CO 750 Packing and Covering: Lecture 20

Ahmad Abdi

July 11, 2017

10 Weakly bipartite graphs

Let G = (V, E) be a graph. A subset $F \subseteq E$ is *bipartite* if the vertices can be bicolored so that every edge of F gets both colors. Let P be the convex hull of the incidence vectors

$$\{\chi_F : F \text{ is bipartite}\} \subseteq \{0, 1\}^E.$$

Notice that the polytope P carries information about the cuts of G. For instance, for $w \in \mathbb{R}^E_+$, the optimization problem $\max\{w^{\top}x : x \in P\}$ seeks the maximum weight of a cut of G. As the latter is a fundamental NP-complete optimization problem, studying the polytope P is certainly worthwhile. We will be after a polyhedral description of P. Observe that an edge subset is bipartite if, and only if, it contains no odd-length circuit. As a result,

$$P \subseteq \left\{ x \in [0,1]^E : \sum \left(x_e : e \in C \right) \le |C| - 1 \ \forall \text{ odd-length circuits } C \right\}.$$

Observe that equality holds above if, and only if, the polytope on the right is integral. Following Grötschel and Pulleyblank (1981), a graph G = (V, E) is *weakly bipartite* if the polytope

$$\left\{ x \in [0,1]^E : \sum \left(x_e : e \in C \right) \le |C| - 1 \; \forall \; \text{odd-length circuits } C \right\}$$

is integral. After a change of variables $x \mapsto 1 - x$, we see that G is weakly bipartite if, and only if, the set covering polytope

$$\left\{ x \in [0,1]^E : \sum \left(x_e : e \in C \right) \ge 1 \ \forall \text{ odd-length circuits } C \right\}$$

is integral. Hence, by Proposition 9.7, a graph is weakly bipartite if, and only if, its clutter of odd-length circuits is ideal. Bipartite graphs are vacuously weakly bipartite. A non-trivial example is provided below:

Theorem 10.1 (Hadlock 1975, Barahona 1980). Planar graphs are weakly bipartite.

Proof. Let G = (V, E) be a plane graph. Notice that

 (\star) every circuit has an inside and an outside; the circuit can be written as the symmetric difference of the facial circuits that are inside (or outside); the circuit is odd-length if and only if the number of odd-length facial circuits used in the sum is odd.

Consider now the plane dual $G^* = (V^*, E)$, and let $T \subseteq V^*$ denote the odd-degree vertices. Observe that T is simply the odd-length facial circuits of G. Notice that the cycles of G are the cuts of G^* , and so the circuits of G are the minimal cuts of G^* . Moreover, it follows from (*) that the odd-length circuits of G are the minimal T-cuts of G^* . As the clutter of minimal T-cuts of G^* is ideal by Theorem 8.11 (3), it follows that the clutter of odd-length circuits of G is ideal, so G is weakly bipartite.

Thus the class of weakly bipartite graphs is quite rich. Let us analyze the two non-planar graphs $K_{3,3}$ and K_5 . As $K_{3,3}$ is bipartite, it is also weakly bipartite. K_5 however is not weakly bipartite. To see this, let us look at the set covering polytope associated with the odd-length circuits of K_5 :

$$\left\{x \in [0,1]^{E(K_5)} : \sum \left(x_e : e \in C\right) \ge 1 \ \forall \text{ odd-length circuits } C \text{ of } K_5\right\}.$$

Observe that K_5 has precisely 10 triangles, whose incidence vectors are linearly independent in $\mathbb{R}^{E(K_5)} \cong \mathbb{R}^{10}$, and that the other odd-length circuits all have length 5. As a result, the fractional point $(\frac{1}{3}, \frac{1}{3}, \cdots, \frac{1}{3}) \in \mathbb{R}^{E(K_5)}$ belongs to the polytope and is an extreme point. Consequently, the clutter of odd-length circuits of K_5 is nonideal, so K_5 is not weakly bipartite.

