CO 750 Packing and Covering: Lecture 19

Ahmad Abdi

July 6, 2017

9.2 The minimally non-ideal clutters different from the deltas, continued

Last time, we proved the following theorem:
Theorem 9.10 (Lehman 1990). Let \mathcal{C} be a minimally non-ideal clutter over ground set E that is not a delta, and let $n:=|E|$. Let x^{\star} be a fractional extreme point of $\{\mathbf{1} \geq x \geq \mathbf{0}: M(\mathcal{C}) x \geq \mathbf{1}\}$. Then the following statements hold:
(1) $\mathbf{0}<x^{\star}<\mathbf{1}$,
(2) x^{\star} lies on exactly n facets, that correspond to members $C_{1}, \ldots, C_{n} \in \mathcal{C}-$ so x^{\star} is a simple vertex,
(3) the n neighbors of x^{\star} are integral vertices, that correspond to covers B_{1}, \ldots, B_{n} labeled so that for distinct $i, j \in[n],\left|C_{i} \cap B_{i}\right|>1$ and $\left|C_{i} \cap B_{j}\right|=1$,
(4) B_{1}, \ldots, B_{n} are minimal covers,
(5) C_{1}, \ldots, C_{n} are precisely the minimum cardinality members of \mathcal{C},
(6) x^{\star} is the unique fractional extreme point of $\{\mathbf{1} \geq x \geq \mathbf{0}: M(\mathcal{C}) x \geq \mathbf{1}\}$,
(7) there is an integer $d \geq 1$ such that for each $i \in[n],\left|C_{i} \cap B_{i}\right|=1+d$.

In particular, x^{\star} is the unique fractional extreme point of $\{x \geq \mathbf{0}: M(\mathcal{C}) x \geq \mathbf{1}\}$.
Parts (3) and (7) of this theorem lead to square $0-1$ matrices whose product is of the form $J+d I$ for an integer $d \geq 1$ - Bridges and Ryser (1969) studied such matrices and proved nice properties about them. For an integer $k \geq 1$, a square $0-1$ matrix is k-regular if every row and every column has exactly k ones.

Theorem 9.11 (Bridges and Ryser 1969). Take an integer $n \geq 3$, and let A, B be $n \times n$ matrices with 0 - 1 entries such that

$$
A B=J+d I
$$

for some integer $d \geq 1$. Then A, B are non-singular matrices that commute

$$
B A=J+d I,
$$

and for some integers $r, s \geq 2$ such that $r s=n+d, A$ is r-regular and B is s-regular.

Proof. As $J+d I$ is non-singular, it follows that both A, B are non-singular matrices. In particular, neither A nor B has a zero row or a zero column. We have

$$
I=(J+d I)\left(\frac{1}{d} I-\frac{1}{d(n+d)} J\right)=(A B)\left(\frac{1}{d} I-\frac{1}{d(n+d)} J\right)=A\left(\frac{1}{d} B-\frac{1}{d(n+d)} B J\right)
$$

so A and $\frac{1}{d} B-\frac{1}{d(n+d)} B J$ are inverses of one another. Thus,

$$
I=\left(\frac{1}{d} B-\frac{1}{d(n+d)} B J\right) A=\frac{1}{d} B A-\frac{1}{d(n+d)}(B \mathbf{1})\left(A^{\top} \mathbf{1}\right)^{\top}
$$

so

$$
B A=\frac{1}{n+d}(B \mathbf{1})\left(A^{\top} \mathbf{1}\right)^{\top}+d I
$$

For each $i \in[n]$, denote by $s_{i} \in\{1,2, \ldots, n\}$ the number of ones in row i of B, and by $r_{i} \in\{1,2, \ldots, n\}$ the number of ones in column i of A. Then the previous equation implies that
(1) for all $i, j \in[n], n+d \mid s_{i} r_{j}$.

