P (A) ∩ {x : xe = 0} and P (A) ∩ {x : xe = 1}

are integral. Let x? be a fractional extreme point of P (A). Since the polytopes above are integral, it follows that

1 > x? > 0. Our minimality assumption implies that A is a square non-singular matrix.

Claim. Every row of A has exactly two ones.

Proof of Claim. By our minimal choice, every row of A has at least two ones. Let A′ be the matrix obtained

from A after removing the first row. Since P (A′) is integral and x? ∈ P (A′), it follows that x? lies on an edge

of P (A′). So for some vertices χS , χT ∈ P (A′) and λ ∈ (0, 1),

x? = λχS + (1− λ)χT .

Since 1 > x? > 0, it follows that S ∩ T = ∅ and S ∪ T = E. Since A′χS = 1 = A′χT , every row of A other

than the first row has exactly two ones. A similar argument applied to the second row implies that even the first

row has exactly two ones. ♦
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Since A is balanced, it is the incidence edge-vertex incidence matrix of a bipartite graph G. As A is a

square matrix, G has an even cycle, which in turn contradicts the non-singularity of A. This finishes the proof

of Proposition 4.4.

Theorem 4.5 (Fulkerson, Hoffman, Oppenheim 1974). Let

AB
C

 be a balanced matrix. Then the polyhedron

P = {x ≥ 0 : Ax ≥ 1, Bx ≤ 1, Cx = 1}

is integral. In particular, the set packing polytope and the set covering polyhedron corresponding to a balanced

matrix are both integral.

Proof. Let x? be an extreme point of P . Observe that x? ≤ 1, and that x? is also an extreme point of the

polytope {1 ≥ x ≥ 0 : Dx = 1}, where D is the row submatrix of

AB
C

 corresponding to the constraints of

Ax ≥ 1, Bx ≤ 1, Cx = 1 that are tight at x?. Since

AB
C

 is balanced, so is D, so by Proposition 4.4, x? is

integral, as required.

In fact, the linear system above is totally dual integral. We will prove a similar result in the next section.

4.3 Hall’s theorem for balanced hypergraphs

Let G = (V,E) be a hypergraph. A matching is a packing of pairwise disjoint edges. A perfect matching is

a matching that uses every vertex. Recall Hall’s condition for the existence of perfect matchings in bipartite

graphs:

Theorem 4.6 (Hall 1935). Let G be a bipartite graph. Then the following statements are equivalent:

• G has no perfect matching,

• there exist disjoint vertex sets R,B such that |R| > |B| and every edge with an end in R has an end in B.

We will see a generalization of this to balanced hypergraphs. We will need two lemmas.

Lemma 4.7. Let A be an m× n balanced matrix. Then the polyhedron

P = {x, s, t ≥ 0 : Ax+ Is− It = 1}

is integral.
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Proof. Denote by ai the ith row of A, for each i ∈ [m]. Take an extreme point (x?, s?, t?) of P . Since the

corresponding columns are linearly dependent, we see that s?i t
?
i = 0 for each i ∈ [m]. As a result, x? is also an

extreme point of the polyhedronx ≥ 0 :

a>i x ≤ 1 ∀i ∈ [m] s.t. s?i > 0

a>i x ≥ 1 ∀i ∈ [m] s.t. t?i > 0

a>i x = 1 otherwise.


By Theorem 4.5, this polyhedron is integral, implying in turn that x? is integral. This easily implies that

(x?, s?, t?) is also integral, thereby finishing the proof.

Lemma 4.8. Let A be a balanced matrix. Then the linear system x, s, t ≥ 0, Ax+ Is− It = 1 is totally dual

integral.

Proof. We prove this by induction on the number of rows of A. The base case is obvious. For the induction step,

consider for integral weights b, c, d the primal program

(P )

max b>x+ c>s+ d>t

s.t. Ax+ Is− It = 1

x, s, t ≥ 0

and the dual

(D)

min 1>y

s.t. A>y ≥ b
y ≥ c
−y ≥ d.

We will construct an integral optimal solution to (D). To this end, take an optimal solution ȳ to (D). If ȳ is

integral, we are done. Otherwise, we may assume that ȳ1 is fractional. Write ȳ = (ȳ1, z̄). Let a be the first row

of A, and let A′ (resp. c′, d′) be the matrix (resp. vector) obtained from A (resp. c, d) after removing the first

row. Consider the program

(D′)

min 1>z

s.t. A′>z ≥ b− dȳ1ea
z ≥ c′
−z ≥ d′.

Since ȳ = (ȳ1, z̄) is feasible for (D), we get that z̄ is feasible for (D’). Our induction hypothesis implies that (D’)

has an integral optimal solution z?. In particular,

1>z̄ ≥ 1>z?.

As z? is feasible for (D’), and c, d are integral, it follows that (dȳ1e, z?) is feasible for (D), so

dȳ1e+ 1>z? ≥ 1>ȳ = ȳ1 + 1>z̄.

Combining the preceding two inequalities yields

dȳ1e+ 1>z? ≥ 1>ȳ ≥ ȳ1 + 1>z?.

14



By Lemma 4.7, (P) has an integral optimal solution, so as b, c, d are integral, (P) has an integer optimal value.

Thus, by LP Strong Duality, 1>ȳ is an integer. Hence, the inequalities above imply that dȳ1e + 1>z? = 1>ȳ,

so (dȳ1e, z?) is an integral optimal solution for (D), as required. This completes the induction step.

We are now ready to prove the following generalization of Theorem 4.6:

Theorem 4.9 (Conforti, Cornuéjols, Kapoor, Vus̆ković 1996). Let G = (V,E) be a balanced hypergraph. Then

the following statements are equivalent:

• G has no perfect matching,

• there are disjoint vertex sets R,B such that |R| > |B| and for every edge e, |e ∩B| ≥ |e ∩R|.

Proof. (⇐) Suppose for a contradiction that G has a perfect matching e1, . . . , ek. Then

|R| =
k∑
i=1

|ei ∩R| ≤
k∑
i=1

|ei ∩B| = |B| < |R|,

a contradiction. (⇒) Suppose G has no perfect matching. Let A be the vertex-edge incidence matrix of G.

Notice that A is a balanced matrix. Consider the linear program

(P )

max 0>x− 1>s− 1>t

s.t. Ax+ Is− It = 1

x, s, t ≥ 0

Since G has no perfect matching, (P) has no integer feasible solution of value ≥ 0. It therefore follows from

Lemma 4.7 that the optimal value of (P) is < 0. As a result, by Lemma 4.8, the dual program has an integral

feasible solution of negative value, that is, there is an integral point ȳ such that

1>y < 0

A>y ≥ 0

y ≤ 1

y ≥ −1

Let B := {v ∈ V : ȳv = 1} and R := {v ∈ V : ȳv = −1}. Clearly, B ∩ R = ∅. The first inequality implies

that |R| > |B| while the second inequality implies that, for each edge e, |e ∩B| ≥ |e ∩R|, as required.

This result has a nice Kőnig-type consequence. Given a hypergraph, the degree of a vertex is the number of

edges containing that vertex. For an integer d ≥ 1, a hypergraph is d-regular if every vertex has degree d.

Corollary 4.10. The edges of a balanced hypergraph with maximum degree d can be partitioned into d match-

ings.

Proof. Let G = (V,E) be a balanced hypergraph with maximum degree d ≥ 1. Let us first prove the result for

d-regular hypergraphs:
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Claim 1. If G is d-regular, then its edges can be partitioned into d perfect matchings.

Proof of Claim. We prove this by induction on d ≥ 1. The base case d = 1 is obvious. Assume that d ≥ 2. Let

us use Theorem 4.9 to find a perfect matching in G. Take disjoint vertex subsets R,B of V such that for every

edge e, |e ∩B| ≥ |e ∩R|. Then

d · |B| =
∑
e∈E
|e ∩B| ≥

∑
e∈E
|e ∩R| = d · |R|,

implying in turn that |B| ≥ |R|. It therefore follows from Theorem 4.9 that G has a perfect matching Md ⊆ E.

Notice thatG\Md is (d−1)-regular, so by the induction hypothesis, the edges ofG\Md can be partitioned into

d − 1 perfect matchings M1, . . . ,Md−1. Together with Md, we get a partition of the edges of G into d perfect

matchings, thereby completing the induction step. ♦

Claim 2. There is a d-regular balanced hypergraph H = (V,E′) such that E ⊆ E′.

Proof of Claim. To obtain H , for every vertex v of G, add d− deg(v) edges of the form {v}. It is clear that H

is a d-regular hypergraph. It is easy to see that H is a balanced hypergraph. ♦

By Claim 1, the edges of H can be partitioned into d perfect matchings. It is easy to see that this corresponds to

a partition of the edges of G into d matchings, thereby finishing the proof.

In particular,

Theorem 4.11 (Kőnig 1931). Let G be a loopless bipartite graph of maximum degree d. Then the edges of G

can be partitioned into d matchings, that is, G can be d-edge-colored.
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5 Perfect graphs

Let G = (V,E) be a simple graph. Denote by χ(G) the minimum number of stable sets needed to cover V .

Notice that χ(G) records the chromatic number of G, i.e. the minimum number of colors needed for a vertex-

coloring. Denote by ω(G) the maximum cardinality of a clique. Since the vertices of a clique get different colors

in any vertex-coloring, it follows that

χ(G) ≥ ω(G).

Denote by G the complement of G, that is, G has vertex set V where distinct vertices u, v are adjacent in G if

they are non-adjacent in G. Notice that the cliques and stable sets of G are precisely the stable sets and cliques

of G.

Remark 5.1. Let G = (V,E) be a simple graph. Then

θ(G) := χ(G)

is the minimum number of cliques of G needed to cover V , and

α(G) := ω(G)

is the maximum cardinality of a stable set. In particular, θ(G) ≥ α(G).

Recall the following two theorems from Assignment 1:

Theorem 5.2 (Kőnig 1931). In a loopless bipartite graph, the minimum cardinality of a vertex cover is equal to

the maximum cardinality of a matching.

Theorem 5.3. In a partially ordered set, the minimum number of antichains needed to cover the ground set is

equal to the maximum cardinality of a chain.

We will need this result moving forward, as well as a few notions. The line graph of a simple graph G is the

graph on vertex set E(G) where distinct e, f ∈ E(G) are adjacent if e, f share a vertex of G. Given a partially

ordered set (V,≤), its comparability graph is the graph on vertex set V where distinct u, v ∈ V are adjacent if

they are comparable.

The main theme of this section is, when does equal hold in χ ≥ ω?

Theorem 5.4. χ(G) = ω(G) if G is any of the following graphs:

(1) G or G is bipartite,

(2) G or G is the line graph of a bipartite graph,

(3) G or G is a comparability graph.
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Proof. (1) Let G be a bipartite graph. Then χ(G) = 2 = ω(G). We need to show that θ(G) = α(G). Clearly,

α(G) = |V | − k

where k is the minimum cardinality of a vertex cover. Since G is bipartite,

θ(G) = |V | −m

where m is the maximum cardinality of a matching. By Theorem 5.2, m = k, implying in turn that θ(G) =

α(G), as required. (2) Let G be the line graph of a bipartite graph H . Observe that the stable sets and cliques of

G are in correspondence with the matchings and stars of H , respectively. Thus χ(G) is equal to the minimum

number of colors needed in an edge-coloring of H , while ω(G) is equal to the maximum degree of a vertex

of H . It therefore follows from Theorem 4.11 that χ(G) = ω(G). Moreover, θ(G) is equal to the minimum

cardinality of a vertex cover, while α(G) is equal to the maximum cardinality of a matching. So by Theorem 5.2,

θ(G) = α(G). (3) Let G = (V,E) be the comparability graph of a partially ordered set (V,≤). Then the cliques

and stable sets of G are in correspondence with the chains and antichains of (V,≤). It therefore follows from

Theorem 1.2 that θ(G) = α(G), and it follows from Theorem 5.3 that χ(G) = ω(G).

Equality does not always hold in χ ≥ ω. For instance, for the odd cycle C5 on five vertices, χ(C5) = 3 > 2 =

ω(C5). Can we characterize when equality does hold? Is this even a well-posed question? Let H be an arbitrary

graph, and let k := χ(H)−ω(H) ≥ 0. Let C ⊆ V (H) be a maximum clique ofH . LetG be the graph obtained

from H after adding k vertices and just enough edges so as to grow C into a clique of cardinality ω(H) + k.

Notice now that χ(G) = χ(H) = ω(H) + k = ω(G). Starting from an arbitrary graph, we just constructed a

graph for which equality holds in χ ≥ ω. This construction tells us that asking when equality holds in

χ ≥ ω

is an ill-posed question. To make sure this construction is ruled out, we will come up with a stronger notion.

Let G = (V,E) be a simple graph. For X ⊆ V , the subgraph of G induced on vertices X is called an

induced subgraph and is denoted G[X]. We say that G is perfect if, for every induced subgraph G′ of G,

χ(G′) = ω(G′). (Notice that G′ may be G.) In words, a simple graph is perfect if in each induced subgraph, the

maximum cardinality of a clique is equal to the chromatic number. It follows from the preceding theorem that,

Corollary 5.5. The following graphs are perfect:

(1) bipartite graphs, and their complements,

(2) line graphs of bipartite graphs, and their complements,

(3) comparability graphs, and their complements.

The obvious question this corollary leads to is, does complementation preserve perfection? Claude Berge asked

the same question in 1961. Although this may seem too good to be true, the answer is yes!
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5.1 The max-max inequality and the weak perfect graph theorem

As a tribute to Manfred Padberg, we follow Gasparyan (1996) for the proof of the following result:

Theorem 5.6 (Lovász 1972). Let G be a simple graph. The following statements are equivalent:

(i) G is perfect,

(ii) ω(H) · α(H) ≥ |V (H)| for every induced subgraph H .

Proof. (i)⇒ (ii): Let H be an induced subgraph. By definition, χ(H) = ω(H), that is, V (H) can be covered

by ω(H) stable sets. Since each stable set has cardinality at most α(H), it follows that

|V (H)| ≤ ω(H) · α(H).

(ii) ⇒ (i): Suppose for a contradiction that G is not perfect. Let H be an induced subgraph of G that is not

perfect, but every proper induced subgraph of H is perfect. Let ω := ω(H), α := α(H) and n := |V (H)|. Note

that n > 1. Clearly,

ω ≥ ω(H \ S) ≥ ω − 1 for every non-empty stable set S ⊆ V (H);

since H \ S is perfect and H is not, it follows that

ω(H \ S) = ω for every non-empty stable set S ⊆ V (H).

Let S0 be a maximum stable set of H . Then for every vertex v ∈ S0, H \ v is perfect, so its vertices can be

partitioned into ω(H \ v) = ω non-empty stable sets. As S0 has α vertices, we get αω stable sets S1, . . . , Sαω .

Claim. Every maximum clique of H intersects all but one of S0, S1, . . . , Sαω exactly once.

Proof of Claim. Let C be a maximum clique of H . Clearly C intersects each one of S0, S1, . . . , Sαω at most

once. For a vertex v ∈ S0, if

• v ∈ C: then C intersects all but one stable set in every partition of V (H \ v) into ω stable sets,

• v /∈ C: then C intersects all stable sets in every partition of V (H \ v) into ω stable sets.

This observation immediately implies the claim. ♦

For each i ∈ {0, 1, . . . , αω}, let Ci be a maximum clique of H \ Si; notice that |Ci| = ω. Let A be the

0−1 matrix whose columns are labeled by V (H), and whose rows are the incidence vectors of S0, S1, . . . , Sαω .

Let B be the 0 − 1 matrix whose columns are labeled by V (H), and whose rows are the incidence vectors of

C0, C1, . . . , Cαω . It then follows from the claim above that AB> = J − I , where J is the all-ones matrix and

I the identity matrix of appropriate dimensions. Since J − I is a non-singular (αω + 1) × (αω + 1) matrix, it

follows that both A and B have full row rank, implying in turn that

|V (H)| = n ≥ αω + 1 = α(H) · ω(H) + 1 > |V (H)|,

a contradiction.
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As a consequence, we get the so-called weak perfect graph theorem:

Theorem 5.7 (Lovász 1972). If a graph is perfect, then so is its complement.

Proof. Suppose that G is perfect. Then by Theorem 5.6, for every induced subgraph H of G,

ω(H) · α(H) ≥ |V (H)|,

implying in turn that for every induced subgraph H of G,

α(H) · ω(H) ≥ |V (H)|,

so by Theorem 5.6, G is perfect, as required.

5.2 Odd holes and odd antiholes

We say that a simple graph is minimally imperfect if it is not perfect, but every proper induced subgraph is

perfect. Equivalently, a simple graph G is minimally imperfect if χ(G) > ω(G), but for every proper induced

subgraph G′, χ(G′) = ω(G′). The latter implies that a minimally imperfect graph is always connected.

Remark 5.8. A graph is perfect if, and only if, it has no minimally imperfect induced subgraph.

Let H be an odd circuit with at least 5 vertices. Then 3 = χ(H) > ω(H) = 2, so G is imperfect. Since every

proper induced subgraph ofH is bipartite, and therefore perfect, it follows thatH is minimally imperfect. Notice

that Theorem 5.7 equivalently states that,

Corollary 5.9. The complement of a minimally imperfect graph is also minimally imperfect.

Thus, the complement of an odd circuit with at least 5 vertices is also minimally imperfect. Let G be a simple

graph. We say that G has an odd hole if it has as an induced subgraph an odd circuit with at least 5 vertices, and

we say that G has an odd antihole if G has an odd hole. It follows from the preceding remark that,

Remark 5.10. A perfect graph has no odd hole and no odd antihole.

In 1961, Claude Berge conjectured that the converse of this statement is also true. In 2006, this conjecture was

proved by Chudnovsky, Robertson, Seymour and Thomas, and their theorem is referred to as the strong perfect

graph theorem. We will see some of the milestones and highlights leading to the proof, as well as a sketch of the

proof.

5.3 Star cutsets and antitwins

Let G = (V,E) be a simple graph. A star cutset is a non-empty X ⊆ V such that

• a vertex of X is adjacent to all the other vertices in X , and

• G \X is not connected.
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Lemma 5.11 (Chvátal 1985). A minimally imperfect graph does not have a star cutset.

Proof. Let G = (V,E) be a minimally imperfect graph, and let ω := ω(G). Then

ω(G \ S) = ω for every stable set S ⊆ V .

Suppose for a contradiction that G has a star cutset X ⊆ V . Then the vertices of G \X can be partitioned into

non-empty parts V1, V2 such that G has no edge between V1 and V2. Since every proper induced subgraph of G

is perfect, for each i ∈ [2], there is a vertex-coloring fi : X ∪ Vi → [ω] of the induced subgraph G[X ∪ Vi].
Since X is a star cutset, it has a vertex v that is adjacent to all other vertices of X . For i ∈ [2], let Si := {w ∈
X ∪ Vi : fi(w) = fi(v)}. Clearly, each Si is stable and Si ∩ X = {v}. Moreover, since there are no edges

between V1 and V2, it follows that S := S1 ∪ S2 is also stable. In particular, ω(G \ S) = ω, so G \ S has a

clique C of cardinality ω. However, either C ⊆ X ∪ V1 or C ⊆ X ∪ V2, implying in turn that C is an ω-clique

of some G[X ∪ Vi] \ Si, which has an (ω − 1)-vertex-coloring, a contradiction.

This lemma was a key milestone for what led to the proof of the strong perfect graph theorem. To demonstrate

the power of this lemma, let us see some applications of it. Let G1 be a perfect graph, and take a vertex

v ∈ V (G1). To duplicate v is to introduce a new vertex v̄, join it to all the neighbors of v, and then join it to v̄.

