CO 750 Packing and Covering: Lecture 21

Ahmad Abdi

July 13, 2017

10.1 Signed graphs, continued

Let (G, Σ) be a signed graph. Recall that for disjoint edge subsets I, J, we defined the minor

$$
(G, \Sigma) \backslash I / J= \begin{cases}(G \backslash I / J, \emptyset) & \text { if } J \text { contains an odd cycle, } \\ (G \backslash I / J, B-I) & \text { otherwise, for some signature } B \text { disjoint from } J\end{cases}
$$

Consider now the case when $\Sigma=E(G), I=\emptyset$ and J forms a cut of G. As $E(G)-J=E(G) \triangle J$ is a signature for $(G, E(G))$, it follows that

$$
(G, E(G)) / J=(G / J, E(G / J))
$$

This observation will be useful throughout the rest of this section.
Recall that a signed graph is weakly bipartite if its clutter of odd circuits is ideal. We showed last time that the signed graph $\left(K_{5}, E\left(K_{5}\right)\right)$, called an odd- K_{5}, is not weakly bipartite. We also showed in Remark 10.7 that if a signed graph is weakly bipartite, then it has no odd- K_{5} minor. Seymour (1977) conjectured that the converse of this remark also holds. Over 20 years later, in his PhD thesis, Guenin (2001) proved this conjecture. His proof made a spectacular use of Lehman's powerful result, Theorem 9.12. To prove the conjecture, we will need a lemma due to Schrijver (2002).

10.2 The whirlpool lemma and pseudo-odd- K_{5} 's

The signed graph $\left(K_{4}, E\left(K_{4}\right)\right)$ is called an odd- K_{4}. Schrijver (2002) found a very nice way to find an oddK_{4} minor in a signed graph. To explain his method, let W be the graph on vertices $0,1,1^{\prime}, 2,2^{\prime}, 3,3^{\prime}$ and edges $\{0,1\},\{0,2\},\{0,3\},\left\{1^{\prime}, 2^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{3^{\prime}, 1^{\prime}\right\},\left\{1,2^{\prime}\right\},\left\{2,3^{\prime}\right\},\left\{3,1^{\prime}\right\}$. We will refer to the signed graph $(W, E(W))$ as a whirlpool with central edges $\{0,1\},\{0,2\},\{0,3\}$ - see Figure 1 . Observe that a whirlpool has an odd- K_{4} minor using its central edges, obtained after contracting the cut $\delta(\{0,1,2,3\})$.

Lemma 10.8 (Schrijver 2002). Take a graph $G=(V, E)$. Suppose that there are disjoint stable sets S_{1}, S_{2}, S_{3} and distinct vertices $0,1,2,3$ such that

- $0 \in V-\left(S_{1} \cup S_{2} \cup S_{3}\right)$ and $i \in S_{i}$ for each $i \in[3]$,
- $\{0, i\} \in E$ for each $i \in[3]$,

Figure 1: The whirlpool with central edges $\{0,1\},\{0,2\},\{0,3\}$. Every edge is odd.

- for distinct $i, j \in[3]$, there is an $i j$-path contained in $G\left[S_{i} \cup S_{j}\right]$.

