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9.2 The minimally non-ideal clutters different from the deltas, continued

Take an integer n ≥ 2, and let A be an n × n matrix with 0 − 1 entries and without a row or a column of all

ones. Recall that A is cross regular if whenever Aij = 0, the number of ones in column j is equal to the number

of ones in row i. Last time, we proved the following lemma:

Lemma 9.9 (Lehman 1990). The following statements hold:

(1) Take an integer n ≥ 2, and letA be a 0−1 n×nmatrix without a row or a column of all ones, and whenever

Aij = 0, the number of ones in column j is greater than or equal to the number of ones in row i. Then A is

cross regular.

(2) Cross regular matrices cannot differ in just one row.

We are now ready to prove the following geometric characterization of the mni clutters different from the deltas:

Theorem 9.10 (Lehman 1990). Let C be a minimally non-ideal clutter over ground set E that is not a delta, and

let n := |E|. Let x? be a fractional extreme point of {1 ≥ x ≥ 0 :M(C)x ≥ 1}. Then the following statements

hold:

(1) 0 < x? < 1,

(2) x? lies on exactly n facets, that correspond to members C1, . . . , Cn ∈ C – so x? is a simple vertex,

(3) the n neighbors of x? are integral vertices, that correspond to covers B1, . . . , Bn labeled so that for distinct

i, j ∈ [n], |Ci ∩Bi| > 1 and |Ci ∩Bj | = 1,

(4) B1, . . . , Bn are minimal covers,

(5) C1, . . . , Cn are precisely the minimum cardinality members of C,

(6) x? is the unique fractional extreme point of {1 ≥ x ≥ 0 :M(C)x ≥ 1},

(7) there is an integer d ≥ 1 such that for each i ∈ [n], |Ci ∩Bi| = 1 + d.
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In particular, x? is the unique fractional extreme point of {x ≥ 0 :M(C)x ≥ 1}.

Proof. Let P := P (C) = {1 ≥ x ≥ 0 :M(C)x ≥ 1}. Then for each element e ∈ E, the clutters C/e, C \ e are

ideal, so the polytopes P ∩ {x : xe = 0} and P ∩ {x : xe = 1} are integral by Remark 9.8, implying in turn for

each fractional extreme point x? that 0 < x?e < 1, so (1) holds. (The fact that C is different from a delta will be

first used in Claim 4.)

Claim 1. Let x? be a fractional extreme point of P , and let A be an n×n non-singular submatrix of M(C) such

that Ax? = 1. Then A is cross regular.

Proof of Claim. Clearly, A has no all ones row, and since x? is the unique solution to Ax? = 1, A has no all

ones column either. To prove that A is cross regular, assume that A11 = 0. Let C be the member corresponding

to the first row of A. By Lemma 9.9 (1), it suffices to show that the number of ones in the first column is greater

than or equal to |C|. To this end, let x̂ := (1, x?2, . . . , x
?
n) ∈ P ∩ {x : x1 = 1}. Let F be the smallest face of the

polytope P ∩ {x : x1 = 1} containing x̂. Notice that a>x̂ = 1 for every row a of A whose first entry is 0. As

these rows are linearly independent, and as x̂1 = 1, it follows that

dim(F ) ≤ n− number of 0s in the first column − 1 = number of 1s in the first column − 1.

On the other hand, as P ∩ {x : x1 = 1} is an integral polytope, F is also an integral polytope, so

x̂ =

k∑
i=1

λiχBi

for some extreme points χB1 , . . . , χBk
of F and some λ > 0 such that

∑k
i=1 λi = 1. Notice for each i ∈ [k]

thatBi is a cover, and as x̂(C) = 1, we get that |Bi∩C| = 1. Since x̂ > 0, each element of C appears in at least

one Bi, so the matrix whose rows are the χBi
’s has rank at least |C|, implying in turn that the affine dimension

of the χBi ’s is at least |C| − 1. As a result,

dim(F ) ≥ |C| − 1.

Putting the last two inequalities gives the desired inequality, as desired. ♦

Claim 2. Every fractional extreme point of P is simple, that is, it lies on exactly n facets. Thus, (2) holds.