More generally, given another perfect graph G2 over a disjoint vertex set, to substitute G2 for v is to remove v,

and join every vertex of G2 to all the neighbors of v in G1 \ v.

Theorem 5.12 (Lovász 1972). Let G1, G2 be perfect graphs over disjoint vertex sets. If G is obtained by

substituting G2 for a vertex v of G1, then G is perfect. In particular, duplication preserves perfection.

Proof. Suppose otherwise. Since every induced subgraph of G is either an induced subgraph of G1, or of G2, or

arises from induced subgraphs ofG1, G2 by substitution, we may assume thatG is minimally imperfect. Clearly,

G2 has at least two vertices, and G1 \ v has at least one vertex. Take an arbitrary vertex u of G2, and denote

by N its neighbors of G in V (G1 \ v). Notice that for each vertex in V (G2), its neighbors of G in V (G1 \ v)

is precisely N . As G is minimally imperfect, G is minimally imperfect by Corollary 5.9, so G is connected,

implying in turn that V (G1 \ v)−N 6= ∅. Let X := {u} ∪N . Then X is a star cutset as u is adjacent to all the

vertices in N , and in G \X , there are no edges between V (G2)−{u} and V (G1 \ v)−N . This contradicts the

Star Cutset Lemma 5.11.

Let G = (V,E) be a simple graph. A skew partition is a partition of V into a pair (A,B) such that G[A]

is not connected and G[B] is not connected. Notice that if (A,B) is a skew partition for G, then it is a skew

partition for G. Notice further that if X is a star cutset and |X| ≥ 2, then (V −X,X) is a skew partition. In an

attempt to generalize Lemma 5.11, Chvátal (1985) conjectured that a minimally imperfect graph does not have

a skew partition. The length of a path is the number of edges in it. A path of G is called an antipath of G. We

say that a skew partition (A,B) is balanced if

• there is no induced odd path between non-adjacent vertices in B with interior in A,
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• there is no induced odd antipath between adjacent vertices in A with interior in B.

Theorem 5.13 (Chudnovsky, Robertson, Seymour, Thomas 2006). A minimally imperfect graph does not have

a balanced skew partition.

Let G = (V,E) be a simple graph. Distinct vertices u, v are antitwins if every other vertex is adjacent to

precisely one of u, v. Notice that if u, v are antitwins in G, then they are also antitwins in G. The proof of the

following lemma highlights the special role odd holes and odd antiholes have as minimally imperfect graphs.

Lemma 5.14 (Oraliu 1988). A minimally imperfect graph does not have antitwins.

Proof. Let G = (V,E) be a minimally imperfect graph, and let ω := ω(G). Suppose for a contradiction that G

has antitwins u, v. Let A ⊆ V − {u, v} be the neighbors of u other than possibly v, and let B ⊆ V − {u, v} be

the neighbors of v other than possibly u. Since u, v are antitwins, it follows that A,B partition V − {u, v}.

Claim 1. B contains a clique of cardinality ω − 1 that does not extend to a clique of cardinality ω in A ∪B.

Proof of Claim. Let f : V −{v} → [ω] be an ω-vertex-coloring of G \ v, and let S := {w ∈ V −{v} : f(w) =

f(u)}. Notice that u ∈ S ⊆ {u} ∪ B. Recall that G \ S has a clique K of cardinality ω. As the vertices of

G \ v \ S are (ω − 1)-vertex-colored, it follows that

• v ∈ K, implying in turn that K − {v} ⊆ B,

• K − {v} does not extend to a clique of cardinality ω in A ∪B.

K − {v} is the desired clique. ♦

Let α := α(G). By Corollary 5.9, G is also minimally imperfect. Thus, since u, v are also antitwins in G,

Claim 1 applied to G implies that,

Claim 2. A contains a stable set of cardinality α − 1 that does not extend to a stable set of cardinality α in

A ∪B.

Let C ⊆ B be the clique from Claim 1, and let S ⊆ A be the stable set from Claim 2. Among all the vertices

in C, pick one x with the least number of neighbors in S. Since S does not extend to a stable set in A ∪ B, it

follows that x has a neighbor y ∈ S. Since C does not extend to a clique in A∪B, y has a non-neighbor z ∈ C.

As z has at least as many neighbors in S as x does, there is a vertex t ∈ S that is a neighbor of z but is not a

neighbor of x. Observe now that {u, y, x, z, t} induces an odd hole (and an odd antihole), which is imperfect,

thereby contradicting the minimality of G.

Let G = (V,E) be a simple graph. Take disjoint non-empty subsets A,B ⊆ V such that |A|+ |B| ≥ 3 and

|V − (A ∪B)| ≥ 2. The pair (A,B) is homogeneous if for each v ∈ V − (A ∪B),

• if v is adjacent to a vertex of A, then it is adjacent to all of A, and
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• if v is adjacent to a vertex of B, then it is adjacent to all of B.

Note that if (A,B) is homogeneous for G, then it is homogeneous for G. Observe that if |V (G)| ≥ 5 and u, v

are antitwins both of which have a neighbor in V (G)−{u, v}, then (N(u)−{u}, N(v)−{v}) is homogeneous,

where N(u), N(v) denote the neighbors of u, v, respectively. The following theorem generalizes the Antitwin

Lemma 5.14:

Theorem 5.15 (Chvátal and Sbihi 1987). A minimally imperfect graph does not have a homogeneous pair.

Let G = (V,E) be a simple graph. A 2-join is a partition of V into parts V1, V2 and non-empty disjoint

subsets A1, B1 ⊆ V1 and A2, B2 ⊆ V2 such that

• |V1| ≥ 3 and |V2| ≥ 3 ,

• all the vertices in A1 are adjacent to all the vertices in A2, and all the vertices in B1 are adjacent to all the

vertices in B2,

• there are no other adjacencies between V1 and V2.

Notice that an odd circuit of length at least 7 has a 2-join.

Theorem 5.16 (Cornuéjols and Cunningham 1985). Let G be a minimally imperfect graph. If G has a 2-join,

then it is an odd hole, and if G has a 2-join, then G is an odd antihole.

5.4 The strong perfect graph theorem

Let G = (V,E) be a simple graph. We say that G is Berge if it has no odd hole and no odd antihole. Clearly, the

complement of a Berge graph, as well as its induced subgraphs, are also Berge. By Remark 5.10, a perfect graph

is always Berge. Conversely, the strong perfect graph theorem proves that a Berge graph is always perfect. The

main idea behind the proof is that Berge graphs are a very small (yet rich) class of graphs, and a lot more than

just perfection can be said about them. It is shown that apart from a few basic classes of graphs that happen to be

perfect, Berge graphs enjoy properties that we saw in the preceding section do not hold for minimally imperfect

graphs.

As for the basic classes of Berge graphs, we need a definition. We say that a simple graph G is a double split

graph if V (G) can be partitioned into four parts {a1, . . . , am}, {b1, . . . , bm}, {c1, . . . , cn} and {d1, . . . , dn} for

some m,n ≥ 2 such that

• for each i ∈ [m], ai and bi are adjacent, and for each j ∈ [n], cj and dj are not adjacent,

• for 1 ≤ i < i′ ≤ m, there are no edges between {ai, bi}, {ai′ , bi′}, and for 1 ≤ j < j′ ≤ n, the four

edges betwen {cj , dj}, {cj′ , dj′} are present,

• for i ∈ [m] and j ∈ [n], there are precisely two edges between {ai, bi}, {cj , dj}, and these two edges have

no vertex in common.
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Notice that if a graph is a double split graph, then so is its complement. We leave the following as an exercise:

Proposition 5.17. Double split graphs are perfect.

Let us say that a simple graph G is basic if either

• G or G is bipartite,

• G or G is the line graph of a bipartite graph, or

• G is a double split graph.

Clearly, if a graph is basic, then so is its complement. Notice that by Corollary 5.5 and Proposition 5.17, basic

graphs are perfect, and so they are Berge. The following theorem is the main piece to proving that Berge graphs

are perfect:

Theorem 5.18 (Chudnovsky, Robertson, Seymour, Thomas 2006). Let G be a Berge graph that is not basic.

Then either G has a balanced skew partition, or G has a homogeneous pair, or one of G,G has a 2-join.

Combining this result with the results from the previous section, we get the strong perfect graph theorem:

Theorem 5.19. A graph is perfect if, and only if, it has no odd hole and no odd antihole.

Proof. Let G be a simple graph. (⇒) If G is perfect, then by Remark 5.10, G has no odd hole and no odd

antihole. (⇐) Suppose conversely that G has no odd hole and no odd antihole, that is, G is Berge. Suppose

for a contradiction that G is not perfect. We may assume that G is minimally imperfect. Since G is imperfect,

it follows that G is not basic. Thus, by Theorem 5.18, either G has a balanced skew partition, or G has a

homogeneous pair, or one of G,G has a 2-join. It follows from Theorems 5.13 and 5.15 that one of G,G has a

2-join. But then Theorem 5.16 implies that G is either an odd hole or an odd antihole, a contradiction as G is

Berge. Thus G is perfect.

As a consequence,

Corollary 5.20. Every simple graph G satisfies at least one of the following statements:

• χ(G) = ω(G), or

• G has an odd hole or an odd antihole.
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6 Perfect matrices

Let G = (V,E) be a perfect graph. Let A be the 0− 1 matrix whose columns are labeled by V and whose rows

are the incidence vectors of the stable sets of G. Take weights c ∈ ZV+ . Consider the set packing primal-dual

pair

(P )

max c>x

s.t. Ax ≤ 1

x ≥ 0

and (D)

min 1>y

s.t. A>y ≥ c
y ≥ 0.

We can rewrite the primal as

(P )

max
∑

(cvxv : v ∈ V )

s.t.
∑

(xv : v ∈ S) ≤ 1 ∀ stable sets S
xv ≥ 0 ∀v ∈ V.

Observe that a clique gives a feasible solution to this program. So the maximum weight of a clique is a lower-

bound on the optimal value of (P). To make this precise, letGc be the graph obtained fromG after replacing each

vertex v by cv duplicates. (If cv = 0 then delete v.) Notice that by Theorem 5.12, Gc is also a perfect graph.

Observe that the maximum weight of a clique of G is equal to the maximum cardinality ω(Gc) of a clique of

Gc. Thus, ω(Gc) is a lower-bound on the optimal value of (P). Let us next rewrite the dual as

(D)

min
∑

(yS : stable sets S)

s.t.
∑

(yS : stable sets S such that v ∈ S) ≥ cv ∀v ∈ V
yS ≥ 0 ∀ stable sets S.

Observe that a covering of V (Gc) using stable sets gives a feasible solution to (D). Thus, the minimum number

of stable sets needed to cover V (Gc), which is χ(Gc), is an upper-bound on the optimal value of (D). Since Gc
is perfect, we have χ(Gc) = ω(Gc), implying in turn that,

Corollary 6.1. Let G be a perfect graph. Then the set packing system corresponding to the stable sets of G is

totally dual integral. In particular, the set packing polytope{
x ∈ RV+ :

∑
(xv : v ∈ S) ≤ 1 ∀ stable sets S

}
is integral.

In fact, we will see that these are essentially the only examples of integral set packing polytopes and totally dual

integral set packing systems! To this end, let A be a 0 − 1 matrix without a column of all zeros. We say that A

is perfect if the set packing polytope {x ≥ 0 : Ax ≤ 1} is integral.

6.1 Perfection implies total dual integrality

From the discussion in the previous section, it seems more natural to call a matrix perfect when the corresponding

set packing system is totally dual integral. The following amazing result justifies our choice of terminology:
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Theorem 6.2 (Fulkerson 1972). Let A be a perfect matrix. Then the linear system x ≥ 0, Ax ≤ 1 is totally

dual integral.

Proof. Denote by E the column labels of A. Consider the set packing primal-dual pair

(P )

max c>x

s.t. Ax ≤ 1

x ≥ 0

and (D)

min 1>y

s.t. A>y ≥ c
y ≥ 0

c ∈ ZE .

As A is perfect, (P) has an integral optimal solution for all c ∈ ZE . We will prove by induction on the optimal

value ω ∈ Z+ of (P) that (D) has an integral dual solution for all c ∈ ZE . If ω = 0 for some c ∈ ZE , then as A

has no column of all zeros, it follows that c ≤ 0, implying in turn that 0 is an optimal solution for (D). For the

induction step, assume that ω ≥ 1 for some c ∈ ZE . Take an arbitrary row a of A such that

a>x? = 1 for all optimal solutions x? of (P).

(To find this row, take an optimal dual solution y?, and pick a so that y?a > 0; apply the complementary slackness

conditions.) We may assume that a is the first row of A. Consider the set packing primal-dual pair

(P ′)

max (c− a)>x

s.t. Ax ≤ 1

x ≥ 0

and (D′)

min 1>y

s.t. A>y ≥ c− a
y ≥ 0

Clearly, the optimal value of (P’) is at most ω, and our choice of a implies that it is exactly ω − 1. Thus, by the

induction hypothesis, (D’) has an integral optimal solution ȳ = (ȳ1, z̄) of value ω − 1. Let y? := (ȳ1 + 1, z̄).

Then y? is an integral feasible solution for (D) and has value ω, so it is optimal. This completes the induction

step.

6.2 The pluperfect graph theorem

In an attempt to prove it, Ray Fulkerson proposed and proved a polyhedral analogue of the weak perfect graph

theorem, and he called it the pluperfect graph theorem. To prove his theorem, we will need two ingredients. Let

A be a non-negative matrix without a column of all zeros. Let

P := {x ≥ 0 : Ax ≤ 1}.

The antiblocker of P is the set

a(P ) := {y ≥ 0 : x>y ≤ 1 ∀x ∈ P}.

Proposition 6.3. Let A be a non-negative matrix without a column of all zeros. Let B be the matrix whose rows

are the extreme points of P := {x ≥ 0 : Ax ≤ 1}. Then B is non-negative, has no column of all zeros, and

a(P ) = {y ≥ 0 : By ≤ 1}

a(a(P )) = P.
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Proof. Clearly, B is a non-negative matrix. Since A has no column of all zeros, P is a polytope, so every point

of P can be written as a convex combination of the rows of B – this has two consequences. Firstly, as ε1 ∈ P
for a sufficiently small ε > 0, B cannot have a column of all zeros. Secondly, {y ≥ 0 : By ≤ 1} ⊆ a(P ). As

the reverse inclusion holds trivially, we see that a(P ) = {y ≥ 0 : By ≤ 1}. For the next equation, by definition

a(a(P )) = {x ≥ 0 : y>x ≤ 1 ∀y ∈ a(P )}.

So clearly, P ⊆ a(a(P )). To prove the reverse inclusion, it suffices to show that every row a of A belongs to

a(P ). Since a ≥ 0 and Ba ≤ 1, the result follows.

Next we study the extreme points of the antiblocker. Let’s see an example first. Consider the matrix

A :=

1 1 0

0 1 1

1 0 1

 .

Then the extreme points of P := {x ≥ 0 : Ax ≤ 1} are the rows of the matrix

B :=


1
2

1
2

1
2

1 0 0

0 1 0

0 0 1

0 0 0

 .

By Proposition 6.3, the antiblocker of P is the polytope a(P ) = {x ≥ 0 : Bx ≤ 1}. Aside from the three rows

of A, the extreme points of a(P ) are (1 0 0), (0 1 0), (0 0 1), (0 0 0), which are all orthogonal projections of the

rows of A. We will show that this is true in general. Given vectors x, y of the same dimension, if x is obtained

from y after setting some of the coordinates to 0, then we say that x is a projection of y.

Proposition 6.4. Let A be a non-negative matrix and let P := {x ∈ Rn+ : Ax ≤ 1}. Then the following

statements hold:

(1) Let x̄ be an extreme point of P for which

x̄ ≤
k∑
i=1

λix
i

for some points x1, . . . , xk ∈ P and scalars λ1, . . . , λk > 0 with
∑k
i=1 λi = 1. Then x̄ is a projection of

each xi.

(2) Suppose thatA has no column of all zeros. Then every extreme point of a(P ) is a (possibly trivial) projection

of a row of A.

Proof. (1) If x̄ = 0, then we are done. Otherwise, after possibly rearranging the coordinates, we have x̄ = (z̄,0)

for some ` ≥ 1 and z̄ ∈ R` such that z̄ > 0. For each i ∈ [k], denote by zi the vector consisting of the first `

coordinates of xi. Then

z̄ ≤
k∑
i=1

λiz
i =: z.
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Notice that z consists of the first ` coordinates of
∑k
i=1 λix

i. As x̄ is an extreme point of P , there is an ` × `
non-singular submatrix E of A such that Ez̄ = 1. On the one hand, as E is non-negative and z ≥ z̄, it follows

that Ez ≥ Ez̄ = 1. On the other hand, as Ax ≤ 1, it follows that Ez ≤ 1. Thus, Ez = Ez̄ = 1, implying in

turn that z = z̄. As a result,

x̄ = (z̄,0) = (z,0) =

k∑
i=1

λi(z
i,0).

Since x̄ is an extreme point, and each (zi,0) belongs to P , it follows that x̄ = (z1,0) = · · · = (zk,0), as

required.

(2) Denote by B the matrix whose rows are the extreme points of the polytope P . Then by Proposition 6.3,

B is a non-negative matrix without a column of all zeros, and a(P ) = {y ≥ 0 : By ≤ 1}. Denote by A′ the

matrix whose rows are the extreme points of the polytope a(P ). Then by Proposition 6.3,

{x ≥ 0 : Ax ≤ 1} = a(a(P )) = {x ≥ 0 : A′x ≤ 1}.

Take an extreme point a′ of a(P ), which is also a row of A′. Since a′>x ≤ 1 is valid for {x ≥ 0 : Ax ≤ 1}, it

follows that a′ is bounded above by a convex combination of the rows of A. Applying (1) to a(P ), we see that

a′ must be a projection of a row of A, as required.

We are now ready for the pluperfect graph theorem:

Theorem 6.5 (Fulkerson 1972). Let A be a non-negative matrix without a column of all zeros, and let B be the

matrix whose rows are the extreme points of {x ≥ 0 : Ax ≤ 1}. If A is perfect, then so is B.

Proof. Suppose that A is perfect, that is, A is a 0 − 1 matrix whose associated set packing polytope P :=

{x ≥ 0 : Ax ≤ 1} is integral. So B is a 0 − 1 matrix. By Proposition 6.3, B has no column of all zeros and

a(P ) = {y ≥ 0 : By ≤ 1}. Therefore, by Proposition 6.4 (2), every extreme point of {y ≥ 0 : By ≤ 1} is a

projection of a row of A. In particular, {y ≥ 0 : By ≤ 1} is integral, that is, B is perfect.

6.3 Clutters and antiblockers

Let V be a finite set of elements, and let A be a family of subsets of V , called members. We say that A is a

clutter over ground set V if no member is contained in another one.3 The incidence matrix ofA, denotedM(A),

is the 0− 1 matrix whose columns are labeled by V and whose rows are the incidence vectors of the members.

Remark 6.6. Let A1,A2 be clutters over the same ground set, where every member of A1 contains a member

of A2, and every member of A2 contains a member of A1. Then A1 = A2.

Proof. Take A1 ∈ A1. Then A1 contains a member A of A2, and A contains a member of A1. As A1 is a

clutter, it must be that A1 ⊆ A ⊆ A1, implying in turn that A = A1. Thus, A1 ⊆ A2. Similarly, A2 ⊆ A1, so

A1 = A2.
3Clutters are also referred to as Sperner families.
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LetA be a clutter over ground set V , where every element is contained in a member. Consider the set packing

polytope associated with A:{
x ∈ RV+ :

∑
(xv : v ∈ A) ≤ 1 ∀A ∈ A

}
= {x ≥ 0 : M(A)x ≤ 1}.

