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6.2 The pluperfect graph theorem

Recall that for a non-negative matrix A without a column of all zeros A, the antiblocker of

P := {x ≥ 0 : Ax ≤ 1}

is the set

a(P ) := {y ≥ 0 : x>y ≤ 1 ∀x ∈ P}.

Last time, we showed that

Proposition 6.3. Let A be a non-negative matrix without a column of all zeros. Let B be the matrix whose rows

are the extreme points of P := {x ≥ 0 : Ax ≤ 1}. Then B is non-negative, has no column of all zeros, and

a(P ) = {y ≥ 0 : By ≤ 1}

a(a(P )) = P.

Next we study the extreme points of the antiblocker. Given vectors x, y of the same dimension, if x is

obtained from y after setting some of the coordinates to 0, then we say that x is a projection of y.

Proposition 6.4. Let A be a non-negative matrix and let P := {x ∈ Rn
+ : Ax ≤ 1}. Then the following

statements hold:

(1) Let x̄ be an extreme point of P for which

x̄ ≤
k∑

i=1

λix
i

for some points x1, . . . , xk ∈ P and scalars λ1, . . . , λk > 0 with
∑k

i=1 λi = 1. Then x̄ is a projection of

each xi.

(2) Suppose thatA has no column of all zeros. Then every extreme point of a(P ) is a (possibly trivial) projection

of a row of A.
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Proof. (1) If x̄ = 0, then we are done. Otherwise, after possibly rearranging the coordinates, we have x̄ = (z̄,0)

for some ` ≥ 1 and z̄ ∈ R` such that z̄ > 0. For each i ∈ [k], denote by zi the vector consisting of the first `

coordinates of xi. Then

z̄ ≤
k∑

i=1

λiz
i =: z.

Notice that z consists of the first ` coordinates of
∑k

i=1 λix
i. As x̄ is an extreme point of P , there is an ` × `

non-singular submatrix E of A such that Ez̄ = 1. On the one hand, as E is non-negative and z ≥ z̄, it follows

that Ez ≥ Ez̄ = 1. On the other hand, as Ax ≤ 1, it follows that Ez ≤ 1. Thus, Ez = Ez̄ = 1, implying in

turn that z = z̄. As a result,

x̄ = (z̄,0) = (z,0) =

k∑
i=1

λi(z
i,0).

Since x̄ is an extreme point, and each (zi,0) belongs to P , it follows that x̄ = (z1,0) = · · · = (zk,0), as

required.

(2) Denote by B the matrix whose rows are the extreme points of the polytope P . Then by Proposition 6.3,

B is a non-negative matrix without a column of all zeros, and a(P ) = {y ≥ 0 : By ≤ 1}. Denote by A′ the

matrix whose rows are the extreme points of the polytope a(P ). Then by Proposition 6.3,

{x ≥ 0 : Ax ≤ 1} = a(a(P )) = {x ≥ 0 : A′x ≤ 1}.

Take an extreme point a′ of a(P ), which is also a row of A′. Since a′>x ≤ 1 is valid for {x ≥ 0 : Ax ≤ 1}, it

follows that a′ is bounded above by a convex combination of the rows of A. Applying (1) to a(P ), we see that

a′ must be a projection of a row of A, as required.

We are now ready for the pluperfect graph theorem:

Theorem 6.5 (Fulkerson 1972). Let A be a non-negative matrix without a column of all zeros, and let B be the

matrix whose rows are the extreme points of {x ≥ 0 : Ax ≤ 1}. If A is perfect, then so is B.

Proof. Suppose that A is perfect, that is, A is a 0 − 1 matrix whose associated set packing polytope P :=

{x ≥ 0 : Ax ≤ 1} is integral. So B is a 0 − 1 matrix. By Proposition 6.3, B has no column of all zeros and

a(P ) = {y ≥ 0 : By ≤ 1}. Therefore, by Proposition 6.4 (2), every extreme point of {y ≥ 0 : By ≤ 1} is a

projection of a row of A. In particular, {y ≥ 0 : By ≤ 1} is integral, that is, B is perfect.

6.3 Clutters and antiblockers

Let V be a finite set of elements, and let A be a family of subsets of V , called members. We say that A is a

clutter over ground set V if no member is contained in another one. The incidence matrix of A, denoted M(A),

is the 0− 1 matrix whose columns are labeled by V and whose rows are the incidence vectors of the members.

Remark 6.6. Let A1,A2 be clutters over the same ground set, where every member of A1 contains a member

of A2, and every member of A2 contains a member of A1. Then A1 = A2.
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Proof. Take A1 ∈ A1. Then A1 contains a member A of A2, and A contains a member of A1. As A1 is a

clutter, it must be that A1 ⊆ A ⊆ A1, implying in turn that A = A1. Thus, A1 ⊆ A2. Similarly, A2 ⊆ A1, so

A1 = A2.

