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8.2 T -joins and T -cuts, continued

Today we prove the following theorem. The proof we present is due to Sebő (1987).

Theorem 8.10 (Seymour 1981). Take a bipartite graph G = (V,E), and a non-empty subset T ⊆ V of even

cardinality. Then the minimum cardinality of a T -join is equal to the maximum number of disjoint T -cuts. That

is, the clutter of minimal T -cuts of a bipartite graph packs.

Proof. We proceed by induction on the number of vertices of G. The base case |V | = 2 holds trivially. For the

induction step, assume that |V | ≥ 3. Denote by τ the minimum cardinality of a T -join. We will construct τ

disjoint T -cuts. If τ = 1, then we are done. We may therefore assume that τ ≥ 2. Among all minimum T -joins,

pick the one J whose longest path is the longest compared to the other ones. Define weights w ∈ {−1, 1}E as

follows: for each e ∈ J set we := −1, and for each e ∈ E − J set we := 1. By Remark 8.8, G has no negative

cycle, and as G is bipartite, every cycle has even weight.

Let Q be the longest path contained in J and let u, v be its ends. As Q is the longest path in J , and as G has

no negative cycle, it follows that u, v each have degree 1 in J . In particular, u, v ∈ odd(J) = T . Let e? be the

edge of Q incident with u. Then J ∩ δ(u) = {e?}.

Claim 1. If C is a circuit such that C ∩ δ(u) 6= ∅ and e? /∈ C, then w(C) ≥ 2.

Proof of Claim. Suppose otherwise. Since w(C) ≥ 0 and w(C) is even, it follows that w(C) = 0. So J4C is

another minimum T -join, and as Q cannot be extended to a longer path in J4C, Q and C must share a vertex

other than u. Among all the vertices in V (Q) − {u} that also belong to V (C), pick the one w that is closest

to u on Q. Let Q′ be the uw-path in Q; as e? /∈ C, it follows that Q′ 6= ∅ and Q′ ∩ C = ∅. Let P1, P2 be

the two uw-paths partitioning C. Since w(P1) + w(P2) = w(C) = 0 and w(Q′) < 0, it follows that one of

P1 ∪Q′, P2 ∪Q′ is a negative circuit, a contradiction. ♦

Claim 2. u cannot be adjacent to all the other vertices in T .

Proof of Claim. Suppose otherwise. In particular, u and v are adjacent, and as G has no negative cycle, Q has

length 1. Since Q is the longest path in J , it follows that J is a matching, and as τ ≥ 2, the matching has an
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edge other than the edge of Q. Since u is adjacent to the other matched vertices, G has a triangle, a contradiction

as G is bipartite. ♦

Let (G′, T ′) := (G,T )/δ(u). Notice thatG′ is still a bipartite graph, and by Claim 2, T ′ 6= ∅. Let J ′ := J−δ(u).
Then J ′ is a T ′-join of G′ of length τ − 1. In fact,

Claim 3. J ′ is a minimum T ′-join of G′.

Proof of Claim. Define weights w′ ∈ {−1, 1}E(G′) on the edges of G′ as follows: for each e ∈ J ′ set w′(e) :=

−1, and for each e ∈ E(G′) − J ′ set w′(e) := 1. Notice that w′ is simply the restriction of w to E − δ(u) =
E(G′). To prove that J ′ is a minimum T ′-join of G′, it suffices by Remark 8.8 to show that G′ does not have a

negative circuit. To this end, let C ′ be a circuit of G′, and let C be a circuit of G such that C ′ ⊆ C ⊆ C ′ ∪ δ(u).
If C = C ′ or e? ∈ C, then w′(C ′) = w(C) ≥ 0. Otherwise, C ∩ δ(u) 6= ∅ and e? /∈ C. It therefore follows

from Claim 1 that

w′(C ′) = w(C)− 2 ≥ 0,

as required. ♦

Thus, by the induction hypothesis, G′ has τ − 1 disjoint T -cuts; these are also disjoint T -cuts of G, and together

with δ(u), they give τ disjoint T -cuts in G, thereby completing the induction step. This finishes the proof.

This result is actually sufficient to guarantee certificates of optimality for minimum T -joins in general graphs:

Theorem 8.11 (Edmonds and Johnson 1970, 1973). Take a graphG = (V,E) and a non-empty subset T ⊆ V of

even cardinality. Denote by C be the clutter of minimal T -cuts over ground set E. Then the following statements

hold:

(1) For weights w ∈ ZE
+ where every cycle has total even weight, the minimum weight of a T -join is equal to

the maximum size of a weighted packing of T -cuts:

τ(C, w) = ν(C, w).

(2) (Lovász 1975) For arbitrary weights w ∈ ZE
+, the minimum weight of a T -join is equal to the maximum

value of a half-integral weighted packing of T -cuts:

τ(C, w) = max
2y∈ZC

+

{
1>y :

∑
(yC : e ∈ C ∈ C) ≤ we ∀e ∈ E

}
.