Notice that the 0− 1 points of P (A) correspond to the sets in

{B ⊆ V : |B ∩A| ≤ 1 ∀A ∈ A},

and that every 0 − 1 point of the polytope is in fact an extreme point. We say that A is a perfect clutter if the

associated set packing polytope is integral, that is, when the associated incidence matrixM(A) is perfect. Notice

that an arbitrary 0 − 1 matrix A is perfect if, and only if, the clutter corresponding to the maximal rows of A is

perfect. As a consequence, studying perfect clutters is just as general as studying perfect matrices.

Let A be a clutter over ground set V . The maximal sets of {B ⊆ V : |B ∩ A| ≤ 1 ∀A ∈ A} form another

clutter over the same ground set, called the antiblocker of A and denoted a(A). If every element is used in a

member of A, then the members of a(A) are precisely the maximal integral points contained in the set packing

polytope. For instance,

the antiblocker of {{1, 2}, {2, 3}, {3, 1}} = {{1}, {2}, {3}}

the antiblocker of {{1}, {2}, {3}} = {{1, 2, 3}}

the antiblocker of {{1, 2, 3}} = {{1}, {2}, {3}}.

One natural question to ask is, when do we have a(a(A)) = A? Perhaps surprisingly, the answer is very simple:

Proposition 6.7 (Fulkerson 1971). Let A be a clutter over ground set V . Then the following statements are

equivalent:

(i) a(a(A)) = A,

(ii) A consists of the maximal stable sets of a graph over vertex set V .

Proof. (ii) ⇒ (i): Suppose A consists of the maximal stable sets of G = (V,E). Then a vertex set intersects

every stable set at most once if, and only if, it is a clique. This implies that a(A) consists of the maximal cliques

of G. Applying the same argument to G implies that a(a(A)) consists of the maximal stable sets of G, so

a(a(A)) = A. (i)⇒ (ii): Suppose a(a(A)) = A. Let G be the graph over vertex set V , where distinct vertices

u, v are non-adjacent if there is a member containing both u, v. Clearly, every member of A is a stable set of G.

Conversely, let S ⊆ V be a stable set of G. We claim that

(?) |S ∩B| ≤ 1 ∀B ∈ a(A).

Suppose otherwise. Then for distinct vertices u, v of G, {u, v} ⊆ S ∩B. However, as u and v are non-adjacent,

{u, v} ⊆ A for some member A ∈ A, but then {u, v} ⊆ A ∩ B, a contradiction as B ∈ a(A). This proves (?),

implying in turn that S is contained in a member of a(a(A)) = A. Remark 6.6 implies that A consists of the

maximal stable sets of G, as required.
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As a consequence,

Theorem 6.8 (Padberg 1973). If a clutter is perfect, then its members are the maximal stable sets of a simple

graph.

Proof. Let A be a perfect clutter over ground set V , and let A be the corresponding incidence matrix. Let B be

the matrix whose rows are the extreme points of P := {x ≥ 0 : Ax ≤ 1}, and let Q := {y ≥ 0 : By ≤ 1}.
Then by Proposition 6.3, a(P ) = Q and a(Q) = P . Moreover, since the clutter A is perfect, the matrix A

is perfect, so by Theorem 6.5, B is a perfect matrix. Let B be the clutter over ground set V whose members

correspond to the maximal rows of B. Notice that a(A) corresponds to the maximal integral extreme points of

P , so a(A) = B. Similarly, a(B) corresponds to the maximal integral extreme points of Q, so a(B) = A. It

therefore follows from Proposition 6.7 that A consists of the maximal stable sets of a graph, as required.

In fact, as we will see on Assignment 2, the simple graph above is perfect:

Theorem 6.9 (Chvátal 1975). Let G = (V,E) be a simple graph. If the clutter of the maximal stable sets of G

is perfect, then G is a perfect graph.

Summarizing the results of this section and the previous one, we get the following characterization of when the

set packing polytope is integral:

Corollary 6.10. The following statements hold:

(1) Let A be a 0 − 1 matrix without a column of all zeros whose set packing polytope {x ≥ 0 : Ax ≤ 1} is

integral. Then the linear system x ≥ 0, Ax ≤ 1 is totally dual integral, the maximal rows of A correspond

to the maximal stable sets of a simple graph, and the graph is perfect.

(2) Let G be a simple graph. Then G is perfect if, and only if, it has no odd hole and no odd antihole.
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7 Integral and totally dual integral set covering programs

Let C be a clutter over ground set E. Consider the set covering polyhedron associated with C:{
x ∈ RE+ :

∑
(xe : e ∈ C) ≥ 1 ∀C ∈ C

}
= {x ≥ 0 : M(C)x ≥ 1}.

A cover is a subset of E that intersects every member.4 Notice that the covers of C correspond precisely to the

0− 1 points of the associated set covering polyhedron. If a set is a cover then so is every superset of it, so not all

covers are interesting.

7.1 Clutters and blockers

Let C be a clutter over ground set E. The blocker of C, denoted b(C), is the clutter over ground set E whose

members are the minimal covers of C.5 Unlike antiblockers,

Theorem 7.1 (Isbell 1958, Edmonds and Fulkerson 1970). Given a clutter C, we have b(b(C)) = C.

Proof. Denote by E the ground set of C. We need to show that the minimal covers of b(C) are precisely the

members of C. By Remark 6.6, it suffices to show that (a) every member of C is a cover of b(C), and (b) every

minimal cover of b(C) contains a member of C.

(a) Take C ∈ C. Since C ∩B 6= ∅ for every B ∈ b(C), we get that C is a cover of b(C).

(b) Take a minimal cover C ′ of b(C). Then E−C ′ cannot contain a member of b(C), so E−C ′ is not a cover of

C, implying in turn that E − C ′ is disjoint from a member of C. Consequently, C ′ contains a member of C.

Thus, b(b(C)) = C.

That is, if B is the blocker of C, then C is the blocker of B. Let us see some examples of blocking pairs of clutters:

Remark 7.2. The following statements hold:

(1) LetG be a graph and take distinct vertices s, t. Over ground set E(G), the clutter of st-paths and the clutter

of minimal st-cuts are blockers.

(2) LetG be a simple graph. Over ground set V (G), the clutter of edges and the clutter of minimal vertex covers

are blockers.

(3) Consider the clutter of the triangles of K4 over ground set E(K4):

Q6 :=
{
{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}

}
.

Its blocker consists of the triangles, as well as the perfect matchings:

b(Q6) =
{
{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}, {1, 2}, {3, 4}, {5, 6}

}
.

4In the literature, a cover is also referred to as a hitting set, a blocking set, a transversal, etc.
5Berge (1989) referred to b(C) as the transversal of C and denoted it Tr(C).
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Proof. (1) Let C be the clutter of st-paths over ground set E(G). Clearly, every st-cut is a cover for C. Let B be

a minimal cover of C. By definition, E(G)−B does not contain an st-path of G, implying in turn that in G \B
the vertices s, t are disconnected, so G \B has an empty st-cut, implying in turn that B contains an st-cut of G.

Thus, b(C) consists of the minimal st-cuts, as required. (2) follows from the definition of a vertex cover. (3) We

leave this as an easy exercise.

7.2 Packing and covering parameters

To each clutter C, we can associate two dual parameters. A packing is a collection of pairwise disjoint members.6

The packing number, denoted ν(C), is the maximum size of a packing. The covering number, denoted τ(C), is

the minimum cardinality of a cover. Since a cover picks up a different element from each member of a packing,

we see that

τ(C) ≥ ν(C).

For instance, for the clutter
{
{1, 2}, {2, 3}, {3, 1}

}
, the packing number is 1, while the covering number is 2 –

so the two parameters are not always equal. We say that C packs if τ(C) = ν(C).

Proposition 7.3. The following statements hold:

(1) Given a graph G with distinct vertices s, t, the clutter of st-paths packs, and the clutter of minimal st-cuts

packs.

(2) Given a bipartite simple graph G, the clutter of edges packs, and the clutter of minimal vertex covers packs.

(3) Q6 does not pack, and b(Q6) packs.

Proof. (1) By Theorem 1.1 (Menger), the maximum number of edge-disjoint st-paths is equal to the minimum

cardinality of an st-cut, so the clutter of st-paths packs. Denote by C the clutter of minimal st-cuts ofG. We may

assume that G has no empty st-cut, so G has at least one st-path. Notice that τ(C), the minimum cardinality of

an st-path, is simply the distance between s, t. To prove that C packs, it suffices to exhibit τ(C) disjoint st-cuts.

To this end, for each i ∈ [τ(C)], denote by Ui ⊆ V (G) the set of vertices within distance i − 1 from s. Notice

that s = U1 ( U2 ( · · · ( Uτ(C) ⊆ V (G) − {t}, and that δ(U1), δ(U2), . . . , δ(Uτ(C)) are disjoint st-cuts, as

required.7 (2) It follows from Theorem 5.2 (Kőnig) that the maximum cardinality of a matching in G is equal to

the minimum cardinality of a vertex cover ofG, so the clutter of edges ofG packs. We leave it as an easy exercise

to prove that the clutter of minimal vertex covers of G packs. (3) Q6 does not pack as τ(Q6) = 2 > 1 = ν(Q6).

On the other hand, b(Q6) packs as τ(b(Q6)) = 3 and b(Q6) has disjoint members {1, 2}, {3, 4}, {5, 6}.

Let C be a clutter over ground set E. Take non-negative weights w ∈ RE+. A weighted packing is a collection

of members such that every element e is contained in at most we of the members. (Notice that a member may

be taken more than once.) Denote by ν(C, w) the maximum size of a weighted packing. Given a cover B, its

6A packing is also referred to as a matching.
7We just proved the min-work max-potential theorem of Duffin (1962).
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weight is w(B) :=
∑
e∈B we. Denote by τ(C, w) the minimum weight of a cover. Notice that for weights 1,

weighted packings are precisely packings and cover weights are precisely cover cardinalities, so ν(C,1) = ν(C)
and τ(C,1) = τ(C).

Remark 7.4. Given a clutter C over ground set E and weights w ∈ RE+,

τ(C, w) ≥ ν(C, w).

Proof. Take a cover B and a weighted packing C1, . . . , Ck. Then

w(B) =
∑
e∈B

we ≥
∑
e∈B
|{i ∈ [k] : e ∈ Ci}| =

∑
i∈[k]

|{e ∈ B : e ∈ Ci}| =
∑
i∈[k]

|B ∩ Ci| ≥ k.

Since this is true for all covers and weighted packings, the inequality τ(C, w) ≥ ν(C, w) follows.

Consider the associated set covering program

(P )

min w>x

s.t.
∑

(xe : e ∈ C) ≥ 1 ∀C ∈ C
x ≥ 0

As the 0 − 1 solutions of (P) are precisely the covers, it follows that τ(C, w) computes the optimal value of a

0− 1 solution, and hence an integral solution, to (P). Consider the dual program

(D)

max
∑

(yC : C ∈ C)
s.t.

∑
(yC : C ∈ C, e ∈ C) ≤ we ∀e ∈ E

y ≥ 0

As the integral solutions of (D) are precisely the weighted packings, we get that ν(C, w) computes the optimal

value of an integral solution to (D). In particular, linear program duality offers an alternate proof of the inequality

τ(C, w) ≥ ν(C, w). We will refer to each solution of (D) as a fractional weighted packing, and its value is the

objective value of the solution.

We say that C is Mengerian if for all weights w ∈ ZE+, the minimum weight of a cover is equal to the

maximum size of a weighted packing:

τ(C, w) = ν(C, w).

The discussion we just had implies that C is Mengerian if, and only if, the corresponding set covering program

(P) is totally dual integral.8 As we know, total dual integrality is a notion stronger than primal integrality. We

say that C is ideal if for all weights w ∈ ZE+, the minimum weight of a cover is equal to the maximum value of

a fractional weighted packing. Equivalently, by LP Strong Duality, C is ideal if for all weights w ∈ ZE+, the set

covering program (P) has an integral optimal solution, i.e. the optimal value of (P) is τ(C, w). Recall that C is

ideal if, and only if, the set covering polyhedron
{
x ∈ RE+ : M(C)x ≥ 1

}
is integral. Studying Mengerian and

ideal clutters is just as general as studying integral and totally dual integral set covering systems:

8In the literature, the Mengerian property is also referred to as the max-flow min-cut property.
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Remark 7.5. Take a 0−1 matrixA with column labelsE. Let C be the clutter over ground setE whose members

correspond to the minimal rows of A. Then the following statements hold:

• x ≥ 0, Ax ≥ 1 is totally dual integral if, and only if, C is Mengerian,

• {x ≥ 0 : Ax ≥ 1} is integral if, and only if, C is ideal.

Notice that a Mengerian clutter is always ideal. In contrast to Theorem 6.2 in the set packing case, an ideal

clutter is not necessarily Mengerian:

Remark 7.6. The following statements hold:

(1) Q6 is an ideal clutter that is not Mengerian,

(2) b(Q6) is a Mengerian clutter.

Proof. (1) We saw in Assignment 1 thatQ6 is ideal. On the other hand, asQ6 does not pack, it is not Mengerian.

(2) We leave this as an exercise.

This remark also shows that being Mengerian is not closed under taking blockers. However, much like the

pluperfect graph theorem – Theorem 6.5 – in the set packing case, being ideal is closed under taking blockers.

7.3 The width-length inequality

The following “width-length” inequality is the analogue of the max-max inequality, Theorem 5.6, for set cover-

ing polyhedra. Alfred Lehman proved this inequality and wrote it up in 1963, taught it to Ray Fulkerson in 1965

at RAND Corporation, but the result was not published until much later in 1979:

Theorem 7.7 (Lehman 1979). Let C be a clutter over ground set E. Then C is ideal if, and only if, for all

w, ` ∈ RE+,

min{w(C) : C ∈ C} ·min{`(B) : B ∈ b(C)} ≤ w>`.

Proof. Suppose first that C is ideal. Take w, ` ∈ RE+. Let τ := τ(C, `) = min
{
`(B) : B ∈ b(C)

}
. Since C is

ideal, there is a fractional `-weighted packing y ∈ RC+ of value τ :∑(
yC : C ∈ C

)
= τ∑(

yC : e ∈ C ∈ C
)
≤ `e ∀e ∈ E.

Now we have

w>` =
∑
e∈E

we`e ≥
∑
e∈E

we

[∑(
yC : e ∈ C ∈ C

)]
=
∑
C∈C

yC · w(C)

≥ min
{
w(C) : C ∈ C

}
·
∑
C∈C

yC

= min
{
w(C) : C ∈ C

}
· τ

= min
{
w(C) : C ∈ C

}
·min

{
`(B) : B ∈ b(C)

}
,
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as required. Suppose conversely that the width-length inequality holds for all w, ` ∈ RE+. We will show that C is

ideal. To this end, take an arbitrary ` ∈ RE+, and let x? be an optimal solution to

min `>x

s.t. x(C) ≥ 1 ∀ C ∈ C
x ≥ 0.

We will show that

`>x? = min
{
`(B) : B ∈ b(C)

}
,

thereby finishing the proof. Well, it is clear that ≤ holds above. We will prove that ≥ holds as well. By the

width-length inequality,

`>x? ≥ min
{
`(B) : B ∈ b(C)

}
·min

{
x?(C) : C ∈ C

}
≥ min

{
`(B) : B ∈ b(C)

}
.

as required.

As an immediate consequence, we get the following analogue of the pluperfect graph theorem, Theorem 6.5:

Theorem 7.8 (Lehman 1979). If a clutter is ideal, then so is its blocker.

7.4 Deletions, contractions and minors

Let C be a clutter over ground set E, and take an element e ∈ E. We will define two clutters over ground set

E − {e}. The deletion is the clutter

C \ e := {C ∈ C : e /∈ C}

while the contraction is the clutter

C/e := the minimal sets of {C − {e} : C ∈ C}.

Notice that deletion and contraction are blocking operations:

Proposition 7.9. Let C be a clutter over ground setE. Then for e ∈ E, b(C \e) = b(C)/e and b(C/e) = b(C)\e.

Proof. Let us first prove that b(C \ e) = b(C)/e. If B′ is a cover of C \ e then B′ ∪ {e} is a cover of C. So

every member of b(C \ e) contains a member of b(C)/e. For the reverse inclusion, if B is a cover of C then

B −{e} is a cover of C \ e. So every member of b(C)/e contains a member of b(C \ e). Remark 6.6 implies that

b(C \ e) = b(C)/e. To prove the second equation, let us apply the first equation to b(C):

b(b(C) \ e) = b(b(C))/e = C/e.

Taking blockers yields b(C) \ e = b(C/e), thereby proving the second equation.
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For disjoint subsets I, J ⊆ E, the following clutter over ground set E − (I ∪ J),

C \ I/J := the minimal sets of {C − J : C ∈ C, C ∩ I = ∅}

is a minor of C obtained after deleting I and contracting J . If I ∪ J 6= ∅, then C \ I/J is a proper minor. By the

proposition above, b(C \ I/J) = b(C)/I \ J . From an optimization point of view, minors operations are quite

natural:

Remark 7.10. Take a clutter C over ground set E, and disjoint subsets I, J ⊆ E. Then the linear programs

min{w>x : M(C \ I/J)x ≥ 1, x ≥ 0} = max{1>y : M(C \ I/J)>y ≤ w, y ≥ 0}

for w ∈ RE−(I∪J)
+ , are equivalent to the linear programs

min{w>x : M(C)x ≥ 1, x ≥ 0} = max{1>y : M(C)>y ≤ w, y ≥ 0}

for w ∈ RE+ such that we = 0 for all e ∈ I and wf = +∞ for all f ∈ J .

As an immediate consequence,

Remark 7.11 (Seymour 1977). If a clutter is ideal (resp. Mengerian), then so is any minor of it.
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8 Ideal clutters

We will see two rich classes of ideal clutters that are quite different in nature, suggesting that ideal clutters form

a much richer class than perfect clutters. Unfortunately for us, it also suggests that studying general ideal clutters

is more complicated than perfect clutters. Indeed, this is confirmed by a negative complexity result on detecting

idealness that we will mention at the end of this section.

8.1 Dicuts and dijoins

Let D = (V,A) be a digraph. We say that D is strongly connected if for all distinct vertices s, t ∈ V , there is an

(s, t)-dipath. Take a non-empty and proper subset U of V . We say that the cut δ+(U) is a dicut if δ−(U) = ∅;
that is, δ+(U) is a dicut if it has no in-coming arc; we will refer to U as an out-shore of δ+(U).

Remark 8.1. A digraph is strongly connected if, and only if, it has no dicut.

Proof. Take a digraph D = (V,A). Suppose first that D is strongly connected. Let δ+(U) be a cut, and take

vertices t ∈ U and s ∈ V − U . Since there is an (s, t)-dipath, it follows that δ−(U) 6= ∅, implying in turn that

δ+(U) is not a dicut. Suppose conversely that D is not strongly connected. Then there are distinct vertices s, t

without an (s, t)-dipath. Let U be the set of all vertices that can be reached from s. Clearly, s ∈ U and t /∈ U ,

and by construction, δ−(U) = δ+(U) = ∅, so δ+(U) is a dicut.

Given a digraph, what is the minimum number of arcs whose contraction makes the digraph strongly con-

nected? By the remark above, we can rephrase the question as, what is the covering number of the clutter of

dicuts of a digraph? In this section, we will answer this question by showing that in a digraph, the clutter of

dicuts packs. To prove this, we will need a coloring lemma.

