CO 750 Packing and Covering: Lecture 19

Ahmad Abdi

July 6, 2017

9.2 The minimally non-ideal clutters different from the deltas, continued

Last time, we proved the following theorem:

Theorem 9.10 (Lehman 1990). Let C be a minimally non-ideal clutter over ground set E that is not a delta, and let n := |E|. Let x^* be a fractional extreme point of $\{1 \ge x \ge 0 : M(C)x \ge 1\}$. Then the following statements hold:

- (1) $0 < x^* < 1$,
- (2) x^* lies on exactly n facets, that correspond to members $C_1, \ldots, C_n \in \mathcal{C}$ so x^* is a simple vertex,
- (3) the *n* neighbors of x^* are integral vertices, that correspond to covers B_1, \ldots, B_n labeled so that for distinct $i, j \in [n], |C_i \cap B_i| > 1$ and $|C_i \cap B_j| = 1$,
- (4) B_1, \ldots, B_n are minimal covers,
- (5) C_1, \ldots, C_n are precisely the minimum cardinality members of C,
- (6) x^* is the unique fractional extreme point of $\{1 \ge x \ge 0 : M(\mathcal{C})x \ge 1\}$,
- (7) there is an integer $d \ge 1$ such that for each $i \in [n]$, $|C_i \cap B_i| = 1 + d$.

In particular, x^* is the unique fractional extreme point of $\{x \ge \mathbf{0} : M(\mathcal{C})x \ge \mathbf{1}\}$.

Parts (3) and (7) of this theorem lead to square 0-1 matrices whose product is of the form J + dI for an integer $d \ge 1$ – Bridges and Ryser (1969) studied such matrices and proved nice properties about them. For an integer $k \ge 1$, a square 0-1 matrix is *k*-regular if every row and every column has exactly k ones.

Theorem 9.11 (Bridges and Ryser 1969). *Take an integer* $n \ge 3$, and let A, B be $n \times n$ matrices with 0 - 1 entries such that

$$AB = J + dI$$

for some integer $d \ge 1$. Then A, B are non-singular matrices that commute

$$BA = J + dI,$$

and for some integers $r, s \ge 2$ such that rs = n + d, A is r-regular and B is s-regular.

Proof. As J + dI is non-singular, it follows that both A, B are non-singular matrices. In particular, neither A nor B has a zero row or a zero column. We have

$$I = (J+dI)\left(\frac{1}{d}I - \frac{1}{d(n+d)}J\right) = (AB)\left(\frac{1}{d}I - \frac{1}{d(n+d)}J\right) = A\left(\frac{1}{d}B - \frac{1}{d(n+d)}BJ\right)$$

so A and $\frac{1}{d}B - \frac{1}{d(n+d)}BJ$ are inverses of one another. Thus,

$$I = \left(\frac{1}{d}B - \frac{1}{d(n+d)}BJ\right)A = \frac{1}{d}BA - \frac{1}{d(n+d)}(B\mathbf{1})(A^{\top}\mathbf{1})^{\top},$$

so

$$BA = \frac{1}{n+d} (B\mathbf{1}) (A^{\top} \mathbf{1})^{\top} + dI.$$

For each $i \in [n]$, denote by $s_i \in \{1, 2, ..., n\}$ the number of ones in row i of B, and by $r_i \in \{1, 2, ..., n\}$ the number of ones in column i of A. Then the previous equation implies that

(1) for all $i, j \in [n], n+d \mid s_i r_j$.

As trace(AB) = trace(BA), it follows that

$$n+nd = \frac{1}{n+d} \sum_{i=1}^{n} s_i r_i + nd,$$

so

$$n(n+d) = \sum_{i=1}^{n} s_i r_i \ge n(n+d),$$

implying in turn that

(2) for each
$$i \in [n]$$
, $n + d = s_i r_i$.

(1) and (2) imply that $r := r_1 = r_2 = \cdots = r_n$ and $s := s_1 = s_2 = \cdots = s_n$. As a consequence,

$$BA = \frac{1}{n+d}(B\mathbf{1})(A^{\top}\mathbf{1})^{\top} + dI = J + dI = AB$$

Analyzing the equation AB = J + dI, we proved that every row of B has the same s number of ones, and every column of A has the same r number of ones. The same argument on the equation BA = J + dI implies that every row of A has the same number of ones, and the number inevitably has to be r, while every column of B has the same number of ones, and the number inevitably has to be s. In particular, A is r-regular and B is s-regular. As rs = n + d and r, s < n + d, it follows that $r, s \ge 2$, thereby finishing the proof.

We are now ready for Lehman's combinatorial characterization of the mni clutters different from the deltas:

Theorem 9.12 (Lehman 1990). Suppose C is a minimally non-ideal clutter over ground set E that is not a delta, and let $\mathcal{B} := b(\mathcal{C})$. Denote by $\overline{\mathcal{C}}, \overline{\mathcal{B}}$ the clutters over ground set E of the minimum cardinality members of \mathcal{C}, \mathcal{B} , respectively. Then

(1) $M(\overline{C})$ and $M(\overline{B})$ are square and non-singular matrices,

