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7.2 Packing and covering parameters

Last time we defined ideal and Mengerian clutters. Recall that a clutter is ideal if the associated set covering
program is integral, and it is Mengerian if the associated set covering program is totally dual integral. So clearly,
a Mengerian clutter is always ideal. However, in contrast to Theorem 6.2 in the set packing case, an ideal clutter

is not necessarily Mengerian:
Remark 7.6. The following statements hold:

(1) Qg is an ideal clutter that is not Mengerian,
(2) b(Qg) is a Mengerian clutter.

Proof. (1) We saw in Assignment 1 that (4 is ideal. On the other hand, as Q)¢ does not pack, it is not Mengerian.

(2) We leave this as an exercise. O]

This remark also shows that being Mengerian is not closed under taking blockers. However, much like the

pluperfect graph theorem — Theorem 6.5 — in the set packing case, being ideal is closed under taking blockers.

7.3 The width-length inequality

The following “width-length” inequality is the analogue of the max-max inequality, Theorem 5.6, for set cover-
ing polyhedra. Alfred Lehman proved this inequality and wrote it up in 1963, taught it to Ray Fulkerson in 1965
at RAND Corporation, but the result was not published until much later in 1979:

Theorem 7.7 (Lehman 1979). Let C be a clutter over ground set E. Then C is ideal if, and only if, for all
w,l € Rf,

min{w(C) : C € C}-min{l(B): B €b(C)} <w'/.
Proof. Suppose first that C is ideal. Take w, ¢ € R¥. Let 7 := 7(C,¢) = min {{(B) : B € b(C)}. Since C is

ideal, there is a fractional /-weighted packing y € Ri of value 7:

Z(yC:CEC):T

Y (ycrecCel) <l Veek.



Now we have

wTﬁzz:weEeZZwe {Z(yc:eECEC)} :Zyc~w(0)
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min {w(C): C €C} - Zyc
cec

=min{w(C):CeC} -1
=min {w(C): C €C} -min{{(B): Beb(C)},

v

as required. Suppose conversely that the width-length inequality holds for all w, ¢ € Rf . We will show that C is

ideal. To this end, take an arbitrary £ € R¥, and let 2* be an optimal solution to

min AN
s.t. z(C)>1 VvCecC
z > 0.

We will show that
¢"z* =min {¢(B) : B €b(C)},

thereby finishing the proof. Well, it is clear that < holds above. We will prove that > holds as well. By the
width-length inequality,

(Tz* >min {{(B) : B €b(C)} -min{2*(C): C €}
> min {E(B) :Be b(C)}.
as required. O
As an immediate consequence, we get the following analogue of the pluperfect graph theorem, Theorem 6.5:

Theorem 7.8 (Lehman 1979). If a clutter is ideal, then so is its blocker.

7.4 Deletions, contractions and minors

Let C be a clutter over ground set F, and take an element e € E. We will define two clutters over ground set
E — {e}. The deletion is the clutter
C\e:={CeC:e¢C}

while the contraction is the clutter
C/e := the minimal sets of {C — {e} : C € C}.
Notice that deletion and contraction are blocking operations:

Proposition 7.9. Lez C be a clutter over ground set E. Then fore € E, b(C\e) = b(C)/e and b(C/e) = b(C) \ e.



Proof. Let us first prove that b(C \ e) = b(C)/e. If B' is a cover of C \ e then B’ U {e} is a cover of C. So
every member of b(C \ e) contains a member of b(C)/e. For the reverse inclusion, if B is a cover of C then
B — {e} isacover of C \ e. So every member of b(C)/e contains a member of b(C \ e). Remark ?? implies that

b(C \ e) = b(C)/e. To prove the second equation, let us apply the first equation to b(C):

bB(C) \ €) = (B(C)) /e = C/e.
Taking blockers yields b(C) \ e = b(C/e), thereby proving the second equation. O

For disjoint subsets I, J C FE, the following clutter over ground set E — (I U J),
C\I/J := the minimal setsof {C' —J:C € C,CNI=0}

is a minor of C obtained after deleting I and contracting J. If T U .J # (), then C \ I/J is a proper minor. By the
proposition above, b(C \ I/J) = b(C)/I \ J. From an optimization point of view, minors operations are quite

natural:
Remark 7.10. Take a clutter C over ground set E, and disjoint subsets 1,J C E. Then the linear programs

min{w'z: M(C\I/J)z>1,2>0} =max{1"y: M(C\I/J) Ty <w,y>0}

E—(IUJ)
forw e RY

, are equivalent to the linear programs
min{w'z: M(C)z > 1,z >0} =max{1'y: M(C) "y <w,y > 0}
forw € Rf such that we = 0 forall e € I and wy = +oo forall f € J.

As an immediate consequence,

Remark 7.11 (Seymour 1977). If a clutter is ideal (resp. Mengerian), then so is any minor of it.

8 Ideal clutters

We will see two rich classes of ideal clutters that are quite different in nature, suggesting that ideal clutters form
a much richer class than perfect clutters. Unfortunately for us, it also suggests that studying general ideal clutters
is more complicated than perfect clutters. Indeed, this is confirmed by a negative complexity result on detecting

idealness that we will mention at the end of this section.

8.1 Dicuts and dijoins

Let D = (V, A) be a digraph. We say that D is strongly connected if for all distinct vertices s, ¢ € V, there is an
(s, t)-dipath. Take a non-empty and proper subset U of V. We say that the cut 67 (U) is a dicut if 6= (U) = 0;

that is, 61 (U) is a dicut if it has no in-coming arc; we will refer to U as an out-shore of 5+ (U).



Remark 8.1. A digraph is strongly connected if, and only if, it has no dicut.

Proof. Take a digraph D = (V, A). Suppose first that D is strongly connected. Let 57 (U) be a cut, and take
vertices t € U and s € V — U. Since there is an (s, t)-dipath, it follows that §~(U) # (), implying in turn that
5% (U) is not a dicut. Suppose conversely that D is not strongly connected. Then there are distinct vertices s, ¢
without an (s, t)-dipath. Let U be the set of all vertices that can be reached from s. Clearly, s € U and t ¢ U,
and by construction, 6~ (U) = 67(U) = 0, so §7(U) is a dicut. O

Given a digraph, what is the minimum number of arcs whose contraction makes the digraph strongly con-
nected? By the remark above, we can rephrase the question as, what is the covering number of the clutter of
dicuts of a digraph? In this section, we will answer this question by showing that in a digraph, the clutter of

dicuts packs.



