CO 750 Packing and Covering: Lecture 21

Ahmad Abdi

July 13, 2017

10.1 Signed graphs, continued

Let (G, Σ) be a signed graph. Recall that for disjoint edge subsets I, J, we defined the minor

 $(G, \Sigma) \setminus I/J = \begin{cases} (G \setminus I/J, \emptyset) & \text{if } J \text{ contains an odd cycle,} \\ (G \setminus I/J, B - I) & \text{otherwise, for some signature } B \text{ disjoint from } J. \end{cases}$

Consider now the case when $\Sigma = E(G)$, $I = \emptyset$ and J forms a cut of G. As $E(G) - J = E(G) \triangle J$ is a signature for (G, E(G)), it follows that

$$(G, E(G))/J = (G/J, E(G/J)).$$

This observation will be useful throughout the rest of this section.

Recall that a signed graph is weakly bipartite if its clutter of odd circuits is ideal. We showed last time that the signed graph $(K_5, E(K_5))$, called an odd- K_5 , is not weakly bipartite. We also showed in Remark 10.7 that if a signed graph is weakly bipartite, then it has no odd- K_5 minor. Seymour (1977) conjectured that the converse of this remark also holds. Over 20 years later, in his PhD thesis, Guenin (2001) proved this conjecture. His proof made a spectacular use of Lehman's powerful result, Theorem 9.12. To prove the conjecture, we will need a lemma due to Schrijver (2002).

10.2 The whirlpool lemma and pseudo-odd- K_5 's

The signed graph $(K_4, E(K_4))$ is called an *odd-K*₄. Schrijver (2002) found a very nice way to find an odd-*K*₄ minor in a signed graph. To explain his method, let *W* be the graph on vertices 0, 1, 1', 2, 2', 3, 3' and edges $\{0, 1\}, \{0, 2\}, \{0, 3\}, \{1', 2'\}, \{2', 3'\}, \{3', 1'\}, \{1, 2'\}, \{2, 3'\}, \{3, 1'\}$. We will refer to the signed graph (W, E(W)) as a *whirlpool* with *central edges* $\{0, 1\}, \{0, 2\}, \{0, 3\}$ – see Figure 1. Observe that a whirlpool has an odd-*K*₄ minor using its central edges, obtained after contracting the cut $\delta(\{0, 1, 2, 3\})$.

Lemma 10.8 (Schrijver 2002). Take a graph G = (V, E). Suppose that there are disjoint stable sets S_1, S_2, S_3 and distinct vertices 0, 1, 2, 3 such that

- $0 \in V (S_1 \cup S_2 \cup S_3)$ and $i \in S_i$ for each $i \in [3]$,
- $\{0, i\} \in E$ for each $i \in [3]$,

Figure 1: The whirlpool with central edges $\{0, 1\}, \{0, 2\}, \{0, 3\}$. Every edge is odd.

• for distinct $i, j \in [3]$, there is an *ij*-path contained in $G[S_i \cup S_j]$.

Then (G, E(G)) has an odd- K_4 minor using the three edges $\{0, 1\}, \{0, 2\}, \{0, 3\}$.

Proof. We prove this by induction on $|V| + |E| \ge 10$. The base case |V| + |E| = 10 is true as (G, E(G)) itself is an odd- K_4 . For the induction step, assume that $|V| + |E| \ge 11$. For distinct $i, j \in [3]$, let $P_{ij} \subseteq E$ be an *ij*-path contained in $G[S_i \cup S_j]$. We may assume that $V = \{0\} \cup V(P_{12}) \cup V(P_{23}) \cup V(P_{31})$ and $E = \{\{0, 1\}, \{0, 2\}, \{0, 3\}\} \cup P_{12} \cup P_{23} \cup P_{31}$. If G has a vertex v of degree two, then the graph $G/\delta(v)$ still satisfies the conditions of the lemma for the same vertices 0, 1, 2, 3 and appropriate stable sets, so by the induction hypothesis, $(G/\delta(v), E(G/\delta(v))) = (G, E(G))/\delta(v)$ has an odd- K_4 lemma using edges $\{0, 1\}, \{0, 2\}, \{0, 3\}$. We may therefore assume that G does not have a vertex of degree two. This implies in turn that

(*) for every permutation i, j, k of 1, 2, 3 we have $S_i = V(P_{ij}) \cap V(P_{ik})$, and