LetA be a clutter over ground set V , where every element is contained in a member. Consider the set packing

polytope associated with A:{
x ∈ RV

+ :
∑

(xv : v ∈ A) ≤ 1 ∀A ∈ A
}

= {x ≥ 0 : M(A)x ≤ 1}.

Notice that the 0− 1 points of P (A) correspond to the sets in

{B ⊆ V : |B ∩A| ≤ 1 ∀A ∈ A},

and that every 0 − 1 point of the polytope is in fact an extreme point. We say that A is a perfect clutter if the

associated set packing polytope is integral, that is, when the associated incidence matrixM(A) is perfect. Notice

that an arbitrary 0 − 1 matrix A is perfect if, and only if, the clutter corresponding to the maximal rows of A is

perfect. As a consequence, studying perfect clutters is just as general as studying perfect matrices.

Let A be a clutter over ground set V . The maximal sets of {B ⊆ V : |B ∩ A| ≤ 1 ∀A ∈ A} form another

clutter over the same ground set, called the antiblocker of A and denoted a(A). If every element is used in a

member of A, then the members of a(A) are precisely the maximal integral points contained in the set packing

polytope. For instance,

the antiblocker of {{1, 2}, {2, 3}, {3, 1}} = {{1}, {2}, {3}}

the antiblocker of {{1}, {2}, {3}} = {{1, 2, 3}}

the antiblocker of {{1, 2, 3}} = {{1}, {2}, {3}}.

One natural question to ask is, when do we have a(a(A)) = A? Perhaps surprisingly, the answer is very simple:

Proposition 6.7 (Fulkerson 1971). Let A be a clutter over ground set V . Then the following statements are

equivalent:

(i) a(a(A)) = A,

(ii) A consists of the maximal stable sets of a graph over vertex set V .

Proof. (ii) ⇒ (i): Suppose A consists of the maximal stable sets of G = (V,E). Then a vertex set intersects

every stable set at most once if, and only if, it is a clique. This implies that a(A) consists of the maximal cliques

of G. Applying the same argument to G implies that a(a(A)) consists of the maximal stable sets of G, so

a(a(A)) = A. (i)⇒ (ii): Suppose a(a(A)) = A. Let G be the graph over vertex set V , where distinct vertices

u, v are non-adjacent if there is a member containing both u, v. Clearly, every member of A is a stable set of G.

Conversely, let S ⊆ V be a stable set of G. We claim that

(?) |S ∩B| ≤ 1 ∀B ∈ a(A).
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Suppose otherwise. Then for distinct vertices u, v of G, {u, v} ⊆ S ∩B. However, as u and v are non-adjacent,

{u, v} ⊆ A for some member A ∈ A, but then {u, v} ⊆ A ∩ B, a contradiction as B ∈ a(A). This proves (?),

implying in turn that S is contained in a member of a(a(A)) = A. Remark 6.6 implies that A consists of the

maximal stable sets of G, as required.

As a consequence,

Theorem 6.8 (Padberg 1973). If a clutter is perfect, then its members are the maximal stable sets of a simple

graph.

Proof. Let A be a perfect clutter over ground set V , and let A be the corresponding incidence matrix. Let B be

the matrix whose rows are the extreme points of P := {x ≥ 0 : Ax ≤ 1}, and let Q := {y ≥ 0 : By ≤ 1}.
Then by Proposition 6.3, a(P ) = Q and a(Q) = P . Moreover, since the clutter A is perfect, the matrix A

is perfect, so by Theorem 6.5, B is a perfect matrix. Let B be the clutter over ground set V whose members

correspond to the maximal rows of B. Notice that a(A) corresponds to the maximal integral extreme points of

P , so a(A) = B. Similarly, a(B) corresponds to the maximal integral extreme points of Q, so a(B) = A. It

therefore follows from Proposition 6.7 that A consists of the maximal stable sets of a graph, as required.

In fact, as we will see on Assignment 2, the simple graph above is perfect:

Theorem 6.9 (Chvátal 1975). Let G = (V,E) be a simple graph. If the clutter of the maximal stable sets of G

is perfect, then G is a perfect graph.

Summarizing the results of this section and the previous one, we get the following characterization of when the

set packing polytope is integral:

Corollary 6.10. The following statements hold:

(1) Let A be a 0 − 1 matrix without a column of all zeros whose set packing polytope {x ≥ 0 : Ax ≤ 1} is

integral. Then the linear system x ≥ 0, Ax ≤ 1 is totally dual integral, the maximal rows of A correspond

to the maximal stable sets of a simple graph, and the graph is perfect.

(2) Let G be a simple graph. Then G is perfect if, and only if, it has no odd hole and no odd antihole.
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