- (2) for some integers $r \geq 2$ and $s \geq 2$, $M(\overline{C})$ is r-regular and $M(\overline{B})$ is s-regular,
- (3) for n := |E|, $rs \ge n + 1$,
- (4) after possibly permuting the rows of $M(\overline{\mathcal{B}})$, we have

$$M(\overline{\mathcal{C}})M(\overline{\mathcal{B}})^{\top} = J + (rs - n)I = M(\overline{\mathcal{B}})^{\top}M(\overline{\mathcal{C}}),$$

that is, there is a labeling C_1, \ldots, C_n of the members of \overline{C} and a labeling B_1, \ldots, B_n of the members of \overline{B} such that for all $i, j \in [n]$,

$$|C_i \cap B_j| = \begin{cases} rs - n + 1 & \text{if } i = j \\ 1 & \text{if } i \neq j, \end{cases}$$

and for all elements $g, h \in E(\mathcal{C})$,

$$\left|\left\{i\in[n]:g\in C_i,h\in B_i\right\}\right| = \begin{cases} rs-n+1 & \text{if } g=h\\ 1 & \text{if } g\neq h. \end{cases}$$

Proof. Let $x^* \in [0,1]^E$ be a fractional extreme point of $P(\mathcal{C})$. After applying Theorem 9.10 to the mni clutter \mathcal{C} , we get the following implications. The point $x^* \in [0,1]^E$ is the unique fractional extreme point of $P(\mathcal{C})$, $1 > x^* > 0$ and x^* is simple. Let A be the submatrix of $M(\mathcal{C})$ such that $Ax^* = 1$. We have that $A = M(\overline{\mathcal{C}})$. Let B_1, \ldots, B_n be the minimal covers that correspond to the neighbors of x^* , and let B be the matrix whose rows are the incidence vectors of B_1, \ldots, B_n . Then after possibly permuting the rows of $B, AB^\top = J + dI$ for some integer $d \ge 1$.

It now follows from Theorem 9.11 that A, B are non-singular matrices such that $AB^{\top} = J + dI = B^{\top}A$, and for some integers $r, s \ge 2$ such that rs = n + d, A is r-regular and B is s-regular. To finish the proof, it remains to show that $B = M(\overline{B})$. To this end, notice that x^* is equal to $(\frac{1}{r} \cdots \frac{1}{r})$, and the neighbors of x^* lie on the hyperplane $\sum_{i=1}^{n} x_i = s$. Therefore, the inequality $\sum_{i=1}^{n} x_i \ge s$ is valid for all the integer extreme points of P, implying in turn that every member of \mathcal{B} has cardinality at least s. As a result, $(\frac{1}{s} \cdots \frac{1}{s})$ is a fractional extreme point of $P(\mathcal{B})$. Applying Theorem 9.10 to the mni clutter \mathcal{B} , we see that $(\frac{1}{s} \cdots \frac{1}{s})$ must be the unique fractional extreme point of $P(\mathcal{B})$ and $B = M(\overline{\mathcal{B}})$, as required.

9.3 Immediate applications

The first application of Theorem 9.12 is that the deltas (with the exception of Δ_3) are the only mni clutters requiring unequal weights to violate the width-length inequality. The following application is the true analogue of the max-max inequality, Theorem 5.6:

Theorem 9.13. A clutter without a delta minor is ideal if, and only if, for each minor C,

$$\min\left\{|C|: C \in \mathcal{C}\right\} \cdot \min\left\{|B|: B \in b(\mathcal{C})\right\} \le |E(\mathcal{C})|.$$

Proof. If the clutter is ideal, then the inequality follows from the width-length inequality of Theorem **??**. Conversely, it suffices to prove that for an mni clutter C that is not a delta,

$$\min\{|C|: C \in \mathcal{C}\} \cdot \min\{|B|: B \in b(\mathcal{C})\} > |E(\mathcal{C})|.$$

Let n, r, s be the parameters as in Theorem 9.12. Then the inequality $rs \ge n+1$ implies the inequality above, as required.

(Notice that the theorem can be extended to clutters without a minor in $\{\Delta_n : n \ge 4\}$.) A second application of Theorem 9.12 is the following truly remarkable result that, to test integrality of an *n*-dimensional set covering polyhedron, it is sufficient to test just 3^n directions:

Theorem 9.14. If C is a minimally non-ideal clutter, then

$$\min\{\mathbf{1}^{\top}x: M(\mathcal{C})x \ge \mathbf{1}, x \ge \mathbf{0}\}\$$

has no integral optimal solution. As a consequence, if C is a non-ideal clutter over ground set E, then there exists $w \in \{0, 1, +\infty\}^E$ such that

$$\min\{w^{\top}x: M(\mathcal{C})x \ge \mathbf{1}, x \ge \mathbf{0}\}\$$

has no integral optimal solution.

Proof. If C is a delta, then the result follows from Theorem 9.2 (2). Otherwise, C is not a delta, and let n, r, s be as in Theorem 9.12. As every member has cardinality at least r, it follows that $x^* := \left(\frac{1}{r} \frac{1}{r} \cdots \frac{1}{r}\right)$ is a feasible solution, and its objective value is $\frac{n}{r} \leq \frac{rs-1}{r} < s$. However, the minimum cardinality of a cover is s, so $\min\{\mathbf{1}^{\top}x : M(C)x \geq \mathbf{1}, x \geq \mathbf{0}\}$ has no integral optimal solution. The second part follows from the first part after applying Remark 7.10.

A clutter *C* fractionally packs if it has a fractional packing of value $\tau(C)$. It follows from the preceding theorem that an mni clutter does not fractionally pack. Thus,

Theorem 9.15. A clutter is ideal if, and only if, every minor fractionally packs.

We say that a clutter has the *packing property* if every minor packs. An immediate consequence of the preceding theorem is that,

Corollary 9.16. If a clutter has the packing property, then it is ideal.

Conforti and Cornuéjols (1993) conjecture that if a clutter has the packing property, then it must be Mengerian.