Let V be a finite set, and let S be a family of subsets of V (some subsets may be equal). We say that two

sets S, S′ ∈ S are crossing if the four sets S1 ∩ S2, S1 − S2, S2 − S1, V − (S1 ∪ S2) are non-empty. Notice

that if S1, S2 are crossing, then so are S1, S2. We say that S is cross-free if it has no crossing sets, that is, for all

S1, S2 ∈ S, either S1 ∩ S2 = ∅, S1 ⊆ S2, S2 ⊆ S1 or S1 ∪ S2 = V . Observe that if S is cross-free, then so is

any family obtained from S after complementing some sets. We will need the following dicut coloring lemma: 9

Lemma 8.2 (Lucchesi and Younger 1976). Let D = (V,A) be a digraph, and F a family of (possibly equal)

dicuts whose out-shores form a cross-free family. Take an integer k ≥ 1. If every arc appears in at most k dicuts

of F , then the dicuts of F can be k-colored so that dicuts of the same color are arc-disjoint.

Proof. Denote by S the family of the out-shores of F . By definition, S is a cross-free family. In particular, if an

arc belongs to dicuts δ+(U1), δ+(U2) ∈ F , then either U1 ⊆ U2 or U2 ⊆ U1. As a result,

(?) given the dicuts of F containing a fixed arc, their out-shores are nested.

9Lucchesi and Younger (1976) called this the disjunctive partition property.
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This observation is crucial to the proof. Take an arbitrary vertex r ∈ V , and let S ′ be obtained from S after

complementing each out-shore containing r. Clearly, S ′ is a cross-free family, and as no set contains r, it follows

that for all S1, S2 ∈ S ′, either S1 ∩ S2 = ∅, S1 ⊆ S2 or S2 ⊆ S1. That is, S ′ is a laminar family. We may

therefore represent S ′ by an r-arborescence T ′ whose arcs are in a one-to-one correspondence with the sets

of S ′. Let T be the directed tree obtained from T ′ as follows: for every set S′ ∈ S ′ obtained by complementing

an out-shore of S, flip the arc of T ′ corresponding to S′. Notice the one-to-one correspondence between the arcs

of T and the out-shores of S. Notice further that by (?), the dicuts of F containing a fixed arc correspond to a

directed path in T of length at most k. Thus, to prove the lemma, it suffices to k-color the arcs of T so that in

every directed path of length at most k, the arcs get different colors. To this end, partition the vertices of T into

layers L0, L1, L2, . . . so that each arc of T goes from some layer Li+1 to the layer Li. Color the arcs going from

layer Li+1 to layer Li with color i (mod k), for each i ≥ 0. It is then easy to see that the arcs of a directed path

of length at most k get different colors, as required.

Let D = (V,A) be a digraph. A dijoin of D is an arc subset B such that D/B is strongly connected. Notice

that by Remark 8.1, an arc subset is a dijoin if and only if it intersects every dicut. In other words, the dijoins

ofD are precisely the covers of the clutter of dicuts. The proof of the following theorem is due to Lovász (1976).

Theorem 8.3 (Lucchesi and Younger 1976). In a digraph, the maximum number of disjoint dicuts is equal to

the minimum cardinality of a dijoin. That is, the clutter of dicuts of a digraph packs.

Proof. Let D = (V,A) be a digraph. We will prove by induction on |A| ≥ 1 that the clutter of dicuts packs. The

base case |A| = 1 is trivial. For the induction step, assume that |A| ≥ 2. We may assume that the underlying

undirected graph of D is connected, and that D is not strongly connected. Let ν be the maximum size of a

packing of dicuts. Let us say that an arc is essential if it is used in every maximum packing of dicuts.

Claim. D has an an essential arc.

Proof of Claim. Suppose otherwise. Then for each arc, we have a packing of ν disjoint dicuts of D excluding

the arc. Doing this for every arc of D, we get a family F such that

(?) F is a family of dicuts ofD such that |F| = |A| ·ν, and every arc ofD is used in at most |A|−1

dicuts of F .

We will recursively update the family F so that each intermediate family satisfies (?), and at the end, the out-

shores form a cross-free family. If the out-shores of F form a cross-free family, then we are done. Otherwise,

take dicuts δ+(U1), δ+(U2) ∈ F where U1, U2 are crossing. Then δ+(U1 ∩ U2), δ+(U1 ∪ U2) are also dicuts

such that

δ+(U1 ∩ U2) ∩ δ+(U1 ∪ U2) ⊆ δ+(U1) ∩ δ+(U2) and δ+(U1 ∩ U2) ∪ δ+(U1 ∪ U2) ⊆ δ+(U1) ∪ δ+(U2).

We update F by replacing the dicuts δ+(U1), δ+(U2) by the dicuts δ+(U1 ∩ U2), δ+(U1 ∪ U2). The inclusions

above imply that F still satisfies (?). Since at each iteration, the potential
∑
δ+(U)∈F |U |2 strictly increases,
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we will eventually reach a family F satisfying (?) whose out-shores form a cross-free family. Therefore, by

the Dicut Coloring Lemma 8.2, we may (|A| − 1)-color the dicuts of F so that each color class is a packing of

dicuts. One of the color classes has cardinality at least |A|·ν|A|−1 > ν, implying in turn that D has a packing of ν+1

dicuts, a contradiction. Thus, D has an essential arc. ♦

Let e be an essential arc of D, and let C1, . . . , Cν be a maximum packing of dicuts such that e ∈ Cν .

To complete the induction step, it suffices to exhibit a dijoin of cardinality ν. As e is essential, the dicuts

C1, . . . , Cν−1 give a maximum packing of dicuts of D/e. Thus, by the induction hypothesis, D/e has a dijoin

B′ of cardinality ν − 1. Notice that B′ ∪ {e} is a dijoin of D of cardinality ν, as required. This finishes the

proof.

Using this result, we can prove the following:

Corollary 8.4. The clutter of dicuts of a digraph is Mengerian, and therefore ideal.

Proof. Let C be the clutter of dicuts of digraphD = (V,A). To prove that C is Mengerian, take weights w ∈ ZA+.

We need to show that τ(C, w) = ν(C, w), that is, the minimum weight of a dijoin is equal to the maximum size

of a weighted packing of dicuts. Construct a digraph D′ starting from D as follows: for each arc e with we = 0

contract arc e, and for each arc w with we ≥ 1 replace arc e by we arcs in series (forming a directed path). Then

τ(C, w) is equal to the minimum cardinality of a dijoin of D′, while ν(C, w) is equal to the maximum number

of disjoint dicuts of D′. Therefore, Theorem 8.3 implies that τ(C, w) = ν(C, w), as required.

Together with Theorem 7.8, this result implies that,

Corollary 8.5. The clutter of dijoins of a digraph is ideal.

Schrijver (1980) showed that in contrast to dicuts, the clutter of dijoins is not necessarily Mengerian. Neverthe-

less, Woodall (1978) conjectures that the clutter of dijoins always packs. (Why would Woodall’s conjecture not

imply that the clutter of dijoins is Mengerian?)

8.2 T -joins and T -cuts

Let G = (V,E) be a graph where loops and parallel edges are allowed; however, loops are thought of as vertex-

less edges. For an edge subset J ⊆ E, denote by odd(J) ⊆ V the set of vertices incident with an odd number

of edges of J – clearly odd(J) has even cardinality. Notice that

odd(J1)4odd(J2) = odd(J14J2) J1, J2 ⊆ E,

where 4 is the symmetric difference operation. A subset C ⊆ E is a cycle if odd(C) = ∅. Observe that ∅ and

loops are cycles. A circuit is a non-empty cycle that does not properly contain another non-empty cycle. We

leave the following as an exercise:
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Remark 8.6. Let G = (V,E) be a graph, and take a non-empty subset C ⊆ E. The C is a cycle if, and only if,

C is a disjoint union of circuits.

We will use this basic observation without reference. Take a subset T ⊆ V of even cardinality. A T -join is an

edge subset J ⊆ E such that odd(J) = T . For instance, the ∅-joins are precisely the cycles, and for distinct

vertices s, t ∈ V , every st-path is an {s, t}-join.

Remark 8.7. Take a graph G = (V,E), a subset T ⊆ V of even cardinality, and a T -join J . Then

{J ′ ⊆ E : J ′ is a T -join} = {J4C : C is a cycle}.

Proof. Suppose first that J ′ ⊆ E is a T -join. Then odd(J ′4J) = odd(J ′)4odd(J) = T4T = ∅, so

J ′4J is a cycle, and as J ′ = J4(J ′4J), we are done. Conversely, take a cycle C. Then odd(J4C) =

odd(J)4odd(C) = T4∅ = T , so J4C is a T -join and we are done.

Given a graph and a vertex subset T of even cardinality, what is the minimum cardinality of a T -join? When

T = ∅, the answer is zero as ∅ is a T -join. We may therefore focus on non-empty T . The two remarks above

provide the following partial answer to this question:

Remark 8.8 (Sebő 1987). Take a graph G = (V,E), a non-empty subset T ⊆ V of even cardinality, and a

T -join J . Define weights w ∈ {−1, 1}E as follows: for each e ∈ J set we := −1, and for each e ∈ E − J set

we := 1. Then the following statements are equivalent:

• J is a minimum T -join,

• there is no cycle of total negative weight,

• there is no circuit of total negative weight.

The reason we are not satisfied with this answer is the lack of an optimality certificate. How can we certify that

a minimum T -join is truly optimal? Well, if we treat minimal T -joins as the minimal covers of a clutter, and the

clutter happened to pack, then any maximum packing would give an optimality certificate.

Take a graph G = (V,E) and a non-empty subset T ⊆ V of even cardinality. A T -cut is a cut of the form

δ(U) ⊆ E where |U ∩ T | is odd. For instance, for distinct vertices s, t of G, an st-cut is an {s, t}-cut.

Proposition 8.9. Take a graph G = (V,E) and a non-empty subset T ⊆ V of even cardinality. Let C be the

clutter of minimal T -joins over ground set E. Then b(C) is the clutter of minimal T -cuts.

Proof. We need to show that (a) every T -cut is a cover of C, and (b) every cover of C contains a T -cut. (a) Take

a T -cut δ(U). We need to show that δ(U) intersects every T -join. Suppose otherwise. Take a T -join J such that

J ∩ δ(U) = ∅. Then the odd-degree vertices of J ∩ E(G[U ]) are precisely T ∩ U , a contradiction as |T ∩ U |
is odd. (b) Conversely, let B ⊆ E be a cover of C. Then the graph H := G \ B does not contain a T -join. To

prove that B contains a T -cut of G, it suffices to argue why H has an empty T -cut. To this end, let A be the
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vertex-edge incidence matrix of H , and let b ∈ {0, 1}V be the incidence vector of T ⊆ V . (So the loops of H

are the zero columns of A.) Since H has no T -join, it follows that the system

Ax ≡ b (mod 2)

has no 0− 1 solution. By Farkas’ lemma for binary spaces, there is a certificate c ∈ {0, 1}V such that

c>A ≡ 0 and c>b ≡ 1 (mod 2).

Pick U ⊆ V such that c = χU . The second equation implies that |U ∩ T | is odd, while the first equation implies

that δ(U) is an empty cut of H , so δ(U) is an empty T -cut of H , as required.

Let’s see what minors of the clutter of minimal T -joins correspond to in terms of the graph. Let G = (V,E)

be a graph and take a possibly empty subset T ⊆ V of even cardinality. Let C be the clutter of minimal T -joins

over ground set E. Take an edge e ∈ E. The deletion (G,T )\e is the pair (G\e, T ). It is clear that the minimal

T -joins of (G,T ) \ e are the members of C \ e. The contraction (G,T )/e is the pair (G/e, T ′) where 10

T ′ =

{
T − e if |e ∩ T | is even
(T − e) ∪ {shrunk vertex} if |e ∩ T | is odd.

Observe that T ′ is a set of even cardinality. Notice that if J is a T -join of G, then J − {e} is a T ′-join of G/e.

Conversely, if J ′ is a T ′-join of G/e, then J ′ ∪ {e} contains a T -join of G. Hence, the minimal T ′-joins of

(G,T )/e are the members of C/e. For disjoint subsets I, J ⊆ E, the minor (G,T ) \ I/J is what is obtained

after deleting I and contracting J . Notice that the minimal T ′-joins of (G \ I/J, T ′) := (G,T ) \ I/J are the

members of C \ I/J .

Let’s get back to our question regarding minimum T -joins and certifying their optimality by looking at the

blocker of minimal T -joins: does the clutter of minimal T -cuts necessarily pack? Consider the complete graph

K4 on 4 vertices, let T := V (K4), and let C be its clutter of minimal T -cuts. Then C consists of the claws ofK4,

and the blocker b(C) – the minimal T -joins – consists of the claws as well as the perfect matchings. So τ(C) = 2,

and as there are no disjoint claws, it follows that ν(C) = 1, so C does not pack. Despite this shortcoming, we

can prove the following result. Our proof is due to Sebő (1987).

Theorem 8.10 (Seymour 1981). Take a bipartite graph G = (V,E), and a non-empty subset T ⊆ V of even

cardinality. Then the minimum cardinality of a T -join is equal to the maximum number of disjoint T -cuts. That

is, the clutter of minimal T -cuts of a bipartite graph packs.

Proof. We proceed by induction on the number of vertices of G. The base case |V | = 2 holds trivially. For the

induction step, assume that |V | ≥ 3. Denote by τ the minimum cardinality of a T -join. We will construct τ

disjoint T -cuts. If τ = 1, then we are done. We may therefore assume that τ ≥ 2. Among all minimum T -joins,

pick the one J whose longest path is the longest compared to the other ones. Define weights w ∈ {−1, 1}E as

10In this setting, to contract a loop is to delete it.
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follows: for each e ∈ J set we := −1, and for each e ∈ E − J set we := 1. By Remark 8.8, G has no negative

cycle, and as G is bipartite, every cycle has even weight.

Let Q be the longest path contained in J and let u, v be its ends. As Q is the longest path in J , and as G has

no negative cycle, it follows that u, v each have degree 1 in J . In particular, u, v ∈ odd(J) = T . Let e? be the

edge of Q incident with u. Then J ∩ δ(u) = {e?}.

Claim 1. If C is a circuit such that C ∩ δ(u) 6= ∅ and e? /∈ C, then w(C) ≥ 2.

Proof of Claim. Suppose otherwise. Since w(C) ≥ 0 and w(C) is even, it follows that w(C) = 0. So J4C is

another minimum T -join, and as Q cannot be extended to a longer path in J4C, Q and C must share a vertex

other than u. Among all the vertices in V (Q) − {u} that also belong to V (C), pick the one w that is closest

to u on Q. Let Q′ be the uw-path in Q; as e? /∈ C, it follows that Q′ 6= ∅ and Q′ ∩ C = ∅. Let P1, P2 be

the two uw-paths partitioning C. Since w(P1) + w(P2) = w(C) = 0 and w(Q′) < 0, it follows that one of

P1 ∪Q′, P2 ∪Q′ is a negative circuit, a contradiction. ♦

Claim 2. u cannot be adjacent to all the other vertices in T .

Proof of Claim. Suppose otherwise. In particular, u and v are adjacent, and as G has no negative cycle, Q has

length 1. Since Q is the longest path in J , it follows that J is a matching, and as τ ≥ 2, the matching has an

edge other than the edge of Q. Since u is adjacent to the other matched vertices, G has a triangle, a contradiction

as G is bipartite. ♦

Let (G′, T ′) := (G,T )/δ(u). Notice thatG′ is still a bipartite graph, and by Claim 2, T ′ 6= ∅. Let J ′ := J−δ(u).

Then J ′ is a T ′-join of G′ of length τ − 1. In fact,

Claim 3. J ′ is a minimum T ′-join of G′.

Proof of Claim. Define weights w′ ∈ {−1, 1}E(G′) on the edges of G′ as follows: for each e ∈ J ′ set w′(e) :=

−1, and for each e ∈ E(G′) − J ′ set w′(e) := 1. Notice that w′ is simply the restriction of w to E − δ(u) =

E(G′). To prove that J ′ is a minimum T ′-join of G′, it suffices by Remark 8.8 to show that G′ does not have a

negative circuit. To this end, let C ′ be a circuit of G′, and let C be a circuit of G such that C ′ ⊆ C ⊆ C ′ ∪ δ(u).

If C = C ′ or e? ∈ C, then w′(C ′) = w(C) ≥ 0. Otherwise, C ∩ δ(u) 6= ∅ and e? /∈ C. It therefore follows

from Claim 1 that

w′(C ′) = w(C)− 2 ≥ 0,

as required. ♦

Thus, by the induction hypothesis, G′ has τ − 1 disjoint T -cuts; these are also disjoint T -cuts of G, and together

with δ(u), they give τ disjoint T -cuts in G, thereby completing the induction step. This finishes the proof.

This result is actually sufficient to guarantee certificates of optimality for minimum T -joins in general graphs:
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Theorem 8.11 (Edmonds and Johnson 1970, 1973). Take a graphG = (V,E) and a non-empty subset T ⊆ V of

even cardinality. Denote by C be the clutter of minimal T -cuts over ground set E. Then the following statements

hold:

(1) For weights w ∈ ZE+ where every cycle has total even weight, the minimum weight of a T -join is equal to

the maximum size of a weighted packing of T -cuts:

τ(C, w) = ν(C, w).

(2) (Lovász 1975) For arbitrary weights w ∈ ZE+, the minimum weight of a T -join is equal to the maximum

value of a half-integral weighted packing of T -cuts:

τ(C, w) = max
2y∈ZC

+

{
1>y :

∑
(yC : e ∈ C ∈ C) ≤ we ∀e ∈ E

}
.

(3) The clutter C of minimal T -cuts is ideal, that is, the polyhedron{
x ≥ 0 :

∑
(xe : e ∈ B) ≥ 1 ∀ T -cuts B

}
is integral, and its vertices are the incidence vectors of the minimal T -joins.

Proof. (1) If there is a T -join of weight 0, then there is nothing to show. We may therefore assume that the

minimum weight of a T -join is non-zero. Let (G′, T ′) be the pair obtained from (G,T ) after contracting all

edges of weight 0, and for each edge e with we ≥ 1, replacing e by we edges in series (the intermediate vertices

will not be included in T ′). Notice that every cycle C in G corresponds to a cycle in G′ of length w(C), and

conversely, every cycle C ′ in G′ corresponds to a cycle in G of weight |C ′|. Thus, since every cycle of G has

even weight, it follows that G′ is a bipartite graph. Moreover, it is clear that every T -join J in G corresponds to

a T ′-join in G′ of length w(J), and conversely, every T ′-join J ′ in G′ corresponds to a T -join in G of weight

|J ′|. In particular, T ′ 6= ∅. It therefore follows from Theorem 8.10 that the minimum cardinality of a T ′-join in

G′ is equal to the maximum number of disjoint T ′-cuts of G′. As every packing of T ′-cuts in G′ corresponds

to a weighted packing of T -cuts in G, it follows that τ(C, w) = ν(C, w), as required. (2) Take arbitrary weights

w ∈ ZE+. It follows from (1) that

2τ(C, w) = τ(C, 2w) = ν(C, 2w) = max
y∈ZC

+

{
1>y :

∑
(yC : e ∈ C ∈ C) ≤ 2we ∀e ∈ E

}
,

thereby proving (2). (3) follows immediately from (2).

After applying Theorem 7.8 to part (3), we get the following:

Corollary 8.12. Take a graph G = (V,E) and a non-empty subset T ⊆ V of even cardinality. Then the clutter

of minimal T -joins is ideal. That is, for all weights w ∈ ZE+, the minimum weight of a T -cut is equal to the

maximum value of a fractional weighted packing of T -joins.
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Cornuéjols (2001) conjectures that in the above corollary, the minimum weight of T -cut should be equal to the

maximum value of a quarter-integral weighted packing of T -joins. In contrast to T -cuts, packing T -joins is a

difficult problem. To illustrate this, we need a definition. A 3-graph is a connected bridgeless graph G = (V,E)

where every vertex has degree 3.

