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10.1 Signed graphs, continued

Let (G,Σ) be a signed graph. Recall that for disjoint edge subsets I, J , we defined the minor

(G,Σ) \ I/J =

{
(G \ I/J, ∅) if J contains an odd cycle,
(G \ I/J,B − I) otherwise, for some signature B disjoint from J .

Consider now the case when Σ = E(G), I = ∅ and J forms a cut ofG. As E(G)−J = E(G)4J is a signature

for (G,E(G)), it follows that

(G,E(G))/J = (G/J,E(G/J)).

This observation will be useful throughout the rest of this section.

Recall that a signed graph is weakly bipartite if its clutter of odd circuits is ideal. We showed last time that

the signed graph (K5, E(K5)), called an odd-K5, is not weakly bipartite. We also showed in Remark 10.7 that

if a signed graph is weakly bipartite, then it has no odd-K5 minor. Seymour (1977) conjectured that the converse

of this remark also holds. Over 20 years later, in his PhD thesis, Guenin (2001) proved this conjecture. His proof

made a spectacular use of Lehman’s powerful result, Theorem 9.12. To prove the conjecture, we will need a

lemma due to Schrijver (2002).

10.2 The whirlpool lemma and pseudo-odd-K5’s

The signed graph (K4, E(K4)) is called an odd-K4. Schrijver (2002) found a very nice way to find an odd-

K4 minor in a signed graph. To explain his method, let W be the graph on vertices 0, 1, 1′, 2, 2′, 3, 3′ and

edges {0, 1}, {0, 2}, {0, 3}, {1′, 2′}, {2′, 3′}, {3′, 1′}, {1, 2′}, {2, 3′}, {3, 1′}. We will refer to the signed graph

(W,E(W )) as a whirlpool with central edges {0, 1}, {0, 2}, {0, 3} – see Figure 1. Observe that a whirlpool has

an odd-K4 minor using its central edges, obtained after contracting the cut δ({0, 1, 2, 3}).

Lemma 10.8 (Schrijver 2002). Take a graph G = (V,E). Suppose that there are disjoint stable sets S1, S2, S3

and distinct vertices 0, 1, 2, 3 such that

• 0 ∈ V − (S1 ∪ S2 ∪ S3) and i ∈ Si for each i ∈ [3],

• {0, i} ∈ E for each i ∈ [3],
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Figure 1: The whirlpool with central edges {0, 1}, {0, 2}, {0, 3}. Every edge is odd.

• for distinct i, j ∈ [3], there is an ij-path contained in G[Si ∪ Sj ].

Then (G,E(G)) has an odd-K4 minor using the three edges {0, 1}, {0, 2}, {0, 3}.

Proof. We prove this by induction on |V | + |E| ≥ 10. The base case |V | + |E| = 10 is true as (G,E(G))

itself is an odd-K4. For the induction step, assume that |V | + |E| ≥ 11. For distinct i, j ∈ [3], let Pij ⊆ E

be an ij-path contained in G[Si ∪ Sj ]. We may assume that V = {0} ∪ V (P12) ∪ V (P23) ∪ V (P31) and

E = {{0, 1}, {0, 2}, {0, 3}} ∪ P12 ∪ P23 ∪ P31. If G has a vertex v of degree two, then the graph G/δ(v) still

satisfies the conditions of the lemma for the same vertices 0, 1, 2, 3 and appropriate stable sets, so by the induction

hypothesis, (G/δ(v), E(G/δ(v))) = (G,E(G))/δ(v) has an odd-K4 lemma using edges {0, 1}, {0, 2}, {0, 3},
implying in turn that (G,E(G)) has an odd-K4 lemma using edges {0, 1}, {0, 2}, {0, 3}. We may therefore

assume that G does not have a vertex of degree two. This implies in turn that

(?) for every permutation i, j, k of 1, 2, 3 we have Si = V (Pij) ∩ V (Pik), and that |S1| = |S2| =

|S3| ≥ 2,

as |V |+ |E| ≥ 11. Let 2′ ∈ S2 be the second vertex of the 12-path P12, 3′ ∈ S3 the second vertex of the 23-path

P23, and 1′ ∈ S1 the second vertex of the 31-path P31. Notice that 1′ 6= 1, 2′ 6= 2, 3′ 6= 3. Let H := G/δ(0),

and let 0′ be the vertex corresponding to 0, 1, 2, 3. Notice that {0′, 1′}, {0′, 2′}, {0′, 3′} ∈ E(H). For each

i ∈ [3], let S′
i := Si − {i}. Then for each i ∈ [3], S′

i is stable in H and i′ ∈ S′
i. Moreover, for distinct i, j ∈ [3],

the vertices i′, j′ lie on the path Pij by (?), so H[S′
i ∪ S′

j ] contains an i′j′-path. It therefore follows from the

induction hypothesis that (G,E(G))/δ(0) = (H,E(H)) has an odd-K4 minor using {0′, 1′}, {0′, 2′}, {0′, 3′}.
After decontracting δ(0), we get that (G,E(G)) has a whirlpool minor with central edges {0, 1}, {0, 2}, {0, 3},
which has an odd-K4 minor using the central edges. Consequently, (G,E(G)) has an odd-K4 minor using the

edges {0, 1}, {0, 2}, {0, 3}, thereby completing the induction step.

This lemma is also helpful for finding an odd-K5 minor. A pseudo-odd-K5 is a signed graph (G,E(G)) for

which the following statements hold: there exist a partition of V (G) into parts S0, S1, S2, S3 and distinct vertices

x, y ∈ S0 such that

• there is an edge e ∈ E whose ends are x, y, and for each i ∈ {0, 1, 2, 3}, Si is stable in G \ e,

• G \ e has internally vertex-disjoint xy-paths P1, P2, P3, where for each i ∈ [3], V (Pi) ⊆ S0 ∪ Si,
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• for distinct i, j ∈ [3], G[Si ∪ Sj ] has a path with one end in V (Pi) and the other in V (Pj).

As a consequence of the Whirlpool Lemma 10.8, we get that,

Theorem 10.9. A pseudo-odd-K5 has an odd-K5 minor.

Proof. If f ∈ E − ({e} ∪P1 ∪P2 ∪P3) is an edge with an end in S0, then (G \ f,E(G \ f)) = (G,E(G)) \ f
is still a pseudo-odd-K5. We may therefore assume that each edge of E− ({e}∪P1 ∪P2 ∪P3) has both ends in

S1 ∪ S2 ∪ S3. If u ∈ S0 is an internal vertex of one of P1, P2, P3, then as S0 is stable, (G/δ(u), E(G/δ(u))) =

(G,E(G))/δ(u) is still a pseudo-odd-K5. We may therefore assume that P1, P2, P3 do not have any internal

vertices in S0. Subsequently, as S1, S2, S3 are stable, it follows that for each i ∈ [3], V (Pi) = {x, y, vi} for

some vertex vi ∈ Si. Let (H,E(H)) := (G,E(G)) \ δ(y). Then by the Whirlpool Lemma 10.8, (H,E(H))

has an odd-K4 minor using edges {x, v1}, {x, v2}, {x, v3}. Adding vertex y and its incident edges back in, we

see that (G,E(G)) has an odd-K5 minor, as required.

10.3 A signed graph without an odd-K5 minor is weakly bipartite.

Let (G = (V,E),Σ) be a signed graph. Let U,U ′ ⊆ V be different components of G, if any, and let H be the

graph obtained from G by identifying a vertex of U with a vertex of U ′. Notice that G,H have the same edge

sets, and that the odd circuits of (G,Σ) are precisely the odd circuits of (H,Σ). Thus, (G,Σ) is weakly bipartite

if, and only if, (H,Σ) is weakly bipartite. Moreover, because K5 does not have a cut-vertex, if (H,Σ) has an

odd-K5 minor, then so does (G,Σ). We will use these observations in the proof below, due to Schrijver (2002).

Theorem 10.10 (Guenin 2001). A signed graph without an odd-K5 minor is weakly bipartite.

Proof. Let (G = (V,E),Σ) be a signed graph that is not weakly bipartite. We will show that (G,Σ) has an

odd-K5 minor. To this end, we may assume that G is connected, and that every proper minor of (G,Σ) is

weakly bipartite. Let C be the clutter of odd circuits of (G,Σ). It then follows from Proposition 10.6 that C is a

minimally non-ideal clutter. Take an edge e ∈ E. Using Lehman’s Theorem 9.12, we prove the following:

Claim 1. There are minimum odd circuits C1, C2, C3 and minimum signatures B1, B2, B3 such that for distinct

i, j ∈ [3],

(C1) |Ci ∩Bi| ≥ 3 and Ci ∩Bj = {e},

(C2) Ci ∩ Cj = {e} = Bi ∩Bj ,

(C3) the only odd cycles contained in Ci ∪ Cj are Ci, Cj ,

(C4) the only signatures contained in Bi ∪Bj are Bi, Bj .

Proof of Claim. Let n := |E| and let B be the clutter of minimal signatures. By Theorem 10.5, we have

B = b(C). Let M (resp. N ) be the row submatrix of M(C) (resp. M(B)) corresponding to the minimum odd

circuits (resp. minimum signatures). By Theorem 9.12, M (resp. N ) is a square and non-singular matrix that
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is r-regular (resp. s-regular) for some integers r, s ≥ 2 such that rs ≥ n + 1. Moreover, for some labeling

C1, . . . , Cn of the minimum odd circuits and labeling B1, . . . , Bn of the minimum signatures, we have that for

all i, j ∈ [n],

|Ci ∩Bj | =

rs− n+ 1 if i = j

1 if i 6= j,

and for all elements g, h ∈ E,

∣∣{i ∈ [n] : g ∈ Ci, h ∈ Bi

}∣∣ =

rs− n+ 1 if g = h

1 if g 6= h.

As signatures and odd circuits intersect in an odd number of edges, and rs−n+1 ≥ 2, it follows that rs−n+1 ≥
3. By the previous equation, after possibly re-indexing the Ci and Bi’s, we have that

e ∈ Ci ∩Bi i = 1, . . . , rs− n+ 1.

Consider C1, C2, C3 and B1, B2, B3. We will show that these are the desired sets. (C1) clearly holds. (C2)

If f ∈ (C1 ∩ C2) − {e}, then {i ∈ [n] : f ∈ Ci, e ∈ Bi} ⊇ {1, 2}, which is not the case. This shows that

C1∩C2 = {e} and similarly, C2∩C3 = C3∩C1 = {e}. Moreover, if g ∈ (B1∩B2)−{e}, then {i ∈ [n] : e ∈
Ci, g ∈ Bi} ⊇ {1, 2}, which is not the case. Thus, B1 ∩ B2 = {e} and similarly, B2 ∩ B3 = B3 ∩ B1 = {e}.
(C3) Let C be an odd cycle contained in Ci∪Cj . Then C ′ := Ci4Cj4C is an odd cycle. As C∪C ′ ⊆ Ci∪Cj

and C ∩ C ′ ⊆ Ci ∩ Cj , it follows that

2r = |Ci|+ |Cj | = |Ci ∪ Cj |+ |Ci ∩ Cj | ≥ |C ∪ C ′|+ |C ∩ C ′| = |C|+ |C ′| ≥ 2r,

so equality holds throughout. That is, C,C ′ are minimum odd circuits and χCi + χCj = χC + χC′ . As

M is non-singular, it follows that {C,C ′} = {Ci, Cj}, as required. (C4) Let B be a signature contained in

Bi ∪ Bj . Pick Wi,Wj ,W ⊆ V such that Bi = Σ4δ(Wi), Bj = Σ4δ(Wj) and B = Σ4δ(W ). Then for

W ′ := Wi4Wj4W we have

B′ := Bi4Bj4B = Σ4δ(Wi)4Σ4δ(Wj)4Σ4δ(W ) = Σ4δ(W ′),

so B′ is also a signature. As B ∪B′ ⊆ Bi ∪Bj and B ∩B′ ⊆ Bi ∩Bj , it follows that

2s = |Bi|+ |Bj | = |Bi ∪Bj |+ |Bi ∩Bj | ≥ |B ∪B′|+ |B ∩B′| = |B|+ |B′| ≥ 2s,

so equality holds throughout. That is, B,B′ are minimum signatures and χBi + χBj = χB + χB′ . As N is

non-singular, it follows that {B,B′} = {Bi, Bj}, as required. ♦

We will not be using Lehman’s Theorem 9.12 anymore. TO BE CONTINUED

4


