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7 Integral and totally dual integral set covering programs

Let C be a clutter over ground set E. Consider the set covering polyhedron associated with C:{
x ∈ RE+ :

∑
(xe : e ∈ C) ≥ 1 ∀C ∈ C

}
= {x ≥ 0 :M(C)x ≥ 1}.

A cover is a subset of E that intersects every member.1 Notice that the covers of C correspond precisely to the

0− 1 points of the associated set covering polyhedron. If a set is a cover then so is every superset of it, so not all

covers are interesting.

7.1 Clutters and blockers

Let C be a clutter over ground set E. The blocker of C, denoted b(C), is the clutter over ground set E whose

members are the minimal covers of C.2 Unlike antiblockers,

Theorem 7.1 (Isbell 1958, Edmonds and Fulkerson 1970). Given a clutter C, we have b(b(C)) = C.

Proof. Denote by E the ground set of C. We need to show that the minimal covers of b(C) are precisely the

members of C. By Remark 6.6, it suffices to show that (a) every member of C is a cover of b(C), and (b) every

minimal cover of b(C) contains a member of C.

(a) Take C ∈ C. Since C ∩B 6= ∅ for every B ∈ b(C), we get that C is a cover of b(C).

(b) Take a minimal cover C ′ of b(C). Then E−C ′ cannot contain a member of b(C), so E−C ′ is not a cover of

C, implying in turn that E − C ′ is disjoint from a member of C. Consequently, C ′ contains a member of C.

Thus, b(b(C)) = C.

That is, if B is the blocker of C, then C is the blocker of B. Let us see some examples of blocking pairs of clutters:

Remark 7.2. The following statements hold:

1In the literature, a cover is also referred to as a hitting set, a blocking set, a transversal, etc.
2Berge (1989) referred to b(C) as the transversal of C and denoted it Tr(C).
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(1) LetG be a graph and take distinct vertices s, t. Over ground set E(G), the clutter of st-paths and the clutter

of minimal st-cuts are blockers.

(2) LetG be a simple graph. Over ground set V (G), the clutter of edges and the clutter of minimal vertex covers

are blockers.

(3) Consider the clutter of the triangles of K4 over ground set E(K4):

Q6 :=
{
{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}

}
.

Its blocker consists of the triangles, as well as the perfect matchings:

b(Q6) =
{
{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}, {1, 2}, {3, 4}, {5, 6}

}
.

Proof. (1) Let C be the clutter of st-paths over ground set E(G). Clearly, every st-cut is a cover for C. Let B be

a minimal cover of C. By definition, E(G)−B does not contain an st-path of G, implying in turn that in G \B
the vertices s, t are disconnected, so G \B has an empty st-cut, implying in turn that B contains an st-cut of G.

Thus, b(C) consists of the minimal st-cuts, as required. (2) follows from the definition of a vertex cover. (3) We

leave this as an easy exercise.

7.2 Packing and covering parameters

To each clutter C, we can associate two dual parameters. A packing is a collection of pairwise disjoint members.3

The packing number, denoted ν(C), is the maximum size of a packing. The covering number, denoted τ(C), is

the minimum cardinality of a cover. Since a cover picks up a different element from each member of a packing,

we see that

τ(C) ≥ ν(C).

For instance, for the clutter
{
{1, 2}, {2, 3}, {3, 1}

}
, the packing number is 1, while the covering number is 2 –

so the two parameters are not always equal. We say that C packs if τ(C) = ν(C).

Proposition 7.3. The following statements hold:

(1) Given a graph G with distinct vertices s, t, the clutter of st-paths packs, and the clutter of minimal st-cuts

packs.

(2) Given a bipartite simple graph G, the clutter of edges packs, and the clutter of minimal vertex covers packs.

(3) Q6 does not pack, and b(Q6) packs.

Proof. (1) By Theorem 1.1 (Menger), the maximum number of edge-disjoint st-paths is equal to the minimum

cardinality of an st-cut, so the clutter of st-paths packs. Denote by C the clutter of minimal st-cuts ofG. We may

3A packing is also referred to as a matching.
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assume that G has no empty st-cut, so G has at least one st-path. Notice that τ(C), the minimum cardinality of

an st-path, is simply the distance between s, t. To prove that C packs, it suffices to exhibit τ(C) disjoint st-cuts.