Then $(G, E(G))$ has an odd- K_{4} minor using the three edges $\{0,1\},\{0,2\},\{0,3\}$.
Proof. We prove this by induction on $|V|+|E| \geq 10$. The base case $|V|+|E|=10$ is true as $(G, E(G))$ itself is an odd- K_{4}. For the induction step, assume that $|V|+|E| \geq 11$. For distinct $i, j \in[3]$, let $P_{i j} \subseteq E$ be an $i j$-path contained in $G\left[S_{i} \cup S_{j}\right]$. We may assume that $V=\{0\} \cup V\left(P_{12}\right) \cup V\left(P_{23}\right) \cup V\left(P_{31}\right)$ and $E=\{\{0,1\},\{0,2\},\{0,3\}\} \cup P_{12} \cup P_{23} \cup P_{31}$. If G has a vertex v of degree two, then the graph $G / \delta(v)$ still satisfies the conditions of the lemma for the same vertices $0,1,2,3$ and appropriate stable sets, so by the induction hypothesis, $(G / \delta(v), E(G / \delta(v)))=(G, E(G)) / \delta(v)$ has an odd- K_{4} lemma using edges $\{0,1\},\{0,2\},\{0,3\}$, implying in turn that $(G, E(G))$ has an odd- K_{4} lemma using edges $\{0,1\},\{0,2\},\{0,3\}$. We may therefore assume that G does not have a vertex of degree two. This implies in turn that
(\star) for every permutation i, j, k of $1,2,3$ we have $S_{i}=V\left(P_{i j}\right) \cap V\left(P_{i k}\right)$, and that $\left|S_{1}\right|=\left|S_{2}\right|=$ $\left|S_{3}\right| \geq 2$,
as $|V|+|E| \geq 11$. Let $2^{\prime} \in S_{2}$ be the second vertex of the 12 -path $P_{12}, 3^{\prime} \in S_{3}$ the second vertex of the 23-path P_{23}, and $1^{\prime} \in S_{1}$ the second vertex of the 31-path P_{31}. Notice that $1^{\prime} \neq 1,2^{\prime} \neq 2,3^{\prime} \neq 3$. Let $H:=G / \delta(0)$, and let 0^{\prime} be the vertex corresponding to $0,1,2,3$. Notice that $\left\{0^{\prime}, 1^{\prime}\right\},\left\{0^{\prime}, 2^{\prime}\right\},\left\{0^{\prime}, 3^{\prime}\right\} \in E(H)$. For each $i \in[3]$, let $S_{i}^{\prime}:=S_{i}-\{i\}$. Then for each $i \in[3], S_{i}^{\prime}$ is stable in H and $i^{\prime} \in S_{i}^{\prime}$. Moreover, for distinct $i, j \in[3]$, the vertices i^{\prime}, j^{\prime} lie on the path $P_{i j}$ by (\star), so $H\left[S_{i}^{\prime} \cup S_{j}^{\prime}\right]$ contains an $i^{\prime} j^{\prime}$-path. It therefore follows from the induction hypothesis that $(G, E(G)) / \delta(0)=(H, E(H))$ has an odd- K_{4} minor using $\left\{0^{\prime}, 1^{\prime}\right\},\left\{0^{\prime}, 2^{\prime}\right\},\left\{0^{\prime}, 3^{\prime}\right\}$. After decontracting $\delta(0)$, we get that $(G, E(G))$ has a whirlpool minor with central edges $\{0,1\},\{0,2\},\{0,3\}$, which has an odd- K_{4} minor using the central edges. Consequently, $(G, E(G))$ has an odd- K_{4} minor using the edges $\{0,1\},\{0,2\},\{0,3\}$, thereby completing the induction step.

This lemma is also helpful for finding an odd- K_{5} minor. A pseudo-odd- K_{5} is a signed graph $(G, E(G))$ for which the following statements hold: there exist a partition of $V(G)$ into parts $S_{0}, S_{1}, S_{2}, S_{3}$ and distinct vertices $x, y \in S_{0}$ such that

- there is an edge $e \in E$ whose ends are x, y, and for each $i \in\{0,1,2,3\}, S_{i}$ is stable in $G \backslash e$,
- $G \backslash e$ has internally vertex-disjoint $x y$-paths P_{1}, P_{2}, P_{3}, where for each $i \in[3], V\left(P_{i}\right) \subseteq S_{0} \cup S_{i}$,
- for distinct $i, j \in[3], G\left[S_{i} \cup S_{j}\right]$ has a path with one end in $V\left(P_{i}\right)$ and the other in $V\left(P_{j}\right)$.