Proposition 8.13. Let G = (V,E) be a plane 3-graph. Then the following statements are equivalent:

(i) G has three disjoint perfect matchings, so the clutter of minimal V -joins packs,

(ii) G has two disjoint V -joins,

(iii) G has a 4-face-coloring.

Proof. (i) ⇒ (ii) holds trivially. (ii) ⇒ (iii): Suppose that G has disjoint minimal V -joins J1, J2. Let G? =

(V ?, E) be the plane dual of G, and notice that every face of G? is a triangle. Notice that the V -cuts of G are in

correspondence with the cycles of G? bounding an odd number of triangles, implying in turn that the V -cuts of

G are in correspondence with the odd cycles of G?. Since each Ji is a minimal cover of the V -cuts of G, each Ji
is also a minimal cover of the odd cycles of G?, implying in turn that there is a non-empty cut δ(Ui), Ui ⊆ V ?

of G? such that δ(Ui) = E − Ji. Since J1 ∩ J2 = ∅, it follows that U1 ∩ U2, U1 ∩ U2, U1 ∩ U2, U1 ∩ U2 are

stable sets of G?, thereby yielding a 4-vertex-coloring of G?, and hence a 4-face-coloring of G. (iii)⇒ (i): Let

h ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}{faces} be a 4-face-coloring of G. For each edge e, whose neighboring faces are

F1 and F2, let

g(e) := h(F1) + h(F2) (mod 2).

Since F1, F2 are adjacent faces, and therefore have different colors, it follows that g(e) ∈ {(0, 1), (1, 0), (1, 1)}.
Let

J1 := {e ∈ E : g(e) = (0, 1)}

J2 := {e ∈ E : g(e) = (1, 0)}

J3 := {e ∈ E : g(e) = (1, 1)}.

We claim that each Ji is a perfect matching. To see this, take an arbitrary vertex v, whose neighboring faces are

F1, F2, F3. Then the three edges incident with v have g-values h(F1) + h(F2), h(F2) + h(F3), h(F3) + h(F1)

(mod 2). As h(F1), h(F2), h(F3) are pairwise distinct, we get that the g-values of the three edges incident with

v are different, so v is indicent with exactly one edge from each Ji. As this is true for each vertex, it follows that

each Ji is a perfect matching, as required.

It is widely known that 4-face-coloring plane 3-graphs is just as general as 4-face-coloring arbitrary plane graphs.

Thus, the implication (ii) ⇒ (iii) implies that finding just two disjoint T -joins in a graph can be a difficult

problem. Appel and Haken (1977), and again Robertson, Sanders, Seymour and Thomas (1996), proved that

plane graphs are 4-face-colorable. As a consequence, the implication (iii)⇒ (i) implies that,
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Theorem 8.14. The clutter of minimal T -joins of a planar 3-graph packs.

This result does not extend to non-planar 3-graphs. For instance, the Petersen graph is a 3-graph whose clutter

of minimal T -joins does not pack, as it is not 3-edge-colorable.

8.3 Testing idealness is co-NP-complete.

Let A be a 0− 1 matrix. Consider the following problem:

Is A an ideal matrix?

This is a co-NP problem: to certify that A is non-ideal, all we need is a fractional point x? ∈ Q(A) = {x ≥ 0 :

Ax ≥ 1} along with a full-rank row subsystem A′x ≥ b′ of
(
A

I

)
x ≥

(
1

0

)
such that A′x? = b′. In fact, as the

following result claims, this problem is one of the most difficut problems in the co-NP class:

Theorem 8.15 (Ding, Feng, Zang 2008). Let A be a 0− 1 matrix, where every column has exactly two 1s. Then

the problem

Is A an ideal matrix?

is co-NP-complete.

In other words, given a general 0−1 matrix that is a priori ideal, we cannot convince an adversary in polynomial

time that A is indeed an ideal matrix, unless P and co-NP are equal. This means that unlike perfect clutters,

ideal clutters do not admit a polynomial characterization in this model. (The authors above proved that “Is A a

Mengerian matrix?” is a also co-NP-complete problem.)
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9 Minimally non-ideal clutters

By Remark 7.11, we know that if a clutter is ideal, then so is any minor of it. In other words, the class of ideal

clutters is minor-closed. As a result, we may indirectly study the class by characterizing the excluded minors

defining the class. We say that a clutter is minimally non-ideal (mni) if it is non-ideal, and every proper minor

of it is ideal. Observe that every mni clutter has at least 3 elements, and that up to isomorphism, the only mni

clutter with 3 elements is
{
{1, 2}, {2, 3}, {3, 1}

}
.11 It follows from Remark 7.11 and Theorem 7.8 that,

Remark 9.1. The following statements hold:

• a non-ideal clutter is minimally non-ideal if every single deletion and contraction minor is ideal,

• a clutter is ideal if, and only if, it has no minimally non-ideal minor,

• if a clutter is minimally non-ideal, then so is its blocker.

As we will see, mni clutters split into two classes that behave quite differently from one another. We will study

each class independently.

9.1 The deltas

Take an integer n ≥ 3. Consider the clutter over ground set [n] := {1, 2, 3, . . . , n} whose members are

∆n :=
{
{1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n}

}
and whose incidence matrix is

M
(
∆n

)
=


1 1

1 1
...

. . .

1 1

1 1 · · · 1

 .

We refer to ∆n, and any clutter isomorphic to it, as a delta of dimension n. Notice that the elements and members

of ∆n correspond to the points and lines of a degenerate projective plane.12

Theorem 9.2. Take an integer n ≥ 3. Then,

(1) b(∆n) = ∆n,

(2) min{1>x : M(∆n)x ≥ 1} has no integral optimal solution, and

(3) ∆n is minimally non-ideal.
11Given a clutter C, we may obtain another clutter C′ by relabeling the elements of C. We will say that C, C′ are isomorphic and write

C ∼= C′.
12In the literature, a delta of dimension n is called a degenerate projective plane of order n − 1. However, as there are other degenerate

projective planes, we refrain from using this terminology.
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Proof. (1) As ∆n does not have disjoint members, every member is also a cover, so every member of ∆n

contains a member of b(∆n). Conversely, let B be a minimal cover of ∆n. If 1 /∈ B, then as B intersects each

one of {1, 2}, {1, 3}, . . . , {1, n}, it follows that {2, 3, . . . , n} ⊆ B. If 1 ∈ B, then as B intersects {2, 3, . . . , n},
it follows that {1, i} ⊆ B for some i ∈ {2, 3, . . . , n}. In both cases, we see that B contains a member, so every

member of b(∆n) contains a member of ∆n. It therefore follows from Remark 6.6 that b(∆n) = ∆n. (2) In

particular, τ(C) = 2. Consider now the fractional feasible solution x? :=
(
n−2
n−1

1
n−1 · · ·

1
n−1

)
. The objective

value of this solution is 1 + n−2
n−1 < 2 = τ(C), so (2) holds. (3) It follows from (2) that ∆n is non-ideal. To prove

that ∆n is mni, we need to show for each e ∈ [n] that ∆n \ e and ∆n/e are ideal clutters. In fact, since

∆n \ e = b(b(∆n \ e)) = b(b(∆n)/e) = b(∆n/e)

by (1), it suffices by Theorem 7.8 to show that one of ∆n \ e,∆n/e is ideal. By the symmetry between the

elements 2, 3, . . . , n, we may assume that e ∈ {1, n}. Observe that

∆n \ 1 = {{2, 3, . . . , n}}

and

∆n/n = {{1}, {2, . . . , n− 1}} .

We leave it as an exercise for the reader to see that these clutters are indeed ideal. Thus, ∆n is mni.

The deltas form an important class of mni clutters that is tractable in the sense that it is easy to see whether

a clutter has a delta minor or not. To see why, we need the following result:

Theorem 9.3 (Abdi, Cornuéjols, Pashkovich 2017). Take a clutter C over ground set E and an element e ∈ E.

If there are distinct members C1, C2, C such that e ∈ C1 ∩ C2, e /∈ C and (C1 ∪ C2)− {e} ⊆ C, then C has a

delta minor that can be found in time O(|E||C|).

Proof. Let us call (C1, C2, C) a bad triple through e. We may assume that in every proper minor of C where e is

present, no bad triple through e exists. We will prove that C itself is a delta. The minimality assumption implies

that

(1) C1 ∩ C2 = {e},

because for I := (C1 ∩ C2)− {e}, the minor C/I has the bad triple (C1 − I, C2 − I, C − I) through e.

The minimality assumption also implies that

(2) {e} ∪ C = E,

because for J := E − ({e} ∪ C), C \ J has the same bad triple (C1, C2, C) through e.

Next we claim that

(3) |C1| = |C2| = 2.
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To see this, suppose for a contradiction that one of C1, C2, say C1, has cardinality at least 3. Pick an element

h ∈ C1 − {e}, and note that by (1), h /∈ C2. Consider the minor C′ := C/h, for which C ′1 := C1 − {h} and

C ′ := C − {h} are still members. Notice that C2 contains a member C ′2 of C′, for which it is easy to see that

e ∈ C ′2 and C ′2 6= {e}. But now C′ has a bad triple (C ′1, C
′
2, C

′) through e, a contradiction to our minimality

assumption. This proves (3).

Now let X :=
{
f ∈ E : {e, f} is a member

}
. So |X| ≥ 2 by (3), and X ⊆ C by (2). Our last claim is that

(4) X = C.

For if not, pick an element h ∈ C − X , and note that C/h has a bad triple (C1, C2, C − {h}) through e,

contradicting the minimality assumption. Thus, X = C. Hence,

C ⊇ {{e, f} : f ∈ C} ∪ {C}.

Since {e} ∪C = E by (2), and C is a clutter, equality must hold above, implying in turn that C indeed is a delta,

as required.

Two elements of a clutter are exclusive if they are never used together in a member. Notice that exclusive ele-

ments remain exclusive in every minor that they are present in. The preceding result has the following immediate

consequence:

Corollary 9.4. Let C be a clutter without a delta minor, and take distinct elements e, f, g. If {e, f}, {e, g} are

members, then f, g are exclusive.

We are now ready to prove the following:

Theorem 9.5 (Abdi, Cornuéjols, Pashkovich 2017). Let C be a clutter over ground set E. Then in time

O(|E|3|C|3), one can find a delta minor or certify that none exists.

Proof. We claim that the following statements are equivalent:

(i) C does not have a delta minor,

(ii) for all distinct members C1, C2 with C1 ∩ C2 6= ∅ and for all elements e, f, g with e ∈ C1 ∩ C2, f ∈
C1 − C2, g ∈ C2 − C1, the following holds: for X := (C1 ∪ C2) − {e, f, g} and C′ := C/X , either

{e, f} /∈ C′ or {e, g} /∈ C′ or f, g are exclusive elements of C′.

(ii) ⇒ (i): Assume that (i) does not hold. Suppose C has a delta minor obtained after deleting I ⊆ E and

contracting J ⊆ E. Pick elements e, f, g ∈ E− (I ∪ J) such that {e, f}, {e, g} are members of the delta minor.

Notice that f, g are not exclusive elements in the delta minor, and so they are not exclusive in C. Let C1, C2 be

members of C such that {e, f} ⊆ C1 ⊆ {e, f} ∪ J and {e, g} ⊆ C2 ⊆ {e, g} ∪ J . It can be readily checked

that C1, C2 and e, f, g do not satisfy (ii). Thus, (ii) does not hold. (i) ⇒ (ii): Assume that (i) holds. Take

C1, C2, e, f, g,X, C′ as in (ii) where {e, f} ∈ C′ and {e, g} ∈ C′. Since C has no delta minor, neither does C′,
so by Corollary 9.4, f and g are exclusive elements of C′, so (ii) holds. Hence, (i) and (ii) are equivalent. Since

(ii) may be verified in time O(|E|3|C|3), and if (ii) does not hold, a delta minor can be found in time O(|E||C|)
using Theorem 9.3, we can find a delta minor or certify that none exists in time O(|E|3|C|3).
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9.2 The other minimally non-ideal clutters

We now move on to the mni clutters different from the deltas. Take an odd integer n ≥ 5. Consider the clutter

over ground set [n] whose members are

C2
n := {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}} .

The clutter C2
n, and any clutter isomorphic to it, is called an odd hole of dimension n. It may be readily checked

that odd holes are mni. In contrast to Theorem 9.5,

Theorem 9.6 (Ding, Feng, Zang 2008). Finding an odd hole minor in a clutter is an NP-complete problem.

That is, unless P and NP are equal, there is no algorithm for finding an odd hole minor in a clutter C over

ground set E, whose running time is polynomial in |E| and |C|. Theorems 9.5 and 9.6 highlight the difference

between the deltas and the other mni clutters. There are many mni clutters: other than the two infinite classes

{C2
2n−1 : n ≥ 3} and {b(C2

2n−1) : n ≥ 3}, there are at least two other infinite classes of mni clutters different

from the deltas, as well as many sporadic examples. For instance, the clutter of the lines of the Fano plane

L7 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 7}, {2, 5, 6}, {3, 4, 6}, {3, 5, 7}} = b(L7),

as well as C2
9 ∪ {{3, 6, 9}} are mni. It may now seem that there is no good characterization of the mni clutters

different from the deltas, but this is not the case – Alfred Lehman (1990) provided powerful geometric and

combinatorial characterizations of these clutters. Before getting to his characterizations, let us briefly study the

geometric aspects of ideal clutters and of minor operations. First off, it is easier to work with polytopes rather

than polyhedra:

Proposition 9.7. Take a clutter C over ground set E. Then C is ideal if, and only if, {1 ≥ x ≥ 0 : M(C)x ≥ 1}
is an integral polytope.

Proof. Let Q := {x ≥ 0 : M(C)x ≥ 1} and P := {1 ≥ x ≥ 0 : M(C)x ≥ 1}. If Q is not integral, it has a

fractional extreme point x?, and as x? ≤ 1, it follows that x? is also an extreme point of P , so P is not integral.

Conversely, assume that P is not integral, and let x? be a fractional extreme point. Let

Ix? := {e ∈ E : x?e = 1}.

We prove by induction on |Ix? | ≥ 0 that Q has a fractional extreme point. If Ix? = ∅, then x? is also an extreme

point ofQ, so we are done. For the induction step, we assume that |Ix? | ≥ 1. If for each e ∈ I , there is a member

C such that C ∩ Ix? = {e}, then x? is an extreme point of Q also, so we are done. Otherwise, for some f ∈ Ix?

there is no member C such that C ∩ Ix? = {f}. That is, there is no member C such that f ∈ C and x?(C) = 1.

Thus, we may strictly decrease the f
th

coordinate of x? until we get another fractional extreme point x̄ of P .

Clearly, Ix̄ = Ix? − {f}, so by the induction hypothesis, Q has a fractional extreme point. This completes the

induction step.
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For a clutter C, denote by P (C) the set covering polytope {1 ≥ x ≥ 0 : M(C)x ≥ 1}. Notice that the covers

of C are precisely the integer extreme points of P (C). (Every integer point of P (C) is also an extreme point.)

Moreover, the minors of C have a natural geometric interpretation in terms of P (C):

Remark 9.8. Let C be a clutter over ground set E, and take an element e ∈ E. Then the following statements

hold:

• P (C \ e) is the restriction P (C) ∩ {x : xe = 1} after dropping coordinate xe.

• P (C/e) is the restriction P (C) ∩ {x : xe = 0} after dropping coordinate xe.

We can now dive into Lehman’s characterizations. First up is a brilliant lemma that will be very useful. Take

an integer n ≥ 2, and let A be an n× n matrix with 0− 1 entries and without a row or a column of all ones. We

say that A is cross regular if whenever Aij = 0, the number of ones in column j is equal to the number of ones

in row i.

Lemma 9.9 (Lehman 1990). The following statements hold:

(1) Take an integer n ≥ 2, and letA be a 0−1 n×nmatrix without a row or a column of all ones, and whenever

Aij = 0, the number of ones in column j is greater than or equal to the number of ones in row i. Then A is

cross regular.

(2) Cross regular matrices cannot differ in just one row.

Proof. (1) Suppose A is an n× n matrix. For each row i ∈ [n] and column j ∈ [n], let ri denote the number of

ones in row i and let cj denote the number of ones in column j. Then∑
j∈[n]

cj =
∑
j∈[n]

∑
i∈[n]:Aij=0

cj
n− cj

≥
∑
j∈[n]

∑
i∈[n]:Aij=0

ri
n− ri

=
∑
i∈[n]

∑
j∈[n]:Aij=0

ri
n− ri

=
∑
i∈[n]

ri.

As the left- and right-hand side terms are equal, equality must hold throughout, implying in turn that whenever

Aij = 0, then ri = cj . Thus, A is cross regular. (2) Suppose for a contradiction that
(
B

a

)
,

(
B

a′

)
are cross

regular matrices and a 6= a′. We may assume that a1 = 1 and a′1 = 0. Since
(
B

a

)
is cross regular, the first

column of B has a zero entry, say it is the first entry. Let k ≥ 0 be the number of ones in the first column of B.

Then as
(
B

a

)
is cross regular, the first row of B has k+ 1 ones. However, as

(
B

a′

)
is also cross regular, the first

row of B must have k ones, a contradiction.

Given a full-dimensional polytope P ⊆ Rn and a vertex x?, we say that x? is simple if it belongs to exactly

n facets. Recall that if x? is simple, then there are exactly n edges emanating from x?, each of which is defined

uniquely by n − 1 many of the tight facets. As a result, if x? is simple, then it has exactly n adjacent vertices.

Lehman proved the following geometric characterization of the mni clutters different from the deltas:
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Theorem 9.10 (Lehman 1990). Let C be a minimally non-ideal clutter over ground set E that is not a delta, and

let n := |E|. Let x? be a fractional extreme point of {1 ≥ x ≥ 0 : M(C)x ≥ 1}. Then the following statements

hold:

(1) 0 < x? < 1,

(2) x? lies on exactly n facets, that correspond to members C1, . . . , Cn ∈ C – so x? is a simple vertex,

(3) the n neighbors of x? are integral vertices, that correspond to covers B1, . . . , Bn labeled so that for distinct

i, j ∈ [n], |Ci ∩Bi| > 1 and |Ci ∩Bj | = 1,

(4) B1, . . . , Bn are minimal covers,

(5) C1, . . . , Cn are precisely the minimum cardinality members of C,

(6) x? is the unique fractional extreme point of {1 ≥ x ≥ 0 : M(C)x ≥ 1},

(7) there is an integer d ≥ 1 such that for each i ∈ [n], |Ci ∩Bi| = 1 + d.

In particular, x? is the unique fractional extreme point of {x ≥ 0 : M(C)x ≥ 1}.

Proof. Let P := P (C) = {1 ≥ x ≥ 0 : M(C)x ≥ 1}. Then for each element e ∈ E, the clutters C/e, C \ e are

ideal, so the polytopes P ∩ {x : xe = 0} and P ∩ {x : xe = 1} are integral by Remark 9.8, implying in turn for

each fractional extreme point x? that 0 < x?e < 1, so (1) holds. (The fact that C is different from a delta will be

first used in Claim 4.)

Claim 1. Let x? be a fractional extreme point of P , and let A be an n×n non-singular submatrix of M(C) such

that Ax? = 1. Then A is cross regular.

Proof of Claim. Clearly, A has no all ones row, and since x? is the unique solution to Ax? = 1, A has no all

ones column either. To prove that A is cross regular, assume that A11 = 0. Let C be the member corresponding

to the first row of A. By Lemma 9.9 (1), it suffices to show that the number of ones in the first column is greater

than or equal to |C|. To this end, let x̂ := (1, x?2, . . . , x
?
n) ∈ P ∩ {x : x1 = 1}. Let F be the smallest face of the

polytope P ∩ {x : x1 = 1} containing x̂. Notice that a>x̂ = 1 for every row a of A whose first entry is 0. As

these rows are linearly independent, and as x̂1 = 1, it follows that

dim(F ) ≤ n− number of 0s in the first column − 1 = number of 1s in the first column − 1.