What are the weakly bipartite graphs? Whatever the class is, it must contain both bipartite and planar graphs. These rich classes suggest that a complete classification of the weakly bipartite graphs is a difficult problem, and indeed, this is still an open problem. We may however take another approach. The question we asked may be posed as, when is the clutter of odd-length circuits of a graph ideal? The advantage with this question is that idealness is a minor-closed property, so we may look for an excluded minor characterization. Let G = (V, E)be a graph, and let C be its clutter of odd-length circuits. Take an edge $e \in E$. What do the minors $C \setminus e, C/e$ correspond to in terms of G? Recall that $C \setminus e$ is the clutter of odd-length circuits of G avoiding e, so it is the clutter of odd-length circuits of $G \setminus e$. However,

$$C/e =$$
 the minimal sets of $\{C - \{e\} : C \text{ is an odd-length circuit of } G\}$

is *not* the clutter of odd-length circuits of G/e. (For instance, we could have that G is bipartite while G/e is non-bipartite.) It is not clear what C/e corresponds to in terms of the graph G. To make sense of this, we will need to change our framework.

10.1 Signed graphs

Let G = (V, E) be a graph, and take a subset $\Sigma \subseteq E$. The pair (G, Σ) is called a *signed graph*. In (G, Σ) , an *odd cycle* is a cycle $C \subseteq E$ such that $|C \cap \Sigma|$ is odd, and an *even cycle* is a cycle $C \subseteq E$ such that $|C \cap \Sigma|$ is even. Observe that for sets $C_1, C_2 \subseteq E$ we have

$$(C_1 \triangle C_2) \cap \Sigma = (C_1 \cap \Sigma) \triangle (C_2 \cap \Sigma).$$

In particular, if C_1, C_2 are cycles of parities $p_1, p_2 \in \{0, 1\}$, then $C_1 \triangle C_2$ is a cycle of parity $p_1 + p_2 \pmod{2}$. In (G, Σ) , an *odd circuit* is a circuit $C \subseteq E$ such that $|C \cap \Sigma|$ is odd, and an *even circuit* is a circuit $C \subseteq E$ such that $|C \cap \Sigma|$ is even. We leave the following as an exercise: **Remark 10.2.** Let (G, Σ) be a signed graph, and take a subset $C \subseteq E(G)$. The following statements are equivalent:

- C is a even cycle,
- *C* is a disjoint union of circuits, an even number of which are odd circuits,

and the following statements are equivalent:

- C is an odd cycle,
- C is a disjoint union of circuits, an odd number of which are odd circuits.

We will use this useful observation without reference. To resign (G, Σ) is to replace it by the signed graph $(G, \Sigma \triangle \delta(U))$ for some $U \subseteq V$.

Remark 10.3. Resigning preserves the parity of a cycle.

Proof. Let (G, Σ) be a signed graph, and let $(G, \Sigma \triangle \delta(U))$ be a resigning. Let C be a cycle. As $|C \cap \delta(U)|$ is even, it follows that

$$|C \cap (\Sigma \triangle \delta(U))| = |(C \cap \Sigma) \triangle (C \cap \delta(U))| \equiv |C \cap \Sigma| + |C \cap \delta(U)| \equiv |C \cap \Sigma| \pmod{2}.$$

Thus, C has the same parity in both (G, Σ) and $(G, \Sigma \triangle \delta(U))$, thereby finishing the proof.

A signature of (G, Σ) is any set of the form $\Sigma \triangle \delta(U), U \subseteq V$.

Proposition 10.4 (Zaslavsky 1982). If (G, Σ) has no odd cycle, then \emptyset is a signature.

Proof. Let A be the 0 - 1 matrix whose columns are labeled by the edges, and whose first |V| many rows are the incidence vectors of $\delta(v), v \in V$ and whose last row is the incidence vector of Σ . Let b be the column vector whose first |V| many coordinates are 0 and whose last entry is 1. As (G, Σ) has no odd cycle, the system

$$Ax \equiv b \pmod{2}$$

has no 0-1 solution. By Farkas' lemma for binary spaces, there is a certificate $c \in \{0,1\}^V \times \{0,1\}$ such that

$$c^{\top}A \equiv \mathbf{0} \quad \text{and} \quad c^{\top}b \equiv 1 \pmod{2}.$$

The second equation implies that the last entry of c is 1. Pick $U \subseteq V$ such that $c = (\chi_U 1)$. Then the first equation implies that $\Sigma = \delta(U)$, so $\emptyset = \Sigma \bigtriangleup \delta(U)$ is a signature.

