CO 750 Packing and Covering: Lecture 1

Ahmad Abdi

May 2, 2017

1 What is packing and covering?

1.1 A packing example: Menger's theorem

Let $G=(V, E)$ be a loopless graph, and take distinct vertices $s, t \in V$. An $s t$-path is a minimal edge subset connecting s and t. What is the maximum number of (pairwise) disjoint $s t$-paths? In other words, how many $s t$-paths can we pack? Denote by ν the maximum number of disjoint $s t$-paths.

An st-cut is an edge subset of the form

$$
\delta(U):=\{e \in E:|e \cap U|=1\}
$$

where $U \subseteq V$ satisfies $U \cap\{s, t\}=\{s\}$. We will refer to U and $V-U$ as the shores of G. Notice that every $s t$-path intersects an st-cut. Thus, ν is at most the cardinality of any $s t$-cut. Let τ be the minimum cardinality of an $s t$-cut. Then

$$
\tau \geq \nu
$$

Theorem 1.1 (Menger 1927). Let $G=(V, E)$ be a loopless graph, and take distinct vertices $s, t \in V$. Then the maximum number of disjoint st-paths is equal to the minimum cardinality of an st-cut, that is, $\tau=\nu$.

Proof. We prove this by induction on $|V|+|E| \geq 3$. The result is obvious for $|V|+|E|=3$. For the induction step, assume that $|V|+|E| \geq 4$. Let τ be the minimum cardinality of an $s t$-cut. We may assume that $\tau \geq 1$. We will find τ disjoint $s t$-paths.

Claim 1. If an edge e does not appear in a minimum st-cut, then G has τ disjoint paths.
Proof of Claim. Notice that the cardinality of a minimum st-cut in $G \backslash e$ is still τ. As a result, the induction hypothesis implies the existence of τ disjoint $s t$-paths in $G \backslash e$, and therefore in G.

We may therefore assume that every edge appears in a minimum $s t$-cut. An $s t$-cut $\delta(U)$ is trivial if either $|U|=1$ or $|V-U|=1$.

Claim 2. If there is a minimum st-cut which is not trivial, then G has τ disjoint paths.

Proof of Claim. Let $\delta(U), s \in U \subseteq V-\{t\}$ be a minimum st-cut which is non-trivial. Let G_{1} be the graph obtained from G by shrinking U to a single vertex s^{\prime}, and let G_{2} be the graph obtained from G after shrinking $V-U$ to a single vertex t^{\prime}. Since $\delta(U)$ is non-trivial, it follows that $\left|V\left(G_{i}\right)\right|+\left|E\left(G_{i}\right)\right|<|V|+|E|$, for each $i \in[2]$. We may therefore apply the induction hypothesis to G_{1} and G_{2}. Notice that τ is still the minimum cardinality of an $s^{\prime} t$-cut in G_{1} and of an $s t^{\prime}$-cut in G_{2}. Thus, by the induction hypothesis, G_{1} has τ disjoint $s^{\prime} t$-paths and G_{2} has disjoint $s t^{\prime}$-paths. Gluing these paths along the edges of $\delta(U)$ gives us τ disjoint $s t$-paths in G.

We may therefore assume that every minimum st-cut is trivial. Since every edge appears in a minimum st-cut, it follows that every edge has either s or t as an end. In this case, G has a special form and it is clear that $\tau=\nu$ for this graph, thereby completing the induction step.

This result was the first of many packing theorems. Just to mention a few, we will see some of these packing results:

- Given a connected loopless graph G and distinct vertices s, t, the maximum number of disjoint $s t$-cuts is equal to the minimum cardinality of an $s t$-path.
- Ford and Fulkerson 1956: given a directed graph G and distinct vertices s, t, the maximum number of disjoint directed (s, t)-paths is equal to the minimum cardinality of an (s, t)-cut.
- Edmonds 1972: given a directed graph G and a root r, the maximum number of disjoint spanning r arborescences is equal to the minimum cardinality of an r-cut.
- Edmonds and Johnson 1973: given a graph G and even subset T of vertices, the maximum value of a fractional packing of T-joins is equal to the minimum cardinality of a T-cut.
- Lucchesi and Younger 1976: given a directed graph G, the maximum number of disjoint dicuts is equal to the minimum cardinality of a dijoin.
- Conjecture (Woodall 1978): given a directed graph G, the maximum number of disjoint dijoins is equal to the minimum cardinality of a dicut.
- Guenin 2001: in a signed graph without an odd- K_{5} minor, the maximum value of a fractional packing of odd circuits is equal to the minimum cardinality of a signature.

1.2 A covering example: Dilworth's theorem

Take a partially ordered set (E, \leq), that is, the following statements hold for all $a, b, c \in E$:

- $a \leq a$,
- if $a \leq b$ and $b \leq a$, then $a=b$,
- if $a \leq b$ and $b \leq c$, then $a \leq c$.

We say that a, b are comparable if $a \geq b$ or $b \geq a$; otherwise they are incomparable. A chain is a set of pairwise comparable elements. What is the minimum number of (not necessarily disjoint) chains whose union is E ? That is, what is the least number of chains needed to cover the ground set? Let θ be the minimum size of a covering.

An antichain is a set of pairwise incomparable elements. Given an antichain A, every chain picks at most one element from A. Thus, θ is at least the cardinality of an antichain. Let α be the maximum cardinality of an antichain. Then

$$
\theta \geq \alpha
$$

Theorem 1.2 (Dilworth 1950). Let (E, \leq) be a partially ordered set. Then the minimum number of chains needed to cover E is equal to the maximum cardinality of an antichain. That is, $\theta=\alpha$.

Proof. We prove this by induction on $|E|$. The base case $|E|=1$ is obvious. For the induction step, assume that $|E| \geq 2$. Let α be the maximum cardinality of an antichain. We will find α chains covering E. If $\alpha=|E|$, then $\theta=\alpha=|E|$ and we are done. Otherwise, $\alpha<|E|$, implying in turn that there is a chain $\{a, b\}$ where a is a minimal element and b is a maximal element. Let $E^{\prime}:=E-\{a, b\}$.

Claim. If the maximum cardinality of an antichain of $\left(E^{\prime}, \leq\right)$ is $\alpha-1$, then there are α chains covering E.
Proof of Claim. By the induction hypothesis, there are $\alpha-1$ chains of E^{\prime} covering $E-\{a, b\}$. Together with $\{a, b\}$, we get a covering of E using α chains.

We may therefore assume that E^{\prime} has an antichain A such that $|A|=\alpha$. Let

$$
\begin{aligned}
& E^{+}:=A \cup\{x \in E-A: x \geq z \text { for some } z \in A\} \\
& E^{-}:=A \cup\{y \in E-A: y \leq z \text { for some } z \in A\}
\end{aligned}
$$

Since A is an antichain, $E^{+} \cap E^{-}=A$, and since it is a maximum antichain, $E^{+} \cup E^{-}=E$. As a is minimal and $a \notin A$, it follows that $a \notin E^{+}$. As b is maximal and $b \notin A$, we get that $b \notin E^{-}$. In particular, $\left|E^{+}\right|,\left|E^{-}\right|<|E|$. Thus, by the induction hypothesis, E^{+}has α chains covering it, and E^{-}has α chains covering it. Gluing these chains together, we get α chains covering $E^{+} \cup E^{-}=E$, thereby completing the induction step.

This result was the first of many covering results. To name a few:

- In a partially ordered set, the minimum number of antichains needed to cover the ground set is equal to the maximum cardinality of a chain.
- Kőnig 1931: In a bipartite graph, the minimum number of colors needed for an edge-coloring is equal to the maximum degree of a vertex.
- Kőnig 1931: In a bipartite graph, the minimum number of vertices needed to cover the edges is equal to the maximum cardinality of a matching.
- Gallai 1962, Suranyi 1968: In a chordal graph, the minimum number of cliques needed to cover the vertices is equal to the maximum cardinality of a stable set.
- Sachs 1970: In a chordal graph, the minimum number of colors needed for a vertex-coloring is equal to the maximum cardinality of a clique.
- Chudnovski, Robertson, Thomas and Seymour 2006: In a graph without an odd hole or an odd hole complement, the minimum number of cliques needed to cover the vertices is equal to the maximum cardinality of a stable set.

