CO 750 Packing and Covering: Lecture 16

Ahmad Abdi

June 27, 2017

8.3 Testing idealness is co-NP-complete.

We saw two rich classes of ideal clutters, namely the clutter of dicuts of a digraph and the clutter of T-joins of a graph. This suggests that studying general ideal clutters is more complicated than perfect clutters. Indeed, this is confirmed by a negative complexity result on detecting idealness that we will mention here. Let A be a $0-1$ matrix. Consider the following problem:

Is A an ideal matrix?
This is a co-NP problem: to certify that A is non-ideal, all we need is a fractional point $x^{\star} \in Q(A)=\{x \geq \mathbf{0}$: $A x \geq \mathbf{1}\}$ along with a full-rank row subsystem $A^{\prime} x \geq b^{\prime}$ of $\binom{A}{I} x \geq\binom{\mathbf{1}}{\mathbf{0}}$ such that $A^{\prime} x^{\star}=b^{\prime}$. In fact, as the following result claims, this problem is one of the most difficut problems in the co-NP class:

Theorem 8.15 (Ding, Feng, Zang 2008). Let A be a $0-1$ matrix, where every column has exactly two 1 s. Then the problem

Is A an ideal matrix?
is co-NP-complete.
In other words, given a general $0-1$ matrix that is a priori ideal, we cannot convince an adversary in polynomial time that A is indeed an ideal matrix, unless P and co-NP are equal. This means that unlike perfect clutters, ideal clutters do not admit a polynomial characterization in this model. (The authors above proved that "Is A a Mengerian matrix?" is a also co-NP-complete problem.) Let us study ideal clutters from a different angle.

9 Minimally non-ideal clutters

By Remark 7.11, we know that if a clutter is ideal, then so is any minor of it. In other words, the class of ideal clutters is minor-closed. As a result, we may indirectly study the class by characterizing the excluded minors defining the class. We say that a clutter is minimally non-ideal (mni) if it is non-ideal, and every proper minor of it is ideal. It follows from Remark 7.11 and Theorem 7.8 that,

Remark 9.1. The following statements hold:

- a non-ideal clutter is minimally non-ideal if every single deletion and contraction minor is ideal,
- a clutter is ideal if, and only if, it has no minimally non-ideal minor,
- if a clutter is minimally non-ideal, then so is its blocker.

As we will see, mni clutters split into two classes that behave quite differently from one another. We will study each class independently.

9.1 The deltas

Given a clutter \mathcal{C}, we may obtain another clutter \mathcal{C}^{\prime} by relabeling the elements of \mathcal{C}. We will say that $\mathcal{C}, \mathcal{C}^{\prime}$ are isomorphic and write $\mathcal{C} \cong \mathcal{C}^{\prime}$. Take an integer $n \geq 3$. Consider the clutter over ground set $[n]:=\{1,2,3, \ldots, n\}$ whose members are

$$
\Delta_{n}:=\{\{1,2\},\{1,3\}, \ldots,\{1, n\},\{2,3, \ldots, n\}\}
$$

and whose incidence matrix is

$$
M\left(\Delta_{n}\right)=\left(\begin{array}{ccccc}
1 & 1 & & & \\
1 & & 1 & & \\
\vdots & & & \ddots & \\
1 & & & & 1 \\
& 1 & 1 & \cdots & 1
\end{array}\right)
$$

We refer to Δ_{n}, and any clutter isomorphic to it, as a delta of dimension n. Notice that the elements and members of Δ_{n} correspond to the points and lines of a degenerate projective plane. ${ }^{1}$

Theorem 9.2. Take an integer $n \geq 3$. Then,
(1) $b\left(\Delta_{n}\right)=\Delta_{n}$,
(2) $\min \left\{\mathbf{1}^{\top} x: M\left(\Delta_{n}\right) x \geq \mathbf{1}\right\}$ has no integral optimal solution, and
(3) Δ_{n} is minimally non-ideal.

Proof. (1) As Δ_{n} does not have disjoint members, every member is also a cover, so every member of Δ_{n} contains a member of $b\left(\Delta_{n}\right)$. Conversely, let B be a minimal cover of Δ_{n}. If $1 \notin B$, then as B intersects each one of $\{1,2\},\{1,3\}, \ldots,\{1, n\}$, it follows that $\{2,3, \ldots, n\} \subseteq B$. If $1 \in B$, then as B intersects $\{2,3, \ldots, n\}$, it follows that $\{1, i\} \subseteq B$ for some $i \in\{2,3, \ldots, n\}$. In both cases, we see that B contains a member, so every member of $b\left(\Delta_{n}\right)$ contains a member of Δ_{n}. It therefore follows from Remark 6.6 that $b\left(\Delta_{n}\right)=\Delta_{n}$. (2) In particular, $\tau(\mathcal{C})=2$. Consider now the fractional feasible solution $x^{\star}:=\left(\frac{n-2}{n-1} \frac{1}{n-1} \cdots \frac{1}{n-1}\right)$. The objective