As a consequence,

Theorem 10.5. For a signed graph, the clutter of odd circuits and the clutter of minimal signatures are blockers.

Proof. Let C be the clutter of odd circuits of (G, Σ) . By Remark 10.3, every minimal signature intersects every odd circuit in an odd number of edges, so every minimal signature is a cover of C. Conversely, let B be a minimal cover of C. Then the signed graph $(G \setminus B, \Sigma - B)$ has no odd circuit by definition, implying in turn that it has no odd cycle. It therefore follows from Proposition 10.4 that $\Sigma - B = \delta_{G \setminus B}(U)$ for some $U \subseteq V$. Then $\Sigma \Delta \delta(U) \subseteq B$, so B contains a signature of (G, Σ) . It follows Remark 6.6 that b(C) is the clutter of minimal signatures, as required.

Take disjoint edge subsets I, J of (G, Σ) . By Theorem 10.5, J does not contain an odd cycle if, and only if, there is a signature disjoint from J. Let

$$(G, \Sigma) \setminus I/J := \begin{cases} (G \setminus I/J, \emptyset) & \text{if } J \text{ contains an odd cycle,} \\ (G \setminus I/J, B - I) & B \text{ is a signature disjoint from } J. \end{cases}$$

We refer to $(G, \Sigma) \setminus I/J$ as a *minor* of (G, Σ) obtained after deleting I and contracting J.¹ Observe that $(G, \Sigma) \setminus I/J$ is defined up to resigning. In contrast to the unsigned graph case, we have the following:

Proposition 10.6. Let (G, Σ) be a signed graph and C the clutter of its odd circuits. Take disjoint edge subsets I, J such that J does not contain an odd cycle. Then $C \setminus I/J$ is the clutter of odd circuits of $(G, \Sigma) \setminus I/J$.

Proof. Let *B* be a signature of (G, Σ) disjoint from *J*. Then $(G \setminus I/J, B - I) = (G, \Sigma) \setminus I/J$. By Remark 6.6, it suffices to show that every odd circuit of $(G \setminus I/J, B - I)$ contains a member of $C \setminus I/J$, and every member of $C \setminus I/J$ contains an odd circuit of $(G \setminus I/J, B - I)$.

Let C' be an odd circuit of $(G \setminus I/J, B - I)$. Then there is a circuit C of (G, Σ) such that $C' \subseteq C \subseteq C' \cup J$. As B is a signature of (G, Σ) disjoint from J, it follows that $B \cap C = B \cap C' = (B - I) \cap C'$, so $|B \cap C|$ is odd, implying in turn that C is an odd circuit of (G, Σ) . As C - J contains a member of $C \setminus I/J$, it follows that C' contains a member of $C \setminus I/J$.

Conversely, let C be an odd circuit of (G, Σ) such that $C \cap I = \emptyset$. Then C - J is a cycle of $(G \setminus I/J, B - I)$. Since $|C \cap B|$ is odd, we get that $|(C - J) \cap (B - I)|$ is odd, so C - J is an odd cycle of $(G \setminus I/J, B - I)$, so it contains an odd circuit of $(G \setminus I/J, B - I)$, as required.

We say that a signed graph is *weakly bipartite* if its clutter of odd circuits is ideal. Observe that a graph G = (V, E) is weakly bipartite if, and only if, the signed graph (G, E) is weakly bipartite. Hence, as the graph K_5 is not weakly bipartite, it follows that the signed graph $(K_5, E(K_5))$ is not weakly bipartite. We will refer to the signed graph $(K_5, E(K_5))$ as an *odd*- K_5 . It follows from Remark 7.11 and Proposition 10.6 that,

Remark 10.7. If a signed graph is weakly bipartite, then it has no odd- K_5 minor.

Seymour (1977) conjectured that the converse of this remark also holds. Over 20 years later, in his PhD thesis, Guenin (2001) proved this conjecture! His proof made a spectacular use of Lehman's powerful result, Theorem 9.12.

¹In this setting, to contract a loop is to delete it.