To this end, for each i ∈ [τ(C)], denote by Ui ⊆ V (G) the set of vertices within distance i − 1 from s. Notice

that s = U1 ( U2 ( · · · ( Uτ(C) ⊆ V (G) − {t}, and that δ(U1), δ(U2), . . . , δ(Uτ(C)) are disjoint st-cuts, as

required.4 (2) It follows from Theorem 5.2 (Kőnig) that the maximum cardinality of a matching in G is equal to

the minimum cardinality of a vertex cover ofG, so the clutter of edges ofG packs. We leave it as an easy exercise

to prove that the clutter of minimal vertex covers of G packs. (3) Q6 does not pack as τ(Q6) = 2 > 1 = ν(Q6).

On the other hand, b(Q6) packs as τ(b(Q6)) = 3 and b(Q6) has disjoint members {1, 2}, {3, 4}, {5, 6}.

Let C be a clutter over ground set E. Take non-negative weights w ∈ RE+. A weighted packing is a collection

of members such that every element e is contained in at most we of the members. (Notice that a member may

be taken more than once.) Denote by ν(C, w) the maximum size of a weighted packing. Given a cover B, its

weight is w(B) :=
∑
e∈B we. Denote by τ(C, w) the minimum weight of a cover. Notice that for weights 1,

weighted packings are precisely packings and cover weights are precisely cover cardinalities, so ν(C,1) = ν(C)
and τ(C,1) = τ(C).

Remark 7.4. Given a clutter C over ground set E and weights w ∈ RE+,

τ(C, w) ≥ ν(C, w).

Proof. Take a cover B and a weighted packing C1, . . . , Ck. Then

w(B) =
∑
e∈B

we ≥
∑
e∈B
|{i ∈ [k] : e ∈ Ci}| =

∑
i∈[k]

|{e ∈ B : e ∈ Ci}| =
∑
i∈[k]

|B ∩ Ci| ≥ k.

Since this is true for all covers and weighted packings, the inequality τ(C, w) ≥ ν(C, w) follows.

Consider the associated set covering program

(P )

min w>x

s.t.
∑

(xe : e ∈ C) ≥ 1 ∀C ∈ C
x ≥ 0

As the 0 − 1 solutions of (P) are precisely the covers, it follows that τ(C, w) computes the optimal value of a

0− 1 solution, and hence an integral solution, to (P). Consider the dual program

(D)

max
∑

(yC : C ∈ C)
s.t.

∑
(yC : C ∈ C, e ∈ C) ≤ we ∀e ∈ E

y ≥ 0

As the integral solutions of (D) are precisely the weighted packings, we get that ν(C, w) computes the optimal

value of an integral solution to (D). In particular, linear program duality offers an alternate proof of the inequality

τ(C, w) ≥ ν(C, w). We will refer to each solution of (D) as a fractional weighted packing, and its value is the

objective value of the solution.
4We just proved the min-work max-potential theorem of Duffin (1962).
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We say that C is Mengerian if for all weights w ∈ ZE+, the minimum weight of a cover is equal to the

maximum size of a weighted packing:

τ(C, w) = ν(C, w).

The discussion we just had implies that C is Mengerian if, and only if, the corresponding set covering program

(P) is totally dual integral.5 As we know, total dual integrality is a notion stronger than primal integrality. We

say that C is ideal if for all weights w ∈ ZE+, the minimum weight of a cover is equal to the maximum value of

a fractional weighted packing. Equivalently, by LP Strong Duality, C is ideal if for all weights w ∈ ZE+, the set

covering program (P) has an integral optimal solution, i.e. the optimal value of (P) is τ(C, w). Recall that C is

ideal if, and only if, the set covering polyhedron
{
x ∈ RE+ :M(C)x ≥ 1

}
is integral. Studying Mengerian and

ideal clutters is just as general as studying integral and totally dual integral set covering systems:

Remark 7.5. Take a 0−1 matrixA with column labelsE. Let C be the clutter over ground setE whose members

correspond to the minimal rows of A. Then the following statements hold:

• x ≥ 0, Ax ≥ 1 is totally dual integral if, and only if, C is Mengerian,

• {x ≥ 0 : Ax ≥ 1} is integral if, and only if, C is ideal.

Notice that a Mengerian clutter is always ideal.

5In the literature, the Mengerian property is also referred to as the max-flow min-cut property.
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