[^0]value of this solution is $1+\frac{n-2}{n-1}<2=\tau(\mathcal{C})$, so (2) holds. (3) It follows from (2) that Δ_{n} is non-ideal. To prove that Δ_{n} is mni, we need to show for each $e \in[n]$ that $\Delta_{n} \backslash e$ and Δ_{n} / e are ideal clutters. In fact, since
$$
\Delta_{n} \backslash e=b\left(b\left(\Delta_{n} \backslash e\right)\right)=b\left(b\left(\Delta_{n}\right) / e\right)=b\left(\Delta_{n} / e\right)
$$
by (1), it suffices by Theorem 7.8 to show that one of $\Delta_{n} \backslash e, \Delta_{n} / e$ is ideal. By the symmetry between the elements $2,3, \ldots, n$, we may assume that $e \in\{1, n\}$. Observe that
$$
\Delta_{n} \backslash 1=\{\{2,3, \ldots, n\}\}
$$
and
$$
\Delta_{n} / n=\{\{1\},\{2, \ldots, n-1\}\} .
$$

We leave it as an exercise for the reader to see that these clutters are indeed ideal. Thus, Δ_{n} is mni.
The deltas form an important class of mni clutters that is tractable in the sense that it is easy to see whether a clutter has a delta minor or not. To see why, we need the following result:

Theorem 9.3 (Abdi, Cornuéjols, Pashkovich 2017). Take a clutter \mathcal{C} over ground set E and an element $e \in E$. If there are distinct members C_{1}, C_{2}, C such that $e \in C_{1} \cap C_{2}, e \notin C$ and $\left(C_{1} \cup C_{2}\right)-\{e\} \subseteq C$, then \mathcal{C} has a delta minor that can be found in time $O(|E||\mathcal{C}|)$.

Proof. Let us call $\left(C_{1}, C_{2}, C\right)$ a bad triple through e. We may assume that in every proper minor of \mathcal{C} where e is present, no bad triple through e exists. We will prove that \mathcal{C} itself is a delta. The minimality assumption implies that
(1) $C_{1} \cap C_{2}=\{e\}$,
because for $I:=\left(C_{1} \cap C_{2}\right)-\{e\}$, the minor \mathcal{C} / I has the bad triple $\left(C_{1}-I, C_{2}-I, C-I\right)$ through e.
The minimality assumption also implies that
(2) $\{e\} \cup C=E$,
because for $J:=E-(\{e\} \cup C), \mathcal{C} \backslash J$ has the same bad triple $\left(C_{1}, C_{2}, C\right)$ through e.
Next we claim that
(3) $\left|C_{1}\right|=\left|C_{2}\right|=2$.

To see this, suppose for a contradiction that one of C_{1}, C_{2}, say C_{1}, has cardinality at least 3 . Pick an element $h \in C_{1}-\{e\}$, and note that by $(1), h \notin C_{2}$. Consider the minor $\mathcal{C}^{\prime}:=\mathcal{C} / h$, for which $C_{1}^{\prime}:=C_{1}-\{h\}$ and $C^{\prime}:=C-\{h\}$ are still members. Notice that C_{2} contains a member C_{2}^{\prime} of \mathcal{C}^{\prime}, for which it is easy to see that $e \in C_{2}^{\prime}$ and $C_{2}^{\prime} \neq\{e\}$. But now \mathcal{C}^{\prime} has a bad triple $\left(C_{1}^{\prime}, C_{2}^{\prime}, C^{\prime}\right)$ through e, a contradiction to our minimality assumption. This proves (3).

Now let $X:=\{f \in E:\{e, f\}$ is a member $\}$. So $|X| \geq 2$ by (3), and $X \subseteq C$ by (2). Our last claim is that
(4) $X=C$.

For if not, pick an element $h \in C-X$, and note that \mathcal{C} / h has a bad triple $\left(C_{1}, C_{2}, C-\{h\}\right)$ through e, contradicting the minimality assumption. Thus, $X=C$. Hence,

$$
\mathcal{C} \supseteq\{\{e, f\}: f \in C\} \cup\{C\} .
$$

Since $\{e\} \cup C=E$ by (2), and \mathcal{C} is a clutter, equality must hold above, implying in turn that \mathcal{C} indeed is a delta, as required.

We will use this in the next lecture to give a polynomial time algorithm for certifying whether or not a clutter has a delta minor.

[^0]: ${ }^{1}$ In the literature, a delta of dimension n is called a degenerate projective plane of order $n-1$. However, as there are other degenerate projective planes, we refrain from using this terminology.