As trace $(A B)=\operatorname{trace}(B A)$, it follows that

$$
n+n d=\frac{1}{n+d} \sum_{i=1}^{n} s_{i} r_{i}+n d
$$

so

$$
n(n+d)=\sum_{i=1}^{n} s_{i} r_{i} \geq n(n+d)
$$

implying in turn that
(2) for each $i \in[n], n+d=s_{i} r_{i}$.
(1) and (2) imply that $r:=r_{1}=r_{2}=\cdots=r_{n}$ and $s:=s_{1}=s_{2}=\cdots=s_{n}$. As a consequence,

$$
B A=\frac{1}{n+d}(B \mathbf{1})\left(A^{\top} \mathbf{1}\right)^{\top}+d I=J+d I=A B
$$

Analyzing the equation $A B=J+d I$, we proved that every row of B has the same s number of ones, and every column of A has the same r number of ones. The same argument on the equation $B A=J+d I$ implies that every row of A has the same number of ones, and the number inevitably has to be r, while every column of B has the same number of ones, and the number inevitably has to be s. In particular, A is r-regular and B is s-regular. As $r s=n+d$ and $r, s<n+d$, it follows that $r, s \geq 2$, thereby finishing the proof.

We are now ready for Lehman's combinatorial characterization of the mni clutters different from the deltas:
Theorem 9.12 (Lehman 1990). Suppose \mathcal{C} is a minimally non-ideal clutter over ground set E that is not a delta, and let $\mathcal{B}:=b(\mathcal{C})$. Denote by $\overline{\mathcal{C}}, \overline{\mathcal{B}}$ the clutters over ground set E of the minimum cardinality members of \mathcal{C}, \mathcal{B}, respectively. Then
(1) $M(\overline{\mathcal{C}})$ and $M(\overline{\mathcal{B}})$ are square and non-singular matrices,
(2) for some integers $r \geq 2$ and $s \geq 2, M(\overline{\mathcal{C}})$ is r-regular and $M(\overline{\mathcal{B}})$ is s-regular,
(3) for $n:=|E|, r s \geq n+1$,
(4) after possibly permuting the rows of $M(\overline{\mathcal{B}})$, we have

$$
M(\overline{\mathcal{C}}) M(\overline{\mathcal{B}})^{\top}=J+(r s-n) I=M(\overline{\mathcal{B}})^{\top} M(\overline{\mathcal{C}})
$$

that is, there is a labeling C_{1}, \ldots, C_{n} of the members of $\overline{\mathcal{C}}$ and a labeling B_{1}, \ldots, B_{n} of the members of $\overline{\mathcal{B}}$ such that for all $i, j \in[n]$,

$$
\left|C_{i} \cap B_{j}\right|= \begin{cases}r s-n+1 & \text { if } i=j \\ 1 & \text { if } i \neq j\end{cases}
$$

and for all elements $g, h \in E(\mathcal{C})$,

$$
\left|\left\{i \in[n]: g \in C_{i}, h \in B_{i}\right\}\right|= \begin{cases}r s-n+1 & \text { if } g=h \\ 1 & \text { if } g \neq h\end{cases}
$$

Proof. Let $x^{\star} \in[0,1]^{E}$ be a fractional extreme point of $P(\mathcal{C})$. After applying Theorem 9.10 to the mni clutter \mathcal{C}, we get the following implications. The point $x^{\star} \in[0,1]^{E}$ is the unique fractional extreme point of $P(\mathcal{C})$, $\mathbf{1}>x^{\star}>\mathbf{0}$ and x^{\star} is simple. Let A be the submatrix of $M(\mathcal{C})$ such that $A x^{\star}=\mathbf{1}$. We have that $A=M(\overline{\mathcal{C}})$. Let B_{1}, \ldots, B_{n} be the minimal covers that correspond to the neighbors of x^{\star}, and let B be the matrix whose rows are the incidence vectors of B_{1}, \ldots, B_{n}. Then after possibly permuting the rows of $B, A B^{\top}=J+d I$ for some integer $d \geq 1$.

