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1 What is packing and covering?

1.1 A packing example: Menger’s theorem

Let G = (V,E) be a loopless graph, and take distinct vertices s, t ∈ V . An st-path is a minimal edge subset

connecting s and t. What is the maximum number of (pairwise) disjoint st-paths? In other words, how many

st-paths can we pack? Denote by ν the maximum number of disjoint st-paths.

An st-cut is an edge subset of the form

δ(U) := {e ∈ E : |e ∩ U | = 1}

where U ⊆ V satisfies U ∩ {s, t} = {s}. We will refer to U and V − U as the shores of G. Notice that every

st-path intersects an st-cut. Thus, ν is at most the cardinality of any st-cut. Let τ be the minimum cardinality

of an st-cut. Then

τ ≥ ν.

Theorem 1.1 (Menger 1927). Let G = (V,E) be a loopless graph, and take distinct vertices s, t ∈ V . Then the

maximum number of disjoint st-paths is equal to the minimum cardinality of an st-cut, that is, τ = ν.

Proof. We prove this by induction on |V |+ |E| ≥ 3. The result is obvious for |V |+ |E| = 3. For the induction

step, assume that |V |+ |E| ≥ 4. Let τ be the minimum cardinality of an st-cut. We may assume that τ ≥ 1. We

will find τ disjoint st-paths.

Claim 1. If an edge e does not appear in a minimum st-cut, then G has τ disjoint paths.

Proof of Claim. Notice that the cardinality of a minimum st-cut in G \ e is still τ . As a result, the induction

hypothesis implies the existence of τ disjoint st-paths in G \ e, and therefore in G. ♦

We may therefore assume that every edge appears in a minimum st-cut. An st-cut δ(U) is trivial if either

|U | = 1 or |V − U | = 1.

Claim 2. If there is a minimum st-cut which is not trivial, then G has τ disjoint paths.
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Proof of Claim. Let δ(U), s ∈ U ⊆ V − {t} be a minimum st-cut which is non-trivial. Let G1 be the graph

obtained from G by shrinking U to a single vertex s′, and let G2 be the graph obtained from G after shrinking

V − U to a single vertex t′. Since δ(U) is non-trivial, it follows that |V (Gi)| + |E(Gi)| < |V | + |E|, for each

i ∈ [2]. We may therefore apply the induction hypothesis to G1 and G2. Notice that τ is still the minimum

cardinality of an s′t-cut in G1 and of an st′-cut in G2. Thus, by the induction hypothesis, G1 has τ disjoint

s′t-paths and G2 has disjoint st′-paths. Gluing these paths along the edges of δ(U) gives us τ disjoint st-paths

in G. ♦

We may therefore assume that every minimum st-cut is trivial. Since every edge appears in a minimum

st-cut, it follows that every edge has either s or t as an end. In this case, G has a special form and it is clear that

τ = ν for this graph, thereby completing the induction step.

This result was the first of many packing theorems. Just to mention a few, we will see some of these packing

results:

• Given a connected loopless graph G and distinct vertices s, t, the maximum number of disjoint st-cuts is

equal to the minimum cardinality of an st-path.

• Ford and Fulkerson 1956: given a directed graph G and distinct vertices s, t, the maximum number of

disjoint directed (s, t)-paths is equal to the minimum cardinality of an (s, t)-cut.

• Edmonds 1972: given a directed graph G and a root r, the maximum number of disjoint spanning r-

arborescences is equal to the minimum cardinality of an r-cut.

• Edmonds and Johnson 1973: given a graph G and even subset T of vertices, the maximum value of a

fractional packing of T -joins is equal to the minimum cardinality of a T -cut.

• Lucchesi and Younger 1976: given a directed graph G, the maximum number of disjoint dicuts is equal to

the minimum cardinality of a dijoin.

• Conjecture (Woodall 1978): given a directed graph G, the maximum number of disjoint dijoins is equal to

the minimum cardinality of a dicut.

• Guenin 2001: in a signed graph without an odd-K5 minor, the maximum value of a fractional packing of

odd circuits is equal to the minimum cardinality of a signature.

1.2 A covering example: Dilworth’s theorem

Take a partially ordered set (E,≤), that is, the following statements hold for all a, b, c ∈ E:

• a ≤ a,

• if a ≤ b and b ≤ a, then a = b,
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• if a ≤ b and b ≤ c, then a ≤ c.

We say that a, b are comparable if a ≥ b or b ≥ a; otherwise they are incomparable. A chain is a set of pairwise

comparable elements. What is the minimum number of (not necessarily disjoint) chains whose union is E? That

is, what is the least number of chains needed to cover the ground set? Let θ be the minimum size of a covering.

An antichain is a set of pairwise incomparable elements. Given an antichain A, every chain picks at most

one element from A. Thus, θ is at least the cardinality of an antichain. Let α be the maximum cardinality of an

antichain. Then

θ ≥ α.

Theorem 1.2 (Dilworth 1950). Let (E,≤) be a partially ordered set. Then the minimum number of chains

needed to cover E is equal to the maximum cardinality of an antichain. That is, θ = α.

Proof. We prove this by induction on |E|. The base case |E| = 1 is obvious. For the induction step, assume that

|E| ≥ 2. Let α be the maximum cardinality of an antichain. We will find α chains covering E. If α = |E|, then

θ = α = |E| and we are done. Otherwise, α < |E|, implying in turn that there is a chain {a, b} where a is a

minimal element and b is a maximal element. Let E′ := E − {a, b}.

Claim. If the maximum cardinality of an antichain of (E′,≤) is α− 1, then there are α chains covering E.

Proof of Claim. By the induction hypothesis, there are α − 1 chains of E′ covering E − {a, b}. Together with

{a, b}, we get a covering of E using α chains. ♦

We may therefore assume that E′ has an antichain A such that |A| = α. Let

E+ := A ∪ {x ∈ E −A : x ≥ z for some z ∈ A}

E− := A ∪ {y ∈ E −A : y ≤ z for some z ∈ A}.

SinceA is an antichain,E+∩E− = A, and since it is a maximum antichain,E+∪E− = E. As a is minimal and

a /∈ A, it follows that a /∈ E+. As b is maximal and b /∈ A, we get that b /∈ E−. In particular, |E+|, |E−| < |E|.
Thus, by the induction hypothesis, E+ has α chains covering it, and E− has α chains covering it. Gluing these

chains together, we get α chains covering E+ ∪ E− = E, thereby completing the induction step.

This result was the first of many covering results. To name a few:

• In a partially ordered set, the minimum number of antichains needed to cover the ground set is equal to

the maximum cardinality of a chain.

• Kőnig 1931: In a bipartite graph, the minimum number of colors needed for an edge-coloring is equal to

the maximum degree of a vertex.

• Kőnig 1931: In a bipartite graph, the minimum number of vertices needed to cover the edges is equal to

the maximum cardinality of a matching.
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• Gallai 1962, Suranyi 1968: In a chordal graph, the minimum number of cliques needed to cover the

vertices is equal to the maximum cardinality of a stable set.

• Sachs 1970: In a chordal graph, the minimum number of colors needed for a vertex-coloring is equal to

the maximum cardinality of a clique.

• Chudnovski, Robertson, Thomas and Seymour 2006: In a graph without an odd hole or an odd hole com-

plement, the minimum number of cliques needed to cover the vertices is equal to the maximum cardinality

of a stable set.
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