On the other hand, as P ∩ {x : x1 = 1} is an integral polytope, F is also an integral polytope, so

x̂ =

k∑
i=1

λiχBi

for some extreme points χB1
, . . . , χBk

of F and some λ > 0 such that
∑k
i=1 λi = 1. Notice for each i ∈ [k]

thatBi is a cover, and as x̂(C) = 1, we get that |Bi∩C| = 1. Since x̂ > 0, each element of C appears in at least
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one Bi, so the matrix whose rows are the χBi
’s has rank at least |C|, implying in turn that the affine dimension

of the χBi ’s is at least |C| − 1. As a result,

dim(F ) ≥ |C| − 1.

Putting the last two inequalities gives the desired inequality, as desired. ♦

Claim 2. Every fractional extreme point of P is simple, that is, it lies on exactly n facets. Thus, (2) holds.

Proof of Claim. Suppose for a contradiction that P has a non-simple fractional extreme point x?. Let A be an

n×n non-singular submatrix ofM(C) such thatAx? = 1. As x? is non-simple, there is another row a′ ofM(C)
such that a′>x? = 1. Pick a row a of A such that the matrix A′ obtained by replacing a and a′ is non-singular.

(To find a, write a′ as a linear combination of the rows of A, and pick the row a whose coefficient is non-zero.)

Then by Claim 1, both A and A′ are cross regular, a contradiction to Lemma 9.9 (2) as A and A′ differ in exactly

one row. ♦

Claim 3. P does not have neighboring fractional extreme points. Thus, (3) holds.

Proof of Claim. Suppose for a contradiction that P has neighboring fractional extreme points x?, y?. Then there

are n× n non-singular submatrices A,B of M(C) that differ in exactly one row such that Ax? = 1 = By?. By

Claim 1, both A and B are cross regular, a contradiction to Lemma 9.9 (2). ♦

Now pick a fractional extreme point x? of P . By Claims 2 and 3, x? lies on n facets and has precisely n

neighbors, all of which are integral. Let C1, . . . , Cn ∈ C be the members corresponding to the facets x? sits on,

and let B1, . . . , Bn be the covers corresponding to the neighbors of x?, where our labeling satisfies for i, j ∈ [n]

the following:

|Ci ∩Bj |
{
> 1 if i = j

= 1 if i 6= j.

Let A (resp. B) be the 0− 1 matrix whose columns are labeled by E and whose rows are the incidence vectors

of C1, . . . , Cn (resp. B1, . . . , Bn). Then the equations above imply that

AB> = J + diag (|C1 ∩B1| − 1, . . . , |Cn ∩Bn| − 1) .

In particular, AB> is non-singular, implying in turn that B is non-singular. Moreover, by Claim 1, A is cross

regular. Let G be the bipartite representation of A, where column e and row C are adjacent if e /∈ C. Since A is

cross regular, it follows that adjacent vertices of G have the same degree. In particular, every component of G is

regular and so it has the same number of vertices in each bipartition.

Claim 4. G is connected.

Proof of Claim. Suppose for a contradiction that G is not connected. Then there exist a partition of the rows of

A into non-empty parts X1, X2 and a partition of the columns of A into non-empty parts Y1, Y2 ⊆ E such that

|X1| = |Y1|, |X2| = |Y2|, and the (X2, Y1) and (X1, Y2) blocks of A are submatrices of all ones. If |Y1| = 1
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or |Y2| = 1, then A has a row with n − 1 ones, so C has a delta minor by Theorem 9.3, implying in turn by

minimality that C is a delta, a contradiction as C is not a delta. Otherwise, |X1| = |Y1| ≥ 2 and |X2| = |Y2| ≥ 2.

As a result, for each i ∈ [n], |Bi ∩ Y1| = |Bi ∩ Y2| = 1, implying in turn that the columns of B corresponding

to Y1 have the same sum as the columns of B corresponding to Y2, a contradiction as B is non-singular. ♦

In particular, G is a regular graph, implying in turn that for some integer r ≥ 2, every row and every column

of A has exactly r ones – this has two consequences. Firstly, each Bi is a minimal cover. For if not, then

Bi−{e} is a cover for some e ∈ Bi, implying in turn that column e ofA has at least n−1 zero entries, implying

in turn that r ≤ 1, which is not the case. Thus (4) holds. Secondly, since A is non-singular, it follows that

x? =
(

1
r

1
r · · ·

1
r

)
. As a result, as x? ∈ P , every row of M(C) has at least r ones, and as x? is simple, every row

of M(C) not in A has at least r + 1 ones, so (5) holds. In particular, we cannot run this argument for another

fractional extreme point, so x? is the unique fractional extreme point of P , so (6) holds. Finally, for each i ∈ [n],

let di := |Ci ∩Bi| − 1 ∈ {1, . . . , r − 1}, and let D := diag(d1, . . . , dn). Then

(n+ d1, n+ d2, . . . , n+ dn) = 1>(J +D) = 1>(AB>) = (1>A)B> = r · (B1)>.

Since there is at most one multiple of r in {n + 1, . . . , n + r − 1}, it follows that d := d1 = d2 = · · · = dn,

implying in turn that (7) holds, thereby finishing the proof.

For an integer k ≥ 1, a square 0 − 1 matrix is k-regular if every row and every column has exactly k ones.

We will need the following tool:

Theorem 9.11 (Bridges and Ryser 1969). Take an integer n ≥ 3, and let A,B be n × n matrices with 0 − 1

entries such that

AB = J + dI

for some integer d ≥ 1. Then A,B are non-singular matrices that commute

BA = J + dI,

and for some integers r, s ≥ 2 such that rs = n+ d, A is r-regular and B is s-regular.

Proof. As J + dI is non-singular, it follows that both A,B are non-singular matrices. In particular, neither A

nor B has a zero row or a zero column. We have

I = (J + dI)

(
1

d
I − 1

d(n+ d)
J

)
= (AB)

(
1

d
I − 1

d(n+ d)
J

)
= A

(
1

d
B − 1

d(n+ d)
BJ

)
,

so A and 1
dB −

1
d(n+d)BJ are inverses of one another. Thus,

I =

(
1

d
B − 1

d(n+ d)
BJ

)
A =

1

d
BA− 1

d(n+ d)
(B1)(A>1)>,

so

BA =
1

n+ d
(B1)(A>1)> + dI.

For each i ∈ [n], denote by si ∈ {1, 2, . . . , n} the number of ones in row i of B, and by ri ∈ {1, 2, . . . , n} the

number of ones in column i of A. Then the previous equation implies that
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(1) for all i, j ∈ [n], n+ d | sirj .

As trace(AB) = trace(BA), it follows that

n+ nd =
1

n+ d

n∑
i=1

siri + nd,

so

n(n+ d) =

n∑
i=1

siri ≥ n(n+ d),

implying in turn that

(2) for each i ∈ [n], n+ d = siri.

(1) and (2) imply that r := r1 = r2 = · · · = rn and s := s1 = s2 = · · · = sn. As a consequence,

BA =
1

n+ d
(B1)(A>1)> + dI = J + dI = AB.

Analyzing the equation AB = J + dI , we proved that every row of B has the same s number of ones, and

every column of A has the same r number of ones. The same argument on the equation BA = J + dI implies

that every row of A has the same number of ones, and the number inevitably has to be r, while every column

of B has the same number of ones, and the number inevitably has to be s. In particular, A is r-regular and B is

s-regular. As rs = n+ d and r, s < n+ d, it follows that r, s ≥ 2, thereby finishing the proof.

We are now ready for Lehman’s combinatorial characterization of the mni clutters different from the deltas:

Theorem 9.12 (Lehman 1990). Suppose C is a minimally non-ideal clutter over ground set E that is not a delta,

and let B := b(C). Denote by C,B the clutters over ground set E of the minimum cardinality members of C,B,

respectively. Then

(1) M(C) and M(B) are square and non-singular matrices,

(2) for some integers r ≥ 2 and s ≥ 2, M(C) is r-regular and M(B) is s-regular,

(3) for n := |E|, rs ≥ n+ 1,

(4) after possibly permuting the rows of M(B), we have

M(C)M(B)> = J + (rs− n)I = M(B)>M(C),

that is, there is a labeling C1, . . . , Cn of the members of C and a labeling B1, . . . , Bn of the members of B
such that for all i, j ∈ [n],

|Ci ∩Bj | =

rs− n+ 1 if i = j

1 if i 6= j,

and for all elements g, h ∈ E(C),

∣∣{i ∈ [n] : g ∈ Ci, h ∈ Bi
}∣∣ =

rs− n+ 1 if g = h

1 if g 6= h.
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Proof. Let x? ∈ [0, 1]E be a fractional extreme point of P (C). After applying Theorem 9.10 to the mni clutter

C, we get the following implications. The point x? ∈ [0, 1]E is the unique fractional extreme point of P (C),

1 > x? > 0 and x? is simple. Let A be the submatrix of M(C) such that Ax? = 1. We have that A = M(C).

Let B1, . . . , Bn be the minimal covers that correspond to the neighbors of x?, and let B be the matrix whose

rows are the incidence vectors of B1, . . . , Bn. Then after possibly permuting the rows of B, AB> = J + dI for

some integer d ≥ 1.

It now follows from Theorem 9.11 that A,B are non-singular matrices such that AB> = J + dI = B>A,

and for some integers r, s ≥ 2 such that rs = n + d, A is r-regular and B is s-regular. To finish the proof, it

remains to show thatB = M(B). To this end, notice that x? is equal to ( 1
r · · ·

1
r ), and the neighbors of x? lie on

the hyperplane
∑n
i=1 xi = s. Therefore, the inequality

∑n
i=1 xi ≥ s is valid for all the integer extreme points

of P , implying in turn that every member of B has cardinality at least s. As a result, ( 1
s · · ·

1
s ) is a fractional

extreme point of P (B). Applying Theorem 9.10 to the mni clutter B, we see that ( 1
s · · ·

1
s ) must be the unique

fractional extreme point of P (B) and B = M(B), as required.

9.3 Immediate applications

The first application of Theorem 9.12 is that the deltas (with the exception of ∆3) are the only mni clutters

requiring unequal weights to violate the width-length inequality. The following application is the true analogue

of the max-max inequality, Theorem 5.6:

Theorem 9.13. A clutter without a delta minor is ideal if, and only if, for each minor C,

min {|C| : C ∈ C} ·min {|B| : B ∈ b(C)} ≤ |E(C)|.

Proof. If the clutter is ideal, then the inequality follows from the width-length inequality of Theorem 7.7. Con-

versely, it suffices to prove that for an mni clutter C that is not a delta,

min{|C| : C ∈ C} ·min{|B| : B ∈ b(C)} > |E(C)|.

Let n, r, s be the parameters as in Theorem 9.12. Then the inequality rs ≥ n + 1 implies the inequality above,

as required.

(Notice that the theorem can be extended to clutters without a minor in {∆n : n ≥ 4}.) A second application of

Theorem 9.12 is the following truly remarkable result that, to test integrality of an n-dimensional set covering

polyhedron, it is sufficient to test just 3n directions:

Theorem 9.14. If C is a minimally non-ideal clutter, then

min{1>x : M(C)x ≥ 1, x ≥ 0}

has no integral optimal solution. As a consequence, if C is a non-ideal clutter over ground set E, then there

exists w ∈ {0, 1,+∞}E such that

min{w>x : M(C)x ≥ 1, x ≥ 0}
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has no integral optimal solution.

Proof. If C is a delta, then the result follows from Theorem 9.2 (2). Otherwise, C is not a delta, and let n, r, s

be as in Theorem 9.12. As every member has cardinality at least r, it follows that x? :=
(

1
r

1
r · · ·

1
r

)
is a

feasible solution, and its objective value is n
r ≤

rs−1
r < s. However, the minimum cardinality of a cover is s, so

min{1>x : M(C)x ≥ 1, x ≥ 0} has no integral optimal solution. The second part follows from the first part

after applying Remark 7.10.

A clutter C fractionally packs if it has a fractional packing of value τ(C). It follows from the preceding

theorem that an mni clutter does not fractionally pack. Thus,

Theorem 9.15. A clutter is ideal if, and only if, every minor fractionally packs.

We say that a clutter has the packing property if every minor packs. An immediate consequence of the

preceding theorem is that,

Corollary 9.16. If a clutter has the packing property, then it is ideal.

Conforti and Cornuéjols (1993) conjecture that if a clutter has the packing property, then it must be Mengerian.
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10 Weakly bipartite graphs

Let G = (V,E) be a graph. A subset F ⊆ E is bipartite if the vertices can be bicolored so that every edge of F

gets both colors. Let P be the convex hull of the incidence vectors

{χF : F is bipartite} ⊆ {0, 1}E .

Notice that the polytope P carries information about the cuts of G. For instance, for w ∈ RE+, the optimization

problem max{w>x : x ∈ P} seeks the maximum weight of a cut of G. As the latter is a fundamental NP-

complete optimization problem, studying the polytope P is certainly worthwhile. We will be after a polyhedral

description of P . Observe that an edge subset is bipartite if, and only if, it contains no odd-length circuit. As a

result,

P ⊆
{
x ∈ [0, 1]E :

∑
(xe : e ∈ C) ≤ |C| − 1 ∀ odd-length circuits C

}
.

Observe that equality holds above if, and only if, the polytope on the right is integral. Following Grötschel and

Pulleyblank (1981), a graph G = (V,E) is weakly bipartite if the polytope{
x ∈ [0, 1]E :

∑
(xe : e ∈ C) ≤ |C| − 1 ∀ odd-length circuits C

}
is integral. After a change of variables x 7→ 1 − x, we see that G is weakly bipartite if, and only if, the set

covering polytope {
x ∈ [0, 1]E :

∑
(xe : e ∈ C) ≥ 1 ∀ odd-length circuits C

}
is integral. Hence, by Proposition 9.7, a graph is weakly bipartite if, and only if, its clutter of odd-length circuits

is ideal. Bipartite graphs are vacuously weakly bipartite. A non-trivial example is provided below:

Theorem 10.1 (Hadlock 1975, Barahona 1980). Planar graphs are weakly bipartite.

Proof. Let G = (V,E) be a plane graph. Notice that

(?) every circuit has an inside and an outside; the circuit can be written as the symmetric difference

of the facial circuits that are inside (or outside); the circuit is odd-length if and only if the number

of odd-length facial circuits used in the sum is odd.

Consider now the plane dual G? = (V ?, E), and let T ⊆ V ? denote the odd-degree vertices. Observe that T is

simply the odd-length facial circuits of G. Notice that the cycles of G are the cuts of G?, and so the circuits of

G are the minimal cuts of G?. Moreover, it follows from (?) that the odd-length circuits of G are the minimal

T -cuts of G?. As the clutter of minimal T -cuts of G? is ideal by Theorem 8.11 (3), it follows that the clutter of

odd-length circuits of G is ideal, so G is weakly bipartite.

Thus the class of weakly bipartite graphs is quite rich. Let us analyze the two non-planar graphs K5 and K3,3.

As K3,3 is bipartite, it is also weakly bipartite. K5 however is not weakly bipartite. To see this, let us look at the

set covering polytope associated with the odd-length circuits of K5:{
x ∈ [0, 1]E(K5) :

∑
(xe : e ∈ C) ≥ 1 ∀ odd-length circuits C of K5

}
.
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Observe that K5 has precisely 10 triangles, whose incidence vectors are linearly independent in RE(K5) ∼= R10,

and that the other odd-length circuits all have length 5. As a result, the fractional point ( 1
3

1
3 · · ·

1
3 ) ∈ RE(K5)

belongs to the polytope and is an extreme point. Consequently, the clutter of odd-length circuits of K5 is non-

ideal, so K5 is not weakly bipartite.

What are the weakly bipartite graphs? Whatever the class is, it must contain both bipartite and planar graphs.

These rich classes suggest that a complete classification of the weakly bipartite graphs is a difficult problem, and

indeed, this is still an open problem. We may however take another approach. The question we asked may be

posed as, when is the clutter of odd-length circuits of a graph ideal? The advantage with this question is that

idealness is a minor-closed property, so we may look for an excluded minor characterization. Let G = (V,E)

be a graph, and let C be its clutter of odd-length circuits. Take an edge e ∈ E. What do the minors C \ e, C/e
correspond to in terms of G? Recall that C \ e is the clutter of odd-length circuits of G avoiding e, so it is the

clutter of odd-length circuits of G \ e. However,

C/e = the minimal sets of {C − {e} : C is an odd-length circuit of G}

is not the clutter of odd-length circuits of G/e. (For instance, we could have that G is bipartite while G/e is

non-bipartite.) It is not clear what C/e corresponds to in terms of the graph G. To make sense of this, we will

need to change our framework.

10.1 Signed graphs

Let G = (V,E) be a graph, and take a subset Σ ⊆ E. The pair (G,Σ) is called a signed graph. In (G,Σ), an

odd cycle is a cycle C ⊆ E such that |C ∩ Σ| is odd, and an even cycle is a cycle C ⊆ E such that |C ∩ Σ| is
even. Observe that for sets C1, C2 ⊆ E we have

(C14C2) ∩ Σ = (C1 ∩ Σ)4(C2 ∩ Σ).

In particular, if C1, C2 are cycles of parities p1, p2 ∈ {0, 1}, then C14C2 is a cycle of parity p1 + p2 (mod 2).

In (G,Σ), an odd circuit is a circuit C ⊆ E such that |C ∩Σ| is odd, and an even circuit is a circuit C ⊆ E such

that |C ∩ Σ| is even. We leave the following as an exercise:

Remark 10.2. Let (G,Σ) be a signed graph, and take a subset C ⊆ E(G). The following statements are

equivalent:

• C is a even cycle,

• C is a disjoint union of circuits, an even number of which are odd circuits,

and the following statements are equivalent:

• C is an odd cycle,

• C is a disjoint union of circuits, an odd number of which are odd circuits.
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We will use this useful observation without reference. To resign (G,Σ) is to replace it by the signed graph

(G,Σ4δ(U)) for some U ⊆ V .

Remark 10.3. Resigning preserves the parity of a cycle.

Proof. Let (G,Σ) be a signed graph, and let (G,Σ4δ(U)) be a resigning. Let C be a cycle. As |C ∩ δ(U)| is
even, it follows that

|C ∩ (Σ4δ(U))| = |(C ∩ Σ)4(C ∩ δ(U))| ≡ |C ∩ Σ|+ |C ∩ δ(U)| ≡ |C ∩ Σ| (mod 2).

Thus, C has the same parity in both (G,Σ) and (G,Σ4δ(U)), thereby finishing the proof.

A signature of (G,Σ) is any set of the form Σ4δ(U), U ⊆ V .

Proposition 10.4 (Zaslavsky 1982). If (G,Σ) has no odd cycle, then ∅ is a signature.

Proof. Let A be the 0 − 1 matrix whose columns are labeled by the edges, and whose first |V | many rows are

the incidence vectors of δ(v), v ∈ V and whose last row is the incidence vector of Σ. Let b be the column vector

whose first |V | many coordinates are 0 and whose last entry is 1. As (G,Σ) has no odd cycle, the system

Ax ≡ b (mod 2)

has no 0− 1 solution. By Farkas’ lemma for binary spaces, there is a certificate c ∈ {0, 1}V × {0, 1} such that

c>A ≡ 0 and c>b ≡ 1 (mod 2).

The second equation implies that the last entry of c is 1. Pick U ⊆ V such that c = (χU 1). Then the first

equation implies that Σ = δ(U), so ∅ = Σ4δ(U) is a signature.

As a consequence,

Theorem 10.5. For a signed graph, the clutter of odd circuits and the clutter of minimal signatures are blockers.