It now follows from Theorem 9.11 that A, B are non-singular matrices such that $A B^{\top}=J+d I=B^{\top} A$, and for some integers $r, s \geq 2$ such that $r s=n+d, A$ is r-regular and B is s-regular. To finish the proof, it remains to show that $B=M(\overline{\mathcal{B}})$. To this end, notice that x^{\star} is equal to $\left(\frac{1}{r} \cdots \frac{1}{r}\right)$, and the neighbors of x^{\star} lie on the hyperplane $\sum_{i=1}^{n} x_{i}=s$. Therefore, the inequality $\sum_{i=1}^{n} x_{i} \geq s$ is valid for all the integer extreme points of P, implying in turn that every member of \mathcal{B} has cardinality at least s. As a result, $\left(\frac{1}{s} \cdots \frac{1}{s}\right)$ is a fractional extreme point of $P(\mathcal{B})$. Applying Theorem 9.10 to the mni clutter \mathcal{B}, we see that $\left(\frac{1}{s} \cdots \frac{1}{s}\right)$ must be the unique fractional extreme point of $P(\mathcal{B})$ and $B=M(\overline{\mathcal{B}})$, as required.

9.3 Immediate applications

The first application of Theorem 9.12 is that the deltas (with the exception of Δ_{3}) are the only mni clutters requiring unequal weights to violate the width-length inequality. The following application is the true analogue of the max-max inequality, Theorem 5.6:

Theorem 9.13. A clutter without a delta minor is ideal if, and only if, for each minor \mathcal{C},

$$
\min \{|C|: C \in \mathcal{C}\} \cdot \min \{|B|: B \in b(\mathcal{C})\} \leq|E(\mathcal{C})|
$$

Proof. If the clutter is ideal, then the inequality follows from the width-length inequality of Theorem ??. Conversely, it suffices to prove that for an mni clutter \mathcal{C} that is not a delta,

$$
\min \{|C|: C \in \mathcal{C}\} \cdot \min \{|B|: B \in b(\mathcal{C})\}>|E(\mathcal{C})|
$$

Let n, r, s be the parameters as in Theorem 9.12. Then the inequality $r s \geq n+1$ implies the inequality above, as required.
(Notice that the theorem can be extended to clutters without a minor in $\left\{\Delta_{n}: n \geq 4\right\}$.) A second application of Theorem 9.12 is the following truly remarkable result that, to test integrality of an n-dimensional set covering polyhedron, it is sufficient to test just 3^{n} directions:

Theorem 9.14. If \mathcal{C} is a minimally non-ideal clutter, then

$$
\min \left\{\mathbf{1}^{\top} x: M(\mathcal{C}) x \geq \mathbf{1}, x \geq \mathbf{0}\right\}
$$

has no integral optimal solution. As a consequence, if \mathcal{C} is a non-ideal clutter over ground set E, then there exists $w \in\{0,1,+\infty\}^{E}$ such that

$$
\min \left\{w^{\top} x: M(\mathcal{C}) x \geq \mathbf{1}, x \geq \mathbf{0}\right\}
$$

has no integral optimal solution.

Proof. If \mathcal{C} is a delta, then the result follows from Theorem 9.2 (2). Otherwise, \mathcal{C} is not a delta, and let n, r, s be as in Theorem 9.12. As every member has cardinality at least r, it follows that $x^{\star}:=\left(\frac{1}{r} \frac{1}{r} \cdots \frac{1}{r}\right)$ is a feasible solution, and its objective value is $\frac{n}{r} \leq \frac{r s-1}{r}<s$. However, the minimum cardinality of a cover is s, so $\min \left\{\mathbf{1}^{\top} x: M(\mathcal{C}) x \geq \mathbf{1}, x \geq \mathbf{0}\right\}$ has no integral optimal solution. The second part follows from the first part after applying Remark 7.10.

A clutter \mathcal{C} fractionally packs if it has a fractional packing of value $\tau(\mathcal{C})$. It follows from the preceding theorem that an mni clutter does not fractionally pack. Thus,

Theorem 9.15. A clutter is ideal if, and only if, every minor fractionally packs.
We say that a clutter has the packing property if every minor packs. An immediate consequence of the preceding theorem is that,

Corollary 9.16. If a clutter has the packing property, then it is ideal.
Conforti and Cornuéjols (1993) conjecture that if a clutter has the packing property, then it must be Mengerian.