(3) The clutter C of minimal T -cuts is ideal, that is, the polyhedron{
x ≥ 0 :

∑
(xe : e ∈ B) ≥ 1 ∀ T -cuts B

}
is integral, and its vertices are the incidence vectors of the minimal T -joins.
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Proof. (1) If there is a T -join of weight 0, then there is nothing to show. We may therefore assume that the

minimum weight of a T -join is non-zero. Let (G′, T ′) be the pair obtained from (G,T ) after contracting all

edges of weight 0, and for each edge e with we ≥ 1, replacing e by we edges in series (the intermediate vertices

will not be included in T ′). Notice that every cycle C in G corresponds to a cycle in G′ of length w(C), and

conversely, every cycle C ′ in G′ corresponds to a cycle in G of weight |C ′|. Thus, since every cycle of G has

even weight, it follows that G′ is a bipartite graph. Moreover, it is clear that every T -join J in G corresponds to

a T ′-join in G′ of length w(J), and conversely, every T ′-join J ′ in G′ corresponds to a T -join in G of weight

|J ′|. In particular, T ′ 6= ∅. It therefore follows from Theorem 8.10 that the minimum cardinality of a T ′-join in

G′ is equal to the maximum number of disjoint T ′-cuts of G′. As every packing of T ′-cuts in G′ corresponds

to a weighted packing of T -cuts in G, it follows that τ(C, w) = ν(C, w), as required. (2) Take arbitrary weights

w ∈ ZE
+. It follows from (1) that

2τ(C, w) = τ(C, 2w) = ν(C, 2w) = max
y∈ZC

+

{
1>y :

∑
(yC : e ∈ C ∈ C) ≤ 2we ∀e ∈ E

}
,

thereby proving (2). (3) follows immediately from (2).

After applying Theorem 7.8 to part (3), we get the following:

Corollary 8.12. Take a graph G = (V,E) and a non-empty subset T ⊆ V of even cardinality. Then the clutter

of minimal T -joins is ideal. That is, for all weights w ∈ ZE
+, the minimum weight of a T -cut is equal to the

maximum value of a fractional weighted packing of T -joins.

Cornuéjols (2001) conjectures that in the above corollary, the minimum weight of T -cut should be equal to the

maximum value of a quarter-integral weighted packing of T -joins. In contrast to T -cuts, packing T -joins is a

difficult problem. To illustrate this, we need a definition. A 3-graph is a connected bridgeless graph G = (V,E)

where every vertex has degree 3.

Proposition 8.13. Let G = (V,E) be a plane 3-graph. Then the following statements are equivalent:

(i) G has three disjoint perfect matchings, so the clutter of minimal V -joins packs,

(ii) G has two disjoint V -joins,

(iii) G has a 4-face-coloring.

Proof. (i) ⇒ (ii) holds trivially. (ii) ⇒ (iii): Suppose that G has disjoint minimal V -joins J1, J2. Let G? =

(V ?, E) be the plane dual of G, and notice that every face of G? is a triangle. Notice that the V -cuts of G are in

correspondence with the cycles of G? bounding an odd number of triangles, implying in turn that the V -cuts of

G are in correspondence with the odd cycles of G?. Since each Ji is a minimal cover of the V -cuts of G, each Ji
is also a minimal cover of the odd cycles of G?, implying in turn that there is a non-empty cut δ(Ui), Ui ⊆ V ?

of G? such that δ(Ui) = E − Ji. Since J1 ∩ J2 = ∅, it follows that U1 ∩ U2, U1 ∩ U2, U1 ∩ U2, U1 ∩ U2 are

stable sets of G?, thereby yielding a 4-vertex-coloring of G?, and hence a 4-face-coloring of G. (iii)⇒ (i): Let
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h ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}{faces} be a 4-face-coloring of G. For each edge e, whose neighboring faces are

F1 and F2, let

g(e) := h(F1) + h(F2) (mod 2).

Since F1, F2 are adjacent faces, and therefore have different colors, it follows that g(e) ∈ {(0, 1), (1, 0), (1, 1)}.
Let

J1 := {e ∈ E : g(e) = (0, 1)}

J2 := {e ∈ E : g(e) = (1, 0)}

J3 := {e ∈ E : g(e) = (1, 1)}.

We claim that each Ji is a perfect matching. To see this, take an arbitrary vertex v, whose neighboring faces are

F1, F2, F3. Then the three edges incident with v have g-values h(F1) + h(F2), h(F2) + h(F3), h(F3) + h(F1)

(mod 2). As h(F1), h(F2), h(F3) are pairwise distinct, we get that the g-values of the three edges incident with

v are different, so v is indicent with exactly one edge from each Ji. As this is true for each vertex, it follows that

each Ji is a perfect matching, as required.

It is widely known that 4-face-coloring plane 3-graphs is just as general as 4-face-coloring arbitrary plane graphs.

Thus, the implication (ii) ⇒ (iii) implies that finding just two disjoint T -joins in a graph can be a difficult

problem. Appel and Haken (1977), and again Robertson, Sanders, Seymour and Thomas (1996), proved that

plane graphs are 4-face-colorable. As a consequence, the implication (iii)⇒ (i) implies that,

Theorem 8.14. The clutter of minimal T -joins of a planar 3-graph packs.

This result does not extend to non-planar 3-graphs. For instance, the Petersen graph is a 3-graph whose clutter

of minimal T -joins does not pack, as it is not 3-edge-colorable.
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