CO 750 Packing and Covering: Lecture 15

Ahmad Abdi

June 22, 2017

8.2 T-joins and T-cuts, continued

Today we prove the following theorem. The proof we present is due to Sebő (1987).
Theorem 8.10 (Seymour 1981). Take a bipartite graph $G=(V, E)$, and a non-empty subset $T \subseteq V$ of even cardinality. Then the minimum cardinality of a T-join is equal to the maximum number of disjoint T-cuts. That is, the clutter of minimal T-cuts of a bipartite graph packs.

Proof. We proceed by induction on the number of vertices of G. The base case $|V|=2$ holds trivially. For the induction step, assume that $|V| \geq 3$. Denote by τ the minimum cardinality of a T-join. We will construct τ disjoint T-cuts. If $\tau=1$, then we are done. We may therefore assume that $\tau \geq 2$. Among all minimum T-joins, pick the one J whose longest path is the longest compared to the other ones. Define weights $w \in\{-1,1\}^{E}$ as follows: for each $e \in J$ set $w_{e}:=-1$, and for each $e \in E-J$ set $w_{e}:=1$. By Remark $8.8, G$ has no negative cycle, and as G is bipartite, every cycle has even weight.

Let Q be the longest path contained in J and let u, v be its ends. As Q is the longest path in J, and as G has no negative cycle, it follows that u, v each have degree 1 in J. In particular, $u, v \in \operatorname{odd}(J)=T$. Let e^{\star} be the edge of Q incident with u. Then $J \cap \delta(u)=\left\{e^{\star}\right\}$.

Claim 1. If C is a circuit such that $C \cap \delta(u) \neq \emptyset$ and $e^{\star} \notin C$, then $w(C) \geq 2$.
Proof of Claim. Suppose otherwise. Since $w(C) \geq 0$ and $w(C)$ is even, it follows that $w(C)=0$. So $J \triangle C$ is another minimum T-join, and as Q cannot be extended to a longer path in $J \triangle C, Q$ and C must share a vertex other than u. Among all the vertices in $V(Q)-\{u\}$ that also belong to $V(C)$, pick the one w that is closest to u on Q. Let Q^{\prime} be the $u w$-path in Q; as $e^{\star} \notin C$, it follows that $Q^{\prime} \neq \emptyset$ and $Q^{\prime} \cap C=\emptyset$. Let P_{1}, P_{2} be the two $u w$-paths partitioning C. Since $w\left(P_{1}\right)+w\left(P_{2}\right)=w(C)=0$ and $w\left(Q^{\prime}\right)<0$, it follows that one of $P_{1} \cup Q^{\prime}, P_{2} \cup Q^{\prime}$ is a negative circuit, a contradiction.

Claim 2. u cannot be adjacent to all the other vertices in T.
Proof of Claim. Suppose otherwise. In particular, u and v are adjacent, and as G has no negative cycle, Q has length 1 . Since Q is the longest path in J, it follows that J is a matching, and as $\tau \geq 2$, the matching has an
edge other than the edge of Q. Since u is adjacent to the other matched vertices, G has a triangle, a contradiction as G is bipartite.

Let $\left(G^{\prime}, T^{\prime}\right):=(G, T) / \delta(u)$. Notice that G^{\prime} is still a bipartite graph, and by Claim $2, T^{\prime} \neq \emptyset$. Let $J^{\prime}:=J-\delta(u)$. Then J^{\prime} is a T^{\prime}-join of G^{\prime} of length $\tau-1$. In fact,

Claim 3. J^{\prime} is a minimum T^{\prime}-join of G^{\prime}.
Proof of Claim. Define weights $w^{\prime} \in\{-1,1\}^{E\left(G^{\prime}\right)}$ on the edges of G^{\prime} as follows: for each $e \in J^{\prime}$ set $w^{\prime}(e):=$ -1 , and for each $e \in E\left(G^{\prime}\right)-J^{\prime}$ set $w^{\prime}(e):=1$. Notice that w^{\prime} is simply the restriction of w to $E-\delta(u)=$ $E\left(G^{\prime}\right)$. To prove that J^{\prime} is a minimum T^{\prime}-join of G^{\prime}, it suffices by Remark 8.8 to show that G^{\prime} does not have a negative circuit. To this end, let C^{\prime} be a circuit of G^{\prime}, and let C be a circuit of G such that $C^{\prime} \subseteq C \subseteq C^{\prime} \cup \delta(u)$. If $C=C^{\prime}$ or $e^{\star} \in C$, then $w^{\prime}\left(C^{\prime}\right)=w(C) \geq 0$. Otherwise, $C \cap \delta(u) \neq \emptyset$ and $e^{\star} \notin C$. It therefore follows from Claim 1 that