Proof. Let C be the clutter of odd circuits of (G,Σ). By Remark 10.3, every minimal signature intersects every

odd circuit in an odd number of edges, so every minimal signature is a cover of C. Conversely, let B be a

minimal cover of C. Then the signed graph (G\B,Σ−B) has no odd circuit by definition, implying in turn that

it has no odd cycle. It therefore follows from Proposition 10.4 that Σ − B = δG\B(U) for some U ⊆ V . Then

Σ4δ(U) ⊆ B, so B contains a signature of (G,Σ). It follows Remark 6.6 that b(C) is the clutter of minimal

signatures, as required.

Take disjoint edge subsets I, J of (G,Σ). By Theorem 10.5, J does not contain an odd cycle if, and only if,

there is a signature disjoint from J . Let

(G,Σ) \ I/J :=

{
(G \ I/J, ∅) if J contains an odd cycle,
(G \ I/J,B − I) B is a signature disjoint from J .
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We refer to (G,Σ) \ I/J as a minor of (G,Σ) obtained after deleting I and contracting J .13 Observe that

(G,Σ) \ I/J is defined up to resigning. In contrast to the unsigned graph case, we have the following:

Proposition 10.6. Let (G,Σ) be a signed graph and C the clutter of its odd circuits. Take disjoint edge subsets

I, J such that J does not contain an odd cycle. Then C \ I/J is the clutter of odd circuits of (G,Σ) \ I/J .

Proof. Let B be a signature of (G,Σ) disjoint from J . Then (G \ I/J,B− I) = (G,Σ) \ I/J . By Remark 6.6,

it suffices to show that every odd circuit of (G \ I/J,B − I) contains a member of C \ I/J , and every member

of C \ I/J contains an odd circuit of (G \ I/J,B − I).

Let C ′ be an odd circuit of (G\ I/J,B− I). Then there is a circuit C of (G,Σ) such that C ′ ⊆ C ⊆ C ′∪J .

As B is a signature of (G,Σ) disjoint from J , it follows that B ∩ C = B ∩ C ′ = (B − I) ∩ C ′, so |B ∩ C| is
odd, implying in turn that C is an odd circuit of (G,Σ). As C − J contains a member of C \ I/J , it follows that

C ′ contains a member of C \ I/J .

Conversely, let C be an odd circuit of (G,Σ) such that C∩I = ∅. Then C−J is a cycle of (G\I/J,B−I).

Since |C ∩B| is odd, we get that |(C − J) ∩ (B − I)| is odd, so C − J is an odd cycle of (G \ I/J,B − I), so

it contains an odd circuit of (G \ I/J,B − I), as required.

We say that a signed graph is weakly bipartite if its clutter of odd circuits is ideal. Observe that a graph

G = (V,E) is weakly bipartite if, and only if, the signed graph (G,E) is weakly bipartite. Hence, as the graph

K5 is not weakly bipartite, it follows that the signed graph (K5, E(K5)) is not weakly bipartite. We will refer

to the signed graph (K5, E(K5)) as an odd-K5. It follows from Remark 7.11 and Proposition 10.6 that,

Remark 10.7. If a signed graph is weakly bipartite, then it has no odd-K5 minor.

Seymour (1977) conjectured that the converse of this remark also holds. Over 20 years later, in his PhD thesis,

Guenin (2001) proved this conjecture! His proof made a spectacular use of Lehman’s powerful result, Theo-

rem 9.12. To prove the conjecture, we will need a lemma due to Schrijver (2002).

10.2 The whirlpool lemma and pseudo-odd-K5’s

Let G be a graph, and take a cut B. As E(G)−B = E(G)4B is a signature for (G,E(G)), it follows that

(G,E(G))/B = (G/B,E(G/B)).

This observation will be useful throughout the rest of this section. The signed graph (K4, E(K4)) is called

an odd-K4. Schrijver (2002) found a very nice way to find an odd-K4 minor in a signed graph. To explain

his method, let W be the graph on vertices 0, 1, 1′, 2, 2′, 3, 3′ and edges {0, 1}, {0, 2}, {0, 3}, {1′, 2′}, {2′, 3′},
{3′, 1′}, {1, 2′}, {2, 3′}, {3, 1′}. We will refer to the signed graph (W,E(W )) as a whirlpool with central edges

{0, 1}, {0, 2}, {0, 3} – see Figure 1. Observe that a whirlpool has an odd-K4 minor using its central edges,

obtained after contracting the cut δ({0, 1, 2, 3}).

13In this setting, to contract a loop is to delete it.
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Figure 1: The whirlpool with central edges {0, 1}, {0, 2}, {0, 3}. Every edge is odd.

Lemma 10.8 (Schrijver 2002). Take a graph G = (V,E). Suppose that there are disjoint stable sets S1, S2, S3

and distinct vertices 0, 1, 2, 3 such that

• 0 ∈ V − (S1 ∪ S2 ∪ S3) and i ∈ Si for each i ∈ [3],

• {0, i} ∈ E for each i ∈ [3],

• for distinct i, j ∈ [3], there is an ij-path contained in G[Si ∪ Sj ].

Then (G,E(G)) has an odd-K4 minor using the three edges {0, 1}, {0, 2}, {0, 3}.

Proof. We prove this by induction on |V | + |E| ≥ 10. The base case |V | + |E| = 10 is true as (G,E(G))

itself is an odd-K4. For the induction step, assume that |V | + |E| ≥ 11. For distinct i, j ∈ [3], let Pij ⊆ E

be an ij-path contained in G[Si ∪ Sj ]. We may assume that V = {0} ∪ V (P12) ∪ V (P23) ∪ V (P31) and

E = {{0, 1}, {0, 2}, {0, 3}} ∪ P12 ∪ P23 ∪ P31. If G has a vertex v of degree two, then the graph G/δ(v) still

satisfies the conditions of the lemma for the same vertices 0, 1, 2, 3 and appropriate stable sets, so by the induction

hypothesis, (G/δ(v), E(G/δ(v))) = (G,E(G))/δ(v) has an odd-K4 lemma using edges {0, 1}, {0, 2}, {0, 3},
implying in turn that (G,E(G)) has an odd-K4 lemma using edges {0, 1}, {0, 2}, {0, 3}. We may therefore

assume that G does not have a vertex of degree two. This implies in turn that

(?) for every permutation i, j, k of 1, 2, 3 we have Si = V (Pij) ∩ V (Pik), and that |S1| = |S2| =

|S3| ≥ 2,

as |V |+ |E| ≥ 11. Let 2′ ∈ S2 be the second vertex of the 12-path P12, 3′ ∈ S3 the second vertex of the 23-path

P23, and 1′ ∈ S1 the second vertex of the 31-path P31. Notice that 1′ 6= 1, 2′ 6= 2, 3′ 6= 3. Let H := G/δ(0),

and let 0′ be the vertex corresponding to 0, 1, 2, 3. Notice that {0′, 1′}, {0′, 2′}, {0′, 3′} ∈ E(H). For each

i ∈ [3], let S′i := Si − {i}. Then for each i ∈ [3], S′i is stable in H and i′ ∈ S′i. Moreover, for distinct i, j ∈ [3],

the vertices i′, j′ lie on the path Pij by (?), so H[S′i ∪ S′j ] contains an i′j′-path. It therefore follows from the

induction hypothesis that (G,E(G))/δ(0) = (H,E(H)) has an odd-K4 minor using {0′, 1′}, {0′, 2′}, {0′, 3′}.
After decontracting δ(0), we get that (G,E(G)) has a whirlpool minor with central edges {0, 1}, {0, 2}, {0, 3},
which has an odd-K4 minor using the central edges. Consequently, (G,E(G)) has an odd-K4 minor using the

edges {0, 1}, {0, 2}, {0, 3}, thereby completing the induction step.
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This lemma is also helpful for finding an odd-K5 minor. A pseudo-odd-K5 is a signed graph (G,E(G)) for

which the following statements hold: there exist a partition of V (G) into parts S0, S1, S2, S3 and distinct vertices

x, y ∈ S0 such that

• there is an edge e ∈ E whose ends are x, y, and for each i ∈ {0, 1, 2, 3}, Si is stable in G \ e,

• G \ e has internally vertex-disjoint xy-paths P1, P2, P3, where for each i ∈ [3], V (Pi) ⊆ S0 ∪ Si,

• for distinct i, j ∈ [3], G[Si ∪ Sj ] has a path with one end in V (Pi) and the other in V (Pj).

As a consequence of the Whirlpool Lemma 10.8, we get that,

Theorem 10.9. A pseudo-odd-K5 has an odd-K5 minor.

Proof. If f ∈ E − ({e} ∪P1 ∪P2 ∪P3) is an edge with an end in S0, then (G \ f,E(G \ f)) = (G,E(G)) \ f
is still a pseudo-odd-K5. We may therefore assume that each edge of E− ({e}∪P1 ∪P2 ∪P3) has both ends in

S1 ∪ S2 ∪ S3. If u ∈ S0 is an internal vertex of one of P1, P2, P3, then as S0 is stable, (G/δ(u), E(G/δ(u))) =

(G,E(G))/δ(u) is still a pseudo-odd-K5. We may therefore assume that P1, P2, P3 do not have any internal

vertices in S0. Subsequently, as S1, S2, S3 are stable, it follows that for each i ∈ [3], V (Pi) = {x, y, vi} for

some vertex vi ∈ Si. Let (H,E(H)) := (G,E(G)) \ δ(y). Then by the Whirlpool Lemma 10.8, (H,E(H))

has an odd-K4 minor using edges {x, v1}, {x, v2}, {x, v3}. Adding vertex y and its incident edges back in, we

see that (G,E(G)) has an odd-K5 minor, as required.

10.3 A signed graph without an odd-K5 minor is weakly bipartite.

Let (G = (V,E),Σ) be a signed graph. Let U,U ′ ⊆ V be different components of G, if any, and let H be the

graph obtained from G by identifying a vertex of U with a vertex of U ′. Notice that G,H have the same edge

sets, and that the odd circuits of (G,Σ) are precisely the odd circuits of (H,Σ). Thus, (G,Σ) is weakly bipartite

if, and only if, (H,Σ) is weakly bipartite. Moreover, because K5 does not have a cut-vertex, if (H,Σ) has an

odd-K5 minor, then so does (G,Σ). We will use these observations in the proof below, due to Schrijver (2002).

Theorem 10.10 (Guenin 2001). A signed graph without an odd-K5 minor is weakly bipartite.

Proof. Let (G = (V,E),Σ) be a signed graph that is not weakly bipartite. We will show that (G,Σ) has an

odd-K5 minor. To this end, we may assume that G is connected, and that every proper minor of (G,Σ) is

weakly bipartite. Let C be the clutter of odd circuits of (G,Σ). It then follows from Proposition 10.6 that C is a

minimally non-ideal clutter. Take an edge e ∈ E. Using Lehman’s Theorem 9.12, we prove the following:

Claim 1. There are minimum odd circuits C1, C2, C3 and minimum signatures B1, B2, B3 such that for distinct

i, j ∈ [3],

(C1) |Ci ∩Bi| ≥ 3 and Ci ∩Bj = {e},

(C2) Ci ∩ Cj = {e} = Bi ∩Bj ,
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(C3) the only odd cycles contained in Ci ∪ Cj are Ci, Cj ,

(C4) the only signatures contained in Bi ∪Bj are Bi, Bj .

Proof of Claim. Let n := |E| and let B be the clutter of minimal signatures. By Theorem 10.5, we have

B = b(C). Let M (resp. N ) be the row submatrix of M(C) (resp. M(B)) corresponding to the minimum odd

circuits (resp. minimum signatures). By Theorem 9.12, M (resp. N ) is a square and non-singular matrix that

is r-regular (resp. s-regular) for some integers r, s ≥ 2 such that rs ≥ n + 1. Moreover, for some labeling

C1, . . . , Cn of the minimum odd circuits and labeling B1, . . . , Bn of the minimum signatures, we have that for

all i, j ∈ [n],

|Ci ∩Bj | =

rs− n+ 1 if i = j

1 if i 6= j,

and for all elements g, h ∈ E,

∣∣{i ∈ [n] : g ∈ Ci, h ∈ Bi
}∣∣ =

rs− n+ 1 if g = h

1 if g 6= h.

As signatures and odd circuits intersect in an odd number of edges, and rs−n+1 ≥ 2, it follows that rs−n+1 ≥
3. By the previous equation, after possibly re-indexing the Ci and Bi’s, we have that

e ∈ Ci ∩Bi i = 1, . . . , rs− n+ 1.

Consider C1, C2, C3 and B1, B2, B3. We will show that these are the desired sets. (C1) clearly holds. (C2)

If f ∈ (C1 ∩ C2) − {e}, then {i ∈ [n] : f ∈ Ci, e ∈ Bi} ⊇ {1, 2}, which is not the case. This shows that

C1∩C2 = {e} and similarly, C2∩C3 = C3∩C1 = {e}. Moreover, if g ∈ (B1∩B2)−{e}, then {i ∈ [n] : e ∈
Ci, g ∈ Bi} ⊇ {1, 2}, which is not the case. Thus, B1 ∩ B2 = {e} and similarly, B2 ∩ B3 = B3 ∩ B1 = {e}.
(C3) Let C be an odd cycle contained in Ci∪Cj . Then C ′ := Ci4Cj4C is an odd cycle. As C∪C ′ ⊆ Ci∪Cj
and C ∩ C ′ ⊆ Ci ∩ Cj , it follows that

2r = |Ci|+ |Cj | = |Ci ∪ Cj |+ |Ci ∩ Cj | ≥ |C ∪ C ′|+ |C ∩ C ′| = |C|+ |C ′| ≥ 2r,

so equality holds throughout. That is, C,C ′ are minimum odd circuits and χCi + χCj = χC + χC′ . As

M is non-singular, it follows that {C,C ′} = {Ci, Cj}, as required. (C4) Let B be a signature contained in

Bi ∪ Bj . Pick Wi,Wj ,W ⊆ V such that Bi = Σ4δ(Wi), Bj = Σ4δ(Wj) and B = Σ4δ(W ). Then for

W ′ := Wi4Wj4W we have

B′ := Bi4Bj4B = Σ4δ(Wi)4Σ4δ(Wj)4Σ4δ(W ) = Σ4δ(W ′),

so B′ is also a signature. As B ∪B′ ⊆ Bi ∪Bj and B ∩B′ ⊆ Bi ∩Bj , it follows that

2s = |Bi|+ |Bj | = |Bi ∪Bj |+ |Bi ∩Bj | ≥ |B ∪B′|+ |B ∩B′| = |B|+ |B′| ≥ 2s,

so equality holds throughout. That is, B,B′ are minimum signatures and χBi
+ χBj

= χB + χB′ . As N is

non-singular, it follows that {B,B′} = {Bi, Bj}, as required. ♦

63



We will not be using Lehman’s Theorem 9.12 anymore. Let x, y be the ends of e. For each i ∈ [3], let

Pi := Ci − {e}. Notice that P1, P2, P3 are xy-paths that are (edge-)disjoint by (C2).

Claim 2. For distinct i, j ∈ [3], Pi and Pj are internally vertex-disjoint xy-paths.

Proof of Claim. Suppose for a contradiction that P1, P2 have a vertex v other than x, y in common. Let C :=

P1[x, v]∪P2[v, y]∪{e}. Observe that C is a cycle, and because for the signature B3 we have B3 ∩C = {e} by

(C1), it follows that C is an odd cycle. However, C is an odd cycle contained in C1 ∪ C2 that is different from

C1, C2, a contradiction to (C3). Thus, P1, P2 are internally vertex-disjoint, and similarly, for distinct i, j ∈ [3],

Pi and Pj are internally vertex-disjoint. ♦

For distinct i, j ∈ [3], pick Uij ⊆ V − {x} such that Bi4Bj = δ(Uij) – as e /∈ Bi4Bj , it follows that

Uij ⊆ V − {x, y}.

Claim 3. There are disjoint vertex subsets U1, U2, U3 ⊆ V such that for every permutation i, j, k of 1, 2, 3,

(C5) Uij = Ui ∪ Uj , and

(C6) each edge with an end in Ui and the other in Uj belongs to Bk, each edge with an end in Uk and the other

in V − (U1 ∪ U2 ∪ U3) also belongs to Bk, and Bk − {e} has no other edges.

Proof of Claim. Observe that

∅ = (B14B2)4(B24B3)4(B34B1) = δ(U12)4δ(U23)4δ(U31) = δ(U124U234U31).

As G is connected, and x, y /∈ U124U234U31, it follows that U124U234U31 = ∅. This implies that there are

disjoint vertex subsets U1, U2, U3 ⊆ V such that Uij = Ui ∪ Uj for distinct i, j ∈ [3]. This proves (C5). (C6)

follows from the definition of U1, U2, U3 and the fact (C2) that B1 ∩B2 = B2 ∩B3 = B3 ∩B1 = {e}. ♦

Claim 4. For every permutation i, j, k of 1, 2, 3, we have

(C7) V (Pi) ∩ (Uj ∪ Uk) = ∅ and V (Pi) ∩ Ui 6= ∅, and

(C8) G[Ui ∪ Uj ] is connected.

Proof of Claim. (C7) As Pi ∩ Bj = Pi ∩ Bk = ∅, and Pi is an xy-path, it follows from (C6) that V (Pi) ∩
(Uj ∪ Uk) = ∅. Moreover, by (C1), Pi ∩ Bi 6= ∅, so V (Pi) ∩ Ui 6= ∅. (C8) Suppose otherwise. Then there is

a non-empty and proper subset U of Ui ∪ Uj such that δ(U) ⊆ δ(Ui ∪ Uj) = δ(Uij) = Bi4Bj . Moreover, as

G is connected, it follows that δ(U) is a non-empty and proper subset of Bi4Bj . Then Bi4δ(U) is a signature

contained in Bi ∪Bj , so by (C4), Bi4δ(U) is either Bi or Bj , implying in turn that δ(U) is either ∅ or Bi4Bj ,
a contradiction. ♦
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Let B := B14B24B3 = B1 ∪ B2 ∪ B3. Notice that B is also a signature as B = B14δ(U2 ∪ U3), so

(G,B) is a resigning of (G,Σ). LetH be the graph obtained fromG after contracting all the edges in eachG[Ui]

and each Ci − Bi, and deleting all the remaining edges outside B1 ∪ B2 ∪ B3. Observe that E(H) = B, and

so (H,E(H)) is a minor of (G,Σ). For each i ∈ [3], let P ′i be an xy-path in Pi ∩ Bi and let U ′i be the vertices

of H corresponding to the vertices Ui of G. Let U ′0 := V (H) − (U ′1 ∪ U ′2 ∪ U ′3). Notice that P ′1, P
′
2, P

′
3 are

internally vertex-disjoint xy-paths of H , that U ′0, U
′
1, U

′
2, U

′
3 form a partition of V (H) into stable sets of H \ e

by (C6), that for each i ∈ [3] we have V (P ′i ) ⊆ U ′0 ∪U ′i and V (P ′i )∩U ′i 6= ∅ by (C7), and for distinct i, j ∈ [3],

H[U ′i ∪ U ′j ] is connected by (C8). In particular, for distinct i, j ∈ [3], H[U ′i ∪ U ′j ] contains a path with one end

in V (P ′i ) and the other in V (P ′j). As a result, (H,E(H)) is a pseudo-odd-K5, so by Theorem 10.9, it has an

odd-K5 minor, implying in turn that (G,Σ) has an odd-K5 minor, as required.

As a consequence, we get the following characterization of weakly bipartite graphs:

Corollary 10.11. Let G = (V,E) be a graph. Then the following statements are equivalent:

(i) G is not weakly bipartite,

(ii) there exist disjoint I, J ⊆ E such that J forms a cut of G \ I , and G \ I/J is a K5.

Proof. (ii)⇒ (i): Since J forms a cut of G \ I , it follows that

(K5, E(K5)) = (G \ I/J,E(G \ I/J)) = (G \ I, E(G \ I))/J = (G,E(G)) \ I/J,

so (G,E(G)) has an odd-K5 minor, implying by Remark 10.7 that (G,E(G)), and soG, is not weakly bipartite.

(i)⇒ (ii): It follows that (G,E(G)) is not weakly bipartite, so by Theorem 10.10, there are disjoint I, J ⊆ E

such that (K5, E(K5)) = (G,E(G)) \ I/J . Let H := G \ I . Then (K5, E(K5)) = (H,E(H))/J , so

E(K5) = E(H) − J is a signature of (H,E(H)) disjoint from J . As a result, J = (E(H) − J)4E(H) is a

cut of H , as required.
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11 Cube-ideal sets

Take an integer n ≥ 1. We will be working over the hypercube {0, 1}n. Inequalities of the form

1 ≥ xi ≥ 0 i ∈ [n]

are called hypercube inequalities. Inequalities of the form∑
i∈I

xi +
∑
j∈J

(1− xj) ≥ 1 for disjoint I, J ⊆ [n]

are called generalized set covering inequalities. Notice that generalized set covering inequalities are precisely

those inequalities that cut off a sub-hypercube of {0, 1}n. Take a subset S ⊆ {0, 1}n. We say that S is cube-ideal

if its convex hull conv(S) can be described by hypercube and generalized set covering inequalities. When is a

set cube-ideal? This is the theme of this section.

Example. {111, 100, 010, 001} ⊆ {0, 1}3 is cube-ideal as its convex hull is equal tox ∈ [0, 1]3 :

x1 + x2 + x3 ≥ 1

x1 + (1− x2) + (1− x3) ≥ 1

(1− x1) + x2 + (1− x3) ≥ 1

(1− x1) + (1− x2) + x3 ≥ 1

 .

Given two vectors a, b ∈ {0, 1}n, let a4b := a+ b (mod 2). Given a coordinate i ∈ [n], to twist coordinate

i of S is to replace S by

S4ei := {x4ei : x ∈ S}.

So to twist coordinate i is to make the change of variables xi 7→ 1 − xi. Since hypercube and generalized set

covering inequalities are closed under this change of variables, it follows that,

Remark 11.1. Take an integer n ≥ 1 and a subset S ⊆ {0, 1}n. If S is cube-ideal, then so is any set obtained

after twisting some coordinates.

The cuboid of S, denoted cuboid(S), is the clutter over ground set [2n] whose members have incidence

vectors

(x1, 1− x1, x2, 1− x2, . . . , xn, 1− xn) x ∈ S.

Notice that {2i−1, 2i}, i ∈ [n] are covers of cuboid(S), and that every member of cuboid(S) has cardinality n.

Example. The cuboid of {111, 100, 010, 001} ⊆ {0, 1}3 has incidence matrix
1 0 1 0 1 0

1 0 0 1 0 1

0 1 1 0 0 1

0 1 0 1 1 0

 ,

which is just the incidence matrix of Q6. Thus, Q6 is a cuboid.

We saw that {111, 100, 010, 001} is cube-ideal, and that its cuboid is Q6, which we know is an ideal clutter. In

fact, we will show next that in general, a set is cube-ideal if and only if its cuboid is ideal.
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11.1 Ideal cuboids

Let C be a clutter over ground set E. Denote by Q(C) the set covering polyhedron{
x ∈ RE+ : x(C) ≥ 1 C ∈ C

}
.

Here, x(C) =
∑

(xe : e ∈ C). Two elements of a clutter are coexclusive if they are never used together in a

minimal cover. We will need the following basic result on coexclusive elements:

Theorem 11.2 (Abdi, Cornuéjols, Pashkovich 2018). Let C be a clutter and take distinct elements e, f . The

following statements are equivalent:

(i) e, f are coexclusive,

(ii) for all members Ce, Cf such that Ce ∩{e, f} = {e} and Cf ∩{e, f} = {f}, (Ce ∪Cf )−{e, f} contains

another member,

(iii) for every extreme point x? of Q(C), x?e + x?f ≤ 1.

Proof. (i)⇒ (ii): Suppose e, f are coexclusive elements of clutter C. Take membersCe, Cf whereCe∩{e, f} =

{e} and Cf ∩ {e, f} = {f}. We will show that Ce ∪ Cf − {e, f} contains a member, thereby proving (ii).

Suppose otherwise. Then the complement of Ce ∪ Cf − {e, f} is a cover, so it contains a minimal cover B.

Since B ∩ Ce 6= ∅ and B ∩ Cf 6= ∅, we get that {e, f} ⊆ B, contradicting the fact that e, f are coexclusive.

(ii) ⇒ (iii): Take an extreme point x? of Q(C). We will show that x?e + x?f ≤ 1, proving (iii). If x?e = 0 or

x?f = 0, then clearly x?e +x?f ≤ 1. Otherwise, there is a member Ce with e ∈ Ce and a member Cf with f ∈ Cf
such that x?(Ce) = x?(Cf ) = 1. If {e, f} ⊆ Ce, then x?e + x?f ≤ x?(Ce) = 1. We may therefore assume

that Ce ∩ {e, f} = {e} and, similarly, Cf ∩ {e, f} = {f}. It now follows from (ii) that there is a member

C ⊆ Ce ∪ Cf − {e, f}. Then

x?e + x?f + 1 ≤ x?e + x?f + x?(C) ≤ x?(Ce) + x?(Cf ) = 2,

proving (iii). (iii)⇒ (i): Since the incidence vector of every minimal cover B is an extreme point x? of Q(C),

we get from x?e + x?f ≤ 1 that B contains at most one e, f . So e, f are coexclusive, proving (i).

Recall that if C is ideal, then the extreme points of Q(C) are precisely the incidence vectors of the minimal

covers, so Q(C) = conv ({χB : B ∈ b(C)}) + RE+. We will need this below:

Lemma 11.3 (Guenin 1998, Nobili and Sassano 1998). Take a clutter C over ground setE = {e1, f1, . . . , en, fn},
where for each i ∈ [n], {ei, fi} intersects every member exactly once. Then the following statements are equiv-

alent:

(i) b(C) is ideal,

(ii) conv
{
χC : C ∈ C

}
= Q

(
b(C)

)
∩
{
x : xei + xfi = 1 ∀i ∈ [n]

}
.
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Proof. (i)⇒ (ii): Since χC ∈
{
x : xei + xfi = 1 ∀i ∈ [n]

}
for every member C, the inclusion ⊆ holds. Let us

prove the reverse inclusion ⊇. Since b(C) is ideal, we get that

Q
(
b(C)

)
= conv

{
χC : C ∈ C

}
+ RE+.

It is easy to see that this equation implies the reverse inclusion. (ii) ⇒ (i): Let x? be an extreme point of

Q
(
b(C)

)
. It suffices to show that x? is integral. Since {ei, fi} is a cover of C, it contains a member of b(C), so

x?ei + x?fi ≥ 1. Moreover, since ei, fi are exclusive in C, they are coexclusive in b(C), so by Theorem 11.2 (iii),

x?ei + x?fi ≤ 1. So for each i ∈ [n], x?ei + x?fi = 1, implying in turn by (ii) that x? ∈ conv
{
χC : C ∈ C

}
. Since

x? is an extreme point, it must be one of the incidence vectors and hence integral, as required.

We are now ready to prove the following:

Theorem 11.4 (Abdi, Cornuéjols, Guric̆anová, Lee 2018+). Take an integer n ≥ 1 and a subset S ⊆ {0, 1}n.

Then S is cube-ideal if, and only if, cuboid(S) is an ideal clutter.

Proof. Let C := cuboid(S). Notice that C is over ground setE = {1, 2, . . . , 2n−1, 2n}, where for each i ∈ [n],

{2i− 1, 2i} intersects every member exactly once. We may therefore apply Lemma 11.3. (⇐) Assume that C is

ideal. It follows from Theorem 7.8 that b(C) is an ideal clutter also. Thus by Lemma 11.3, we have that

conv
{
χC : C ∈ C

}
= Q

(
b(C)

)
∩
{
x : x2i−1 + x2i = 1 ∀i ∈ [n]

}
.

Eliminating the even coordinates using the Fourier-Motzkin elimination method, we get that

conv(S) =
{
y ∈ [0, 1]n :

∑(
yi : 2i− 1 ∈ B

)
+
∑(

1− yj : 2j ∈ B
)
≥ 1 ∀B ∈ b(C)

}
.

As a result, S is cube-ideal. (⇒) Assume conversely that S is cube-ideal, so

conv(S) =
{
y ∈ [0, 1]n :

∑(
yi : i ∈ I

)
+
∑(

1− yj : j ∈ J
)
≥ 1 ∀ (I, J) ∈ V

}
,

for some appropriate set V . We may assume that for each (I, J) ∈ V , I ∩ J = ∅. After the change of variables

yi 7→ x2i−1 and 1− yi 7→ x2i to the equation above, we get that

conv
{
χC : C ∈ C

}
=

{
x ∈ R2n

+ :

∑(
x2i−1 : i ∈ I

)
+
∑(

x2j : j ∈ J
)
≥ 1 ∀ (I, J) ∈ V

x2i−1 + x2i = 1 ∀ i ∈ [n]

}
.

Together with Lemma 11.3, this equation implies that b(C) is an ideal clutter, so by Theorem 7.8, C is an ideal

clutter, as required.

11.2 The sums of circuits property

Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. We say that S is a binary space (or a vector space over GF (2)) if

• 0 ∈ S, and

• if a, b ∈ S then a4b ∈ S.
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When is a binary space cube-ideal? To answer this question, we need to introduce some terminology. The

orthogonal complement of S is

S⊥ :=
{
d ∈ {0, 1}n : d>c ≡ 0 (mod 2) ∀c ∈ S

}
.

It is clear that S⊥ is another binary space, and it is widely known that (S⊥)⊥ = S. To describe S⊥ explicitly,

we first write

S =
{
x ∈ {0, 1}n : Ax ≡ 0 (mod 2)

}
for some m× n matrix A with 0− 1 entries. Then S⊥ is equal to the row space of A modulo 2:

S⊥ =
{
A>x : x ∈ {0, 1}m

}
.

Denote by E the column labels of A. We say that a subset C ⊆ E is a cycle if χC ∈ S, and that a subset

D ⊆ E is a cocycle if χD ∈ S⊥. Notice that a cycle and a cocycle will always have an even number elements in

common.

Example. Let G = (V,E) be a graph where loops are viewed as vertex-less edges. Then

S := {χC : C ⊆ E is a graph cycle} ⊆ {0, 1}E

is a binary space, because for graph cycles C1, C2, their symmetric difference C14C2 is also a graph cycle. We

can represent S as

S =
{
x ∈ {0, 1}E : Ax ≡ 0 (mod 2)

}
where A is the vertex-edge incidence matrix of G. As a result, the cocycles of S correspond to the points in the

row space of A modulo 2, implying in turn that the cocycles of S are precisely the cuts of G.

The following gives a partial characterization of the cube-ideal binary spaces:

Theorem 11.5 (Abdi, Cornuéjols, Guric̆anová, Lee 2017). Take an integer n ≥ 1 and a binary space S ⊆
{0, 1}n. Then S is cube-ideal if, and only if,

conv(S) =
{
x ∈ [0, 1]n : x(F )− x(D − F ) ≤ |F | − 1 ∀ cocycles D and odd subsets F ⊆ D

}
.

Proof. (⇐) Notice that each inequality x(F )− x(D − F ) ≤ |F | − 1 can be rewritten as∑
i∈D−F

xi +
∑
j∈F

(1− xj) ≥ 1,

which is a generalized set covering inequality. Thus S is cube-ideal. (⇒) Suppose coversely that S is cube-ideal.

We first prove that

conv(S) ⊆
{
x ∈ [0, 1]n : x(F )− x(D − F ) ≤ |F | − 1 ∀ cocycles D and odd subsets F ⊆ D

}
.
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Denote by P the polytope on the right. To prove this inclusion, it suffices to show that for every cycle C, χC
belongs to P . Well, for every cocycle D and odd subset F ⊆ D, we have C ∩D 6= F because |C ∩D| is even,

implying in turn that

χC(F )− χC(D − F ) ≤ 1.

Thus, χC ∈ P . To prove the reverse inclusion, it suffices to prove that every inequality defining conv(S) is valid

for P . Since S is cube-ideal, conv(S) is described by hypercube inequalities – which are valid for P – and by

generalized set covering inequalities. Take disjoint subsets I, J ⊆ [n] such that
∑
i∈I xi +

∑
j∈J(1 − xj) ≥ 1

is a defining inequality of conv(S).

Claim. There is a cocycle D such that D ⊆ I ∪ J and |D ∩ J | is odd.

Proof of Claim. To see this, write

S =
{
x ∈ {0, 1}[n] : Ax ≡ 0 (mod 2)

}
for some 0− 1 matrix A. Let d be the sum of the columns in J of A, and let B be the submatrix of A obtained

after dropping columns I ∪ J . Since
∑
i∈I xi +

∑
j∈J(1 − xj) ≥ 1 is valid for every point of S, the binary

system

By ≡ d (mod 2)

has no 0 − 1 solution. (For if y is a solution, then by setting the coordinates in I to 0 and the coordinates in J

to 1, we can extend y to a cycle x for which
∑
i∈I xi +

∑
j∈J(1− xj) = 0, which is not the case.) By Farkas’

lemma for binary spaces, there is a 0−1 vector c such that c>B ≡ 0 (mod 2) and c>d ≡ 1 (mod 2). Consider

the cocycle χD := c>A. Then the first equation implies that D ⊆ I ∪ J , while the second equation implies that

|D ∩ J | is odd, as required. ♦

Let F := D ∩ J . Then F is an odd subset of the cocycle D. Observe that the inequality∑
i∈I

xi +
∑
j∈J

(1− xj) ≥ 1

is dominated by the inequality∑
i∈D−F

xi +
∑
j∈F

(1− xj) ≥ 1 which is equivalent to x(F )− x(D − F ) ≤ |F | − 1,

because D−F ⊆ I and F ⊆ J . As a result, every inequality defining conv(S) is valid for P , so conv(S) ⊇ P .

Hence, conv(S) = P , thereby finishing the proof.

Consider the polyhedral cone generated by S:

cone(S) =

{∑
x∈S

αxx : α ∈ RS+

}
⊆ {0, 1}n.

Barahona and Grötschel (1986) showed that due to the transitivity of S, to describe the facets of conv(S), it

suffices to have a facet description of cone(S).
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Theorem 11.6 (Barahona and Grötschel 1986). Take an integer n ≥ 1 and a binary space S ⊆ {0, 1}n. Then

(1) conv(S) =
{
x ∈ [0, 1]n : x(F )− x(D − F ) ≤ |F | − 1 ∀ cocycles D and odd subsets F ⊆ D

}
if, and only if,

(2) cone(S) =
{
x ∈ Rn+ : xf − x(D − {f}) ≤ 0 ∀ cocycles D and f ∈ D

}
.

Proof. (⇒) Suppose that (1) holds. As 0 ∈ S, the facets of conv(S) tight at 0 describe the conic hull of S.

Since the cocycle inequality

x(F )− x(D − F ) ≤ |F | − 1 cocycle D and odd subset F ⊆ D

is tight at 0 if and only if |F | = 1, it follows that (2) holds. (⇐) Conversely, suppose that (2) holds. To prove

that (1) holds, let

(�)
∑
i∈I

aixi +
∑

j∈[n]−I

aj(1− xj) ≥ b a ∈ Rn+, b ∈ R

be a facet-defining inequality for conv(S). It suffices to show that (�) is equivalent to a cocycle inequality. To

this end, take a point u ∈ S that lies on this facet. Consider the change of variables xi 7→ 1− xi for the indices

in
{
i ∈ [n] : ui = 1

}
; this mapping sends the above inequality to the inequality

(?)
∑

i∈I:ui=0

aixi +
∑

i∈I:ui=1

ai(1− xi) +
∑

j∈[n]−I:uj=0

aj(1− xj) +
∑

j∈[n]−I:uj=1

ajxj ≥ b,

and the set S to the set S4u := {x4u : x ∈ S}. Then (?) is a facet-defining inequality for S4u and the facet

contains the point 0 = u4u ∈ S4u. Hence, (?) also defines a facet for cone(S4u). However, since S is a

binary space, S4u is just the original set S, so (?) defines a facet of cone(S). By (2), there is a cocycle D ⊆ [n]

and an element f ∈ D such that (?) is equivalent to the inequality

xf − x(D − {f}) ≤ 0.

Take the cycle C ⊆ [n] such that u = χC . Reverting back the change of variables, we see that (�) is equivalent

to

x(F )− x(D − F ) ≤ |F | − 1

where F = (C ∩ D)4{f}. Since |C ∩ D| is even, it follows that |F | is odd, so (�) is equivalent to a cocycle

inequality, as required.

Take a finite set E and a binary space S ⊆ {0, 1}E . A circuit is a non-empty cycle that does not properly

contain another non-empty cycle. Notice that {χC : C is a circuit} are precisely the non-zero points in S of

minimal support.

Remark 11.7. Take a finite set E and a binary space S ⊆ {0, 1}E , and take a non-empty subset C ⊆ E. Then

C is a cycle if, and only if, C is a disjoint union of circuits.
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Proof. (⇐) If C is a disjoint union of circuits, then it is also a symmetric difference of circuits, so C is a cycle.

(⇒) We prove the converse by induction on |C|. As cycles of length 1 are already circuits, the base case |C| = 1

holds. For the induction step, assume that |C| ≥ 2. If C does not properly contain a non-empty cycle, then

it is already a circuit, and we are done. Otherwise, there is a non-empty cycle C ′ such that C ′ ( C. Let

C ′′ := C4C ′. Notice that C is the disjoint union of the non-empty cycles C ′, C ′′. By the induction hypothesis,

each of C ′, C ′′ is the disjoint union of circuits, implying in turn that C is a disjoint union of circuits, thereby

completing the induction step.

It follows from Remark 11.7 that cone(S) is the polyhedral cone generated by the circuits, that is,

cone(S) =

{ ∑
C is a circuit

yC · χC : y ∈ Rcircuits
+

}
.

The binary space S has the sums of circuits property if{ ∑
C is a circuit

yC · χC : y ∈ Rcircuits
+

}
=
{
x ∈ Rn+ : xf − x(D − {f}) ≤ 0 ∀ cocycles D and f ∈ D

}
.

Equivalently, a binary space S has the sums of circuits property if for each w ∈ RE+ satisfying

w(D − {f}) ≥ wf ∀ cocycles D and f ∈ D,

there is a vector y ∈ Rcircuits
+ such that w =

∑
(yC · χC : C is a circuit). Combining Theorems 11.5 and 11.6,

we get the following:

Corollary 11.8. A binary space is cube-ideal if, and only if, it has the sums of circuits property.

The deep concept of the sums of circuits property was introduced by Seymour (1979), where he showed that

the binary space corresponding to the cycles of a graph has the sums of circuits property. (This result is in fact

equivalent to Corollary 8.12.) That is, given a graph G = (V,E), if a vector w ∈ ZE+ satisfies

w(D − {f}) ≥ wf ∀ cuts D and f ∈ D,

then there is an assignment y ∈ Rcircuits
+ such that

w =
∑

(yC · χC : C is a circuit) .

In particular, if G = (V,E) is a bridgeless graph, then there is an assignment y ∈ Rcircuits
+ such that

1 =
∑

(yC · χC : C is a circuit) .

Szekeres (1973), and independently Seymour (1979), conjecture that y can be chosen to be half-integral; this is

known as the notoriously difficult cycle double cover conjecture.
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