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8.1 Dicuts and dijoins

Let D = (V, A) be a digraph. Take a non-empty and proper subset U of V. Recall that the cut 67 (U) is a dicut
if 6= (U) = 0; that is, §*(U) is a dicut if it has no in-coming arc; we will refer to U as an out-shore of §*(U).

Last time, we proved the following:
Remark 8.1. A digraph is strongly connected if, and only if, it has no dicut.

Given a digraph, what is the minimum number of arcs whose contraction makes the digraph strongly con-
nected? By the remark above, we can rephrase the question as, what is the covering number of the clutter of
dicuts of a digraph? In this section, we will answer this question by showing that in a digraph, the clutter of
dicuts packs. To prove this, we will need a coloring lemma.

Let V be a finite set, and let S be a family of subsets of V' (some subsets may be equal). We say that two
sets S, 5 € S are crossing if the four sets S; N So, 51 — S2,52 — 51,V — (51 U S3) are non-empty. Notice
that if Sy, S, are crossing, then so are Sy, So. We say that S is cross-free if it has no crossing sets, that is, for all
S1,85 € S, either S; NSy = 0,5, C S9,5, CS;orS; USy = V. Observe that if S is cross-free, then so is

any family obtained from S after complementing some sets. We will need the following dicut coloring lemma: '

Lemma 8.2 (Lucchesi and Younger 1976). Let D = (V, A) be a digraph, and F a family of (possibly equal)
dicuts whose out-shores form a cross-free family. Take an integer k > 1. If every arc appears in at most k dicuts

of F, then the dicuts of F can be k-colored so that dicuts of the same color are arc-disjoint.

Proof. Denote by S the family of the out-shores of F. By definition, S is a cross-free family. In particular, if an
arc belongs to dicuts §1(U1), 07 (Us) € F, then either Uy C Us or Uy C U;. As aresul,

(%) given the dicuts of F containing a fixed arc, their out-shores are nested.

This observation is crucial to the proof. Take an arbitrary vertex r € V, and let S’ be obtained from S after
complementing each out-shore containing r. Clearly, S’ is a cross-free family, and as no set contains r, it follows
that for all S;,S2 € &', either Sy NSy = 0, S; C Sy or Sy C 5. That is, S’ is a laminar family. We may

Lucchesi and Younger (1976) called this the disjunctive partition property.



therefore represent S’ by an r-arborescence 7" whose arcs are in a one-to-one correspondence with the sets
of §’. Let T be the directed tree obtained from 7" as follows: for every set S’ € &’ obtained by complementing
an out-shore of S, flip the arc of T” corresponding to S’. Notice the one-to-one correspondence between the arcs
of T and the out-shores of S. Notice further that by (x), the dicuts of F containing a fixed arc correspond to a
directed path in T of length at most k. Thus, to prove the lemma, it suffices to k-color the arcs of T so that in
every directed path of length at most k, the arcs get different colors. To this end, partition the vertices of T into
layers Lo, L1, Lo, . . . so that each arc of T goes from some layer L;; to the layer L;. Color the arcs going from
layer L; 11 to layer L; with color i (mod k), for each ¢ > 0. It is then easy to see that the arcs of a directed path

of length at most k get different colors, as required. O

Let D = (V, A) be a digraph. A dijoin of D is an arc subset B such that D/ B is strongly connected. Notice
that by Remark 8.1, an arc subset is a dijoin if and only if it intersects every dicut. In other words, the dijoins

of D are precisely the covers of the clutter of dicuts. The proof of the following theorem is due to Lovasz (1976).

Theorem 8.3 (Lucchesi and Younger 1976). In a digraph, the maximum number of disjoint dicuts is equal to

the minimum cardinality of a dijoin. That is, the clutter of dicuts of a digraph packs.

Proof. Let D = (V, A) be a digraph. We will prove by induction on |A| > 1 that the clutter of dicuts packs. The
base case |A| = 1 is trivial. For the induction step, assume that |A| > 2. We may assume that the underlying
undirected graph of D is connected, and that D is not strongly connected. Let v be the maximum size of a

packing of dicuts. Let us say that an arc is essential if it is used in every maximum packing of dicuts.
Claim. D has an an essential arc.

Proof of Claim. Suppose otherwise. Then for each arc, we have a packing of v disjoint dicuts of D excluding

the arc. Doing this for every arc of D, we get a family F such that

(%) F is a family of dicuts of D such that | F| = |A|- v, and every arc of D is used in at most |A| — 1
dicuts of F.

We will recursively update the family F so that each intermediate family satisfies (x), and at the end, the out-
shores form a cross-free family. If the out-shores of F form a cross-free family, then we are done. Otherwise,
take dicuts 67 (U1 ), 6 (Us) € F where Uy, Uy are crossing. Then 61 (U N Uz), 81 (Uy U Us) are also dicuts
such that

5+(U1 N UQ) N (5+(U1 @] U2) - (S+(U1) N (5+(U2) and (5+(U1 n U2) U 5+(U1 U Ug) - 5+(U1) U 5+(U2)

We update F by replacing the dicuts 67 (U7), 51 (Us) by the dicuts 67 (Uy N Us), 6T (Uy U Us). The inclusions
above imply that F still satisfies (x). Since at each iteration, the potential } s, 1)+ [U |2 strictly increases,
we will eventually reach a family F satisfying (x) whose out-shores form a cross-free family. Therefore, by

the Dicut Coloring Lemma 8.2, we may (| 4| — 1)-color the dicuts of F so that each color class is a packing of

[Alv
[Al-1

dicuts, a contradiction. Thus, D has an essential arc. O

dicuts. One of the color classes has cardinality at least > v, implying in turn that D has a packing of v+ 1



Let e be an essential arc of D, and let C1,...,C, be a maximum packing of dicuts such that e € C,,.
To complete the induction step, it suffices to exhibit a dijoin of cardinality v. As e is essential, the dicuts
Cy,...,C,_1 give a maximum packing of dicuts of D/e. Thus, by the induction hypothesis, D /e has a dijoin
B’ of cardinality ¥ — 1. Notice that B’ U {e} is a dijoin of D of cardinality v, as required. This finishes the
proof. O

Using this result, we can prove the following:
Corollary 8.4. The clutter of dicuts of a digraph is Mengerian, and therefore ideal.

Proof. LetC be the clutter of dicuts of digraph D = (V, A). To prove that C is Mengerian, take weights w € Zj‘}.
We need to show that 7(C, w) = v(C, w), that is, the minimum weight of a dijoin is equal to the maximum size
of a weighted packing of dicuts. Construct a digraph D’ starting from D as follows: for each arc e with w, = 0
contract arc e, and for each arc w with w, > 1 replace arc e by w, arcs in series (forming a directed path). Then
7(C, w) is equal to the minimum cardinality of a dijoin of D’, while v(C, w) is equal to the maximum number

of disjoint dicuts of D’. Therefore, Theorem 8.3 implies that 7(C, w) = v(C, w), as required. O
Together with Theorem 7.8, this result implies that,
Corollary 8.5. The clutter of dijoins of a digraph is ideal.

Schrijver (1980) showed that in contrast to dicuts, the clutter of dijoins is not necessarily Mengerian. Neverthe-
less, Woodall (1978) conjectures that the clutter of dijoins always packs. (Why would Woodall’s conjecture not

imply that the clutter of dijoins is Mengerian?)



