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1 What is packing and covering?

1.1 A packing example: Menger’s theorem

Let G = (V, E) be a loopless graph, and take distinct vertices s,t € V. An st-path is a minimal edge subset
connecting s and ¢t. What is the maximum number of (pairwise) disjoint st-paths? In other words, how many
st-paths can we pack? Denote by v the maximum number of disjoint st-paths.

An st-cut is an edge subset of the form
0U):={ecE:|lenU|=1}

where U C V satisfies U N {s,t} = {s}. We will refer to U and V' — U as the shores of G. Notice that every
st-path intersects an st-cut. Thus, v is at most the cardinality of any st-cut. Let 7 be the minimum cardinality
of an st-cut. Then

T >

Theorem 1.1 (Menger 1927). Let G = (V, E) be a loopless graph, and take distinct vertices s,t € V. Then the

maximum number of disjoint st-paths is equal to the minimum cardinality of an st-cut, that is, T = v.

Proof. We prove this by induction on |V'| + |E| > 3. The result is obvious for |V | + | E| = 3. For the induction
step, assume that |V'| + |E| > 4. Let 7 be the minimum cardinality of an st-cut. We may assume that 7 > 1. We

will find 7 disjoint st-paths.

Claim 1. If an edge e does not appear in a minimum st-cut, then G has T disjoint paths.

Proof of Claim. Notice that the cardinality of a minimum st-cut in G \ e is still 7. As a result, the induction

hypothesis implies the existence of 7 disjoint st-paths in G \ e, and therefore in G. O

We may therefore assume that every edge appears in a minimum st-cut. An st-cut 6(U) is frivial if either

[Ul=1lor|V-U|=1.

Claim 2. If there is a minimum st-cut which is not trivial, then G has T disjoint paths.



Proof of Claim. Let §(U),s € U C V — {t} be a minimum s¢-cut which is non-trivial. Let G be the graph
obtained from G by shrinking U to a single vertex s’, and let G be the graph obtained from G after shrinking

V — U to a single vertex ¢'. Since 6(U) is non-trivial, it follows that |V (G;)| + |E(G;)| < |V| + | E|, for each

i € [2]. We may therefore apply the induction hypothesis to G; and G5. Notice that 7 is still the minimum
cardinality of an s’t-cut in G; and of an st’-cut in G5. Thus, by the induction hypothesis, G; has 7 disjoint
s't-paths and G5 has disjoint st’-paths. Gluing these paths along the edges of §(U) gives us 7 disjoint st-paths
in G. 0

We may therefore assume that every minimum st-cut is trivial. Since every edge appears in a minimum
st-cut, it follows that every edge has either s or ¢ as an end. In this case, G has a special form and it is clear that

7 = v for this graph, thereby completing the induction step. O

This result was the first of many packing theorems. Just to mention a few, we will see some of these packing

results:

e Given a connected loopless graph G and distinct vertices s, ¢, the maximum number of disjoint st-cuts is

equal to the minimum cardinality of an st-path.

e Ford and Fulkerson 1956: given a directed graph G and distinct vertices s, ¢, the maximum number of

disjoint directed (s, t)-paths is equal to the minimum cardinality of an (s, t)-cut.

e Edmonds 1972: given a directed graph G and a root r, the maximum number of disjoint spanning 7-

arborescences is equal to the minimum cardinality of an 7-cut.

e Edmonds and Johnson 1973: given a graph G and even subset T" of vertices, the maximum value of a

fractional packing of T'-joins is equal to the minimum cardinality of a T-cut.

e Lucchesi and Younger 1976: given a directed graph G, the maximum number of disjoint dicuts is equal to

the minimum cardinality of a dijoin.

e Conjecture (Woodall 1978): given a directed graph G, the maximum number of disjoint dijoins is equal to

the minimum cardinality of a dicut.
e Guenin 2001: in a signed graph without an odd- K5 minor, the maximum value of a fractional packing of
odd circuits is equal to the minimum cardinality of a signature.
1.2 A covering example: Dilworth’s theorem
Take a partially ordered set (F, <), that is, the following statements hold for all a, b, ¢ € E:
o a<a,

o ifa<bandb < a,thena = b,



o ifa<bandb <c, thena < c.

We say that a, b are comparable if a > b or b > a; otherwise they are incomparable. A chain is a set of pairwise
comparable elements. What is the minimum number of (not necessarily disjoint) chains whose union is £? That
is, what is the least number of chains needed to cover the ground set? Let 8 be the minimum size of a covering.
An antichain is a set of pairwise incomparable elements. Given an antichain A, every chain picks at most
one element from A. Thus, 6 is at least the cardinality of an antichain. Let o be the maximum cardinality of an
antichain. Then
0> a.

Theorem 1.2 (Dilworth 1950). Let (E, <) be a partially ordered set. Then the minimum number of chains

needed to cover E is equal to the maximum cardinality of an antichain. That is, 0 = a.

Proof. 'We prove this by induction on |E|. The base case |E/| = 1 is obvious. For the induction step, assume that
|E| > 2. Let « be the maximum cardinality of an antichain. We will find « chains covering E. If & = |E|, then

0 = a = |E| and we are done. Otherwise, o < |E

, implying in turn that there is a chain {a, b} where a is a

minimal element and b is a maximal element. Let E’ := E — {a,b}.

Claim. If the maximum cardinality of an antichain of (E’, <) is o« — 1, then there are « chains covering E.

Proof of Claim. By the induction hypothesis, there are oz — 1 chains of E’ covering F — {a, b}. Together with

{a, b}, we get a covering of E using « chains. O

We may therefore assume that E’ has an antichain A such that |A| = «. Let

Et:=Au{zr e E—A:z> zforsomez € A}

E7:=AU{ye E—A:y<zforsomez e A}.
Since A is an antichain, ETNE~ = A, and since it is a maximum antichain, EYUFE~ = E. As a is minimal and
a ¢ A,itfollows thata ¢ ET. As bis maximal and b ¢ A, we get that b ¢ E~. In particular, |ET|, |E~| < |E|.

Thus, by the induction hypothesis, E+ has « chains covering it, and E~ has « chains covering it. Gluing these

chains together, we get o chains covering ET U E~ = E, thereby completing the induction step. O
This result was the first of many covering results. To name a few:

e In a partially ordered set, the minimum number of antichains needed to cover the ground set is equal to

the maximum cardinality of a chain.

e Kénig 1931: In a bipartite graph, the minimum number of colors needed for an edge-coloring is equal to

the maximum degree of a vertex.

e Koénig 1931: In a bipartite graph, the minimum number of vertices needed to cover the edges is equal to

the maximum cardinality of a matching.



e Gallai 1962, Suranyi 1968: In a chordal graph, the minimum number of cliques needed to cover the

vertices is equal to the maximum cardinality of a stable set.

e Sachs 1970: In a chordal graph, the minimum number of colors needed for a vertex-coloring is equal to

the maximum cardinality of a clique.

e Chudnovski, Robertson, Thomas and Seymour 2006: In a graph without an odd hole or an odd hole com-
plement, the minimum number of cliques needed to cover the vertices is equal to the maximum cardinality

of a stable set.