$$
w^{\prime}\left(C^{\prime}\right)=w(C)-2 \geq 0
$$

as required.
Thus, by the induction hypothesis, G^{\prime} has $\tau-1$ disjoint T-cuts; these are also disjoint T-cuts of G, and together with $\delta(u)$, they give τ disjoint T-cuts in G, thereby completing the induction step. This finishes the proof.

This result is actually sufficient to guarantee certificates of optimality for minimum T-joins in general graphs:
Theorem 8.11 (Edmonds and Johnson 1970, 1973). Take a graph $G=(V, E)$ and a non-empty subset $T \subseteq V$ of even cardinality. Denote by \mathcal{C} be the clutter of minimal T-cuts over ground set E. Then the following statements hold:
(1) For weights $w \in \mathbb{Z}_{+}^{E}$ where every cycle has total even weight, the minimum weight of $a T$-join is equal to the maximum size of a weighted packing of T-cuts:

$$
\tau(\mathcal{C}, w)=\nu(\mathcal{C}, w)
$$

(2) (Lovász 1975) For arbitrary weights $w \in \mathbb{Z}_{+}^{E}$, the minimum weight of $a T$-join is equal to the maximum value of a half-integral weighted packing of T-cuts:

$$
\tau(\mathcal{C}, w)=\max _{2 y \in \mathbb{Z}_{+}^{c}}\left\{\mathbf{1}^{\top} y: \sum\left(y_{C}: e \in C \in \mathcal{C}\right) \leq w_{e} \forall e \in E\right\}
$$

(3) The clutter \mathcal{C} of minimal T-cuts is ideal, that is, the polyhedron

$$
\left\{x \geq \mathbf{0}: \sum\left(x_{e}: e \in B\right) \geq 1 \forall T \text {-cuts } B\right\}
$$

is integral, and its vertices are the incidence vectors of the minimal T-joins.

Proof. (1) If there is a T-join of weight 0 , then there is nothing to show. We may therefore assume that the minimum weight of a T-join is non-zero. Let $\left(G^{\prime}, T^{\prime}\right)$ be the pair obtained from (G, T) after contracting all edges of weight 0 , and for each edge e with $w_{e} \geq 1$, replacing e by w_{e} edges in series (the intermediate vertices will not be included in T^{\prime}). Notice that every cycle C in G corresponds to a cycle in G^{\prime} of length $w(C)$, and conversely, every cycle C^{\prime} in G^{\prime} corresponds to a cycle in G of weight $\left|C^{\prime}\right|$. Thus, since every cycle of G has even weight, it follows that G^{\prime} is a bipartite graph. Moreover, it is clear that every T-join J in G corresponds to a T^{\prime}-join in G^{\prime} of length $w(J)$, and conversely, every T^{\prime}-join J^{\prime} in G^{\prime} corresponds to a T-join in G of weight $\left|J^{\prime}\right|$. In particular, $T^{\prime} \neq \emptyset$. It therefore follows from Theorem 8.10 that the minimum cardinality of a T^{\prime}-join in G^{\prime} is equal to the maximum number of disjoint T^{\prime}-cuts of G^{\prime}. As every packing of T^{\prime}-cuts in G^{\prime} corresponds to a weighted packing of T-cuts in G, it follows that $\tau(\mathcal{C}, w)=\nu(\mathcal{C}, w)$, as required. (2) Take arbitrary weights $w \in \mathbb{Z}_{+}^{E}$. It follows from (1) that

$$
2 \tau(\mathcal{C}, w)=\tau(\mathcal{C}, 2 w)=\nu(\mathcal{C}, 2 w)=\max _{y \in \mathbb{Z}_{+}^{\mathcal{C}}}\left\{\mathbf{1}^{\top} y: \sum\left(y_{C}: e \in C \in \mathcal{C}\right) \leq 2 w_{e} \forall e \in E\right\}
$$

thereby proving (2). (3) follows immediately from (2).

After applying Theorem 7.8 to part (3), we get the following:
Corollary 8.12. Take a graph $G=(V, E)$ and a non-empty subset $T \subseteq V$ of even cardinality. Then the clutter of minimal T-joins is ideal. That is, for all weights $w \in \mathbb{Z}_{+}^{E}$, the minimum weight of $a T$-cut is equal to the maximum value of a fractional weighted packing of T-joins.

Cornuéjols (2001) conjectures that in the above corollary, the minimum weight of T-cut should be equal to the maximum value of a quarter-integral weighted packing of T-joins. In contrast to T-cuts, packing T-joins is a difficult problem. To illustrate this, we need a definition. A 3-graph is a connected bridgeless graph $G=(V, E)$ where every vertex has degree 3 .

Proposition 8.13. Let $G=(V, E)$ be a plane 3-graph. Then the following statements are equivalent:
(i) G has three disjoint perfect matchings, so the clutter of minimal V-joins packs,
(ii) G has two disjoint V-joins,
(iii) G has a 4-face-coloring.

Proof. (i) \Rightarrow (ii) holds trivially. (ii) \Rightarrow (iii): Suppose that G has disjoint minimal V-joins J_{1}, J_{2}. Let $G^{\star}=$ $\left(V^{\star}, E\right)$ be the plane dual of G, and notice that every face of G^{\star} is a triangle. Notice that the V-cuts of G are in correspondence with the cycles of G^{\star} bounding an odd number of triangles, implying in turn that the V-cuts of G are in correspondence with the odd cycles of G^{\star}. Since each J_{i} is a minimal cover of the V-cuts of G, each J_{i} is also a minimal cover of the odd cycles of G^{\star}, implying in turn that there is a non-empty cut $\delta\left(U_{i}\right), U_{i} \subseteq V^{\star}$ of G^{\star} such that $\delta\left(U_{i}\right)=E-J_{i}$. Since $J_{1} \cap J_{2}=\emptyset$, it follows that $U_{1} \cap U_{2}, U_{1} \cap \overline{U_{2}}, \overline{U_{1}} \cap U_{2}, \overline{U_{1}} \cap \overline{U_{2}}$ are stable sets of G^{\star}, thereby yielding a 4 -vertex-coloring of G^{\star}, and hence a 4 -face-coloring of G. (iii) \Rightarrow (i): Let
$h \in\{(0,0),(0,1),(1,0),(1,1)\}^{\{\text {faces }\}}$ be a 4-face-coloring of G. For each edge e, whose neighboring faces are F_{1} and F_{2}, let

$$
g(e):=h\left(F_{1}\right)+h\left(F_{2}\right) \quad(\bmod 2) .
$$

Since F_{1}, F_{2} are adjacent faces, and therefore have different colors, it follows that $g(e) \in\{(0,1),(1,0),(1,1)\}$. Let

$$
\begin{aligned}
J_{1} & :=\{e \in E: g(e)=(0,1)\} \\
J_{2} & :=\{e \in E: g(e)=(1,0)\} \\
J_{3} & :=\{e \in E: g(e)=(1,1)\}
\end{aligned}
$$

We claim that each J_{i} is a perfect matching. To see this, take an arbitrary vertex v, whose neighboring faces are F_{1}, F_{2}, F_{3}. Then the three edges incident with v have g-values $h\left(F_{1}\right)+h\left(F_{2}\right), h\left(F_{2}\right)+h\left(F_{3}\right), h\left(F_{3}\right)+h\left(F_{1}\right)$ (mod 2). As $h\left(F_{1}\right), h\left(F_{2}\right), h\left(F_{3}\right)$ are pairwise distinct, we get that the g-values of the three edges incident with v are different, so v is indicent with exactly one edge from each J_{i}. As this is true for each vertex, it follows that each J_{i} is a perfect matching, as required.

It is widely known that 4 -face-coloring plane 3 -graphs is just as general as 4 -face-coloring arbitrary plane graphs. Thus, the implication (ii) \Rightarrow (iii) implies that finding just two disjoint T-joins in a graph can be a difficult problem. Appel and Haken (1977), and again Robertson, Sanders, Seymour and Thomas (1996), proved that plane graphs are 4 -face-colorable. As a consequence, the implication (iii) \Rightarrow (i) implies that,

Theorem 8.14. The clutter of minimal T-joins of a planar 3-graph packs.
This result does not extend to non-planar 3-graphs. For instance, the Petersen graph is a 3 -graph whose clutter of minimal T-joins does not pack, as it is not 3 -edge-colorable.