Proof of Claim. Suppose for a contradiction that P has a non-simple fractional extreme point x?. Let A be an

n×n non-singular submatrix ofM(C) such thatAx? = 1. As x? is non-simple, there is another row a′ ofM(C)
such that a′>x? = 1. Pick a row a of A such that the matrix A′ obtained by replacing a and a′ is non-singular.

(To find a, write a′ as a linear combination of the rows of A, and pick the row a whose coefficient is non-zero.)

Then by Claim 1, both A and A′ are cross regular, a contradiction to Lemma 9.9 (2) as A and A′ differ in exactly

one row. ♦

Claim 3. P does not have neighboring fractional extreme points. Thus, (3) holds.
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Proof of Claim. Suppose for a contradiction that P has neighboring fractional extreme points x?, y?. Then there

are n× n non-singular submatrices A,B of M(C) that differ in exactly one row such that Ax? = 1 = By?. By

Claim 1, both A and B are cross regular, a contradiction to Lemma 9.9 (2). ♦

Now pick a fractional extreme point x? of P . By Claims 2 and 3, x? lies on n facets and has precisely n

neighbors, all of which are integral. Let C1, . . . , Cn ∈ C be the members corresponding to the facets x? sits on,

and let B1, . . . , Bn be the covers corresponding to the neighbors of x?, where our labeling satisfies for i, j ∈ [n]

the following:

|Ci ∩Bj |
{
> 1 if i = j

= 1 if i 6= j.

Let A (resp. B) be the 0− 1 matrix whose columns are labeled by E and whose rows are the incidence vectors

of C1, . . . , Cn (resp. B1, . . . , Bn). Then the equations above imply that

AB> = J + diag (|C1 ∩B1| − 1, . . . , |Cn ∩Bn| − 1) .

In particular, AB> is non-singular, implying in turn that B is non-singular. Moreover, by Claim 1, A is cross

regular. Let G be the bipartite representation of A, where column e and row C are adjacent if e /∈ C. Since A is

cross regular, it follows that adjacent vertices of G have the same degree. In particular, every component of G is

regular and so it has the same number of vertices in each bipartition.

Claim 4. G is connected.

Proof of Claim. Suppose for a contradiction that G is not connected. Then there exist a partition of the rows of

A into non-empty parts X1, X2 and a partition of the columns of A into non-empty parts Y1, Y2 ⊆ E such that

|X1| = |Y1|, |X2| = |Y2|, and the (X2, Y1) and (X1, Y2) blocks of A are submatrices of all ones. If |Y1| = 1

or |Y2| = 1, then A has a row with n − 1 ones, so C has a delta minor by Theorem 9.3, implying in turn by

minimality that C is a delta, a contradiction as C is not a delta. Otherwise, |X1| = |Y1| ≥ 2 and |X2| = |Y2| ≥ 2.

As a result, for each i ∈ [n], |Bi ∩ Y1| = |Bi ∩ Y2| = 1, implying in turn that the columns of B corresponding

to Y1 have the same sum as the columns of B corresponding to Y2, a contradiction as B is non-singular. ♦

In particular, G is a regular graph, implying in turn that for some integer r ≥ 2, every row and every column

of A has exactly r ones – this has two consequences. Firstly, each Bi is a minimal cover. For if not, then

Bi−{e} is a cover for some e ∈ Bi, implying in turn that column e ofA has at least n−1 zero entries, implying

in turn that r ≤ 1, which is not the case. Thus (4) holds. Secondly, since A is non-singular, it follows that

x? =
(
1
r

1
r · · ·

1
r

)
. As a result, as x? ∈ P , every row of M(C) has at least r ones, and as x? is simple, every row

of M(C) not in A has at least r + 1 ones, so (5) holds. In particular, we cannot run this argument for another

fractional extreme point, so x? is the unique fractional extreme point of P , so (6) holds. Finally, for each i ∈ [n],

let di := |Ci ∩Bi| − 1 ∈ {1, . . . , r − 1}, and let D := diag(d1, . . . , dn). Then

(n+ d1, n+ d2, . . . , n+ dn) = 1>(J +D) = 1>(AB>) = (1>A)B> = r · (B1)>.
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Since there is at most one multiple of r in {n + 1, . . . , n + r − 1}, it follows that d := d1 = d2 = · · · = dn,

implying in turn that (7) holds, thereby finishing the proof.

We will use this next time to prove a combinatorial characterization of the mni clutters different from the

deltas.
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