As a consequence of the Whirlpool Lemma 10.8, we get that,
Theorem 10.9. A pseudo-odd- K_{5} has an odd- K_{5} minor.
Proof. If $f \in E-\left(\{e\} \cup P_{1} \cup P_{2} \cup P_{3}\right)$ is an edge with an end in S_{0}, then $(G \backslash f, E(G \backslash f))=(G, E(G)) \backslash f$ is still a pseudo-odd- K_{5}. We may therefore assume that each edge of $E-\left(\{e\} \cup P_{1} \cup P_{2} \cup P_{3}\right)$ has both ends in $S_{1} \cup S_{2} \cup S_{3}$. If $u \in S_{0}$ is an internal vertex of one of P_{1}, P_{2}, P_{3}, then as S_{0} is stable, $(G / \delta(u), E(G / \delta(u)))=$ $(G, E(G)) / \delta(u)$ is still a pseudo-odd- K_{5}. We may therefore assume that P_{1}, P_{2}, P_{3} do not have any internal vertices in S_{0}. Subsequently, as S_{1}, S_{2}, S_{3} are stable, it follows that for each $i \in[3], V\left(P_{i}\right)=\left\{x, y, v_{i}\right\}$ for some vertex $v_{i} \in S_{i}$. Let $(H, E(H)):=(G, E(G)) \backslash \delta(y)$. Then by the Whirlpool Lemma $10.8,(H, E(H))$ has an odd- K_{4} minor using edges $\left\{x, v_{1}\right\},\left\{x, v_{2}\right\},\left\{x, v_{3}\right\}$. Adding vertex y and its incident edges back in, we see that $(G, E(G))$ has an odd- K_{5} minor, as required.

10.3 A signed graph without an odd- K_{5} minor is weakly bipartite.

Let $(G=(V, E), \Sigma)$ be a signed graph. Let $U, U^{\prime} \subseteq V$ be different components of G, if any, and let H be the graph obtained from G by identifying a vertex of U with a vertex of U^{\prime}. Notice that G, H have the same edge sets, and that the odd circuits of (G, Σ) are precisely the odd circuits of (H, Σ). Thus, (G, Σ) is weakly bipartite if, and only if, (H, Σ) is weakly bipartite. Moreover, because K_{5} does not have a cut-vertex, if (H, Σ) has an odd- K_{5} minor, then so does (G, Σ). We will use these observations in the proof below, due to Schrijver (2002).

Theorem 10.10 (Guenin 2001). A signed graph without an odd- K_{5} minor is weakly bipartite.
Proof. Let $(G=(V, E), \Sigma)$ be a signed graph that is not weakly bipartite. We will show that (G, Σ) has an odd- K_{5} minor. To this end, we may assume that G is connected, and that every proper minor of (G, Σ) is weakly bipartite. Let \mathcal{C} be the clutter of odd circuits of (G, Σ). It then follows from Proposition 10.6 that \mathcal{C} is a minimally non-ideal clutter. Take an edge $e \in E$. Using Lehman's Theorem 9.12, we prove the following:

Claim 1. There are minimum odd circuits C_{1}, C_{2}, C_{3} and minimum signatures B_{1}, B_{2}, B_{3} such that for distinct $i, j \in[3]$,
(C1) $\left|C_{i} \cap B_{i}\right| \geq 3$ and $C_{i} \cap B_{j}=\{e\}$,
(C2) $C_{i} \cap C_{j}=\{e\}=B_{i} \cap B_{j}$,
(C3) the only odd cycles contained in $C_{i} \cup C_{j}$ are C_{i}, C_{j},
(C4) the only signatures contained in $B_{i} \cup B_{j}$ are B_{i}, B_{j}.
Proof of Claim. Let $n:=|E|$ and let \mathcal{B} be the clutter of minimal signatures. By Theorem 10.5, we have $\mathcal{B}=b(\mathcal{C})$. Let $M($ resp. N) be the row submatrix of $M(\mathcal{C})$ (resp. $M(\mathcal{B})$) corresponding to the minimum odd circuits (resp. minimum signatures). By Theorem 9.12, M (resp. N) is a square and non-singular matrix that
is r-regular (resp. s-regular) for some integers $r, s \geq 2$ such that $r s \geq n+1$. Moreover, for some labeling C_{1}, \ldots, C_{n} of the minimum odd circuits and labeling B_{1}, \ldots, B_{n} of the minimum signatures, we have that for all $i, j \in[n]$,

$$
\left|C_{i} \cap B_{j}\right|= \begin{cases}r s-n+1 & \text { if } i=j \\ 1 & \text { if } i \neq j\end{cases}
$$

and for all elements $g, h \in E$,

$$
\left|\left\{i \in[n]: g \in C_{i}, h \in B_{i}\right\}\right|= \begin{cases}r s-n+1 & \text { if } g=h \\ 1 & \text { if } g \neq h\end{cases}
$$

As signatures and odd circuits intersect in an odd number of edges, and $r s-n+1 \geq 2$, it follows that $r s-n+1 \geq$ 3. By the previous equation, after possibly re-indexing the C_{i} and B_{i} 's, we have that

$$
e \in C_{i} \cap B_{i} \quad i=1, \ldots, r s-n+1
$$

Consider C_{1}, C_{2}, C_{3} and B_{1}, B_{2}, B_{3}. We will show that these are the desired sets. (C1) clearly holds. (C2) If $f \in\left(C_{1} \cap C_{2}\right)-\{e\}$, then $\left\{i \in[n]: f \in C_{i}, e \in B_{i}\right\} \supseteq\{1,2\}$, which is not the case. This shows that $C_{1} \cap C_{2}=\{e\}$ and similarly, $C_{2} \cap C_{3}=C_{3} \cap C_{1}=\{e\}$. Moreover, if $g \in\left(B_{1} \cap B_{2}\right)-\{e\}$, then $\{i \in[n]: e \in$ $\left.C_{i}, g \in B_{i}\right\} \supseteq\{1,2\}$, which is not the case. Thus, $B_{1} \cap B_{2}=\{e\}$ and similarly, $B_{2} \cap B_{3}=B_{3} \cap B_{1}=\{e\}$. (C3) Let C be an odd cycle contained in $C_{i} \cup C_{j}$. Then $C^{\prime}:=C_{i} \triangle C_{j} \triangle C$ is an odd cycle. As $C \cup C^{\prime} \subseteq C_{i} \cup C_{j}$ and $C \cap C^{\prime} \subseteq C_{i} \cap C_{j}$, it follows that

$$
2 r=\left|C_{i}\right|+\left|C_{j}\right|=\left|C_{i} \cup C_{j}\right|+\left|C_{i} \cap C_{j}\right| \geq\left|C \cup C^{\prime}\right|+\left|C \cap C^{\prime}\right|=|C|+\left|C^{\prime}\right| \geq 2 r
$$

so equality holds throughout. That is, C, C^{\prime} are minimum odd circuits and $\chi_{C_{i}}+\chi_{C_{j}}=\chi_{C}+\chi_{C^{\prime}}$. As M is non-singular, it follows that $\left\{C, C^{\prime}\right\}=\left\{C_{i}, C_{j}\right\}$, as required. ($\mathbf{C 4}$) Let B be a signature contained in $B_{i} \cup B_{j}$. Pick $W_{i}, W_{j}, W \subseteq V$ such that $B_{i}=\Sigma \triangle \delta\left(W_{i}\right), B_{j}=\Sigma \triangle \delta\left(W_{j}\right)$ and $B=\Sigma \triangle \delta(W)$. Then for $W^{\prime}:=W_{i} \triangle W_{j} \triangle W$ we have

$$
B^{\prime}:=B_{i} \triangle B_{j} \triangle B=\Sigma \triangle \delta\left(W_{i}\right) \triangle \Sigma \triangle \delta\left(W_{j}\right) \triangle \Sigma \triangle \delta(W)=\Sigma \triangle \delta\left(W^{\prime}\right)
$$

so B^{\prime} is also a signature. As $B \cup B^{\prime} \subseteq B_{i} \cup B_{j}$ and $B \cap B^{\prime} \subseteq B_{i} \cap B_{j}$, it follows that

$$
2 s=\left|B_{i}\right|+\left|B_{j}\right|=\left|B_{i} \cup B_{j}\right|+\left|B_{i} \cap B_{j}\right| \geq\left|B \cup B^{\prime}\right|+\left|B \cap B^{\prime}\right|=|B|+\left|B^{\prime}\right| \geq 2 s
$$

so equality holds throughout. That is, B, B^{\prime} are minimum signatures and $\chi_{B_{i}}+\chi_{B_{j}}=\chi_{B}+\chi_{B^{\prime}}$. As N is non-singular, it follows that $\left\{B, B^{\prime}\right\}=\left\{B_{i}, B_{j}\right\}$, as required.

We will not be using Lehman's Theorem 9.12 anymore. TO BE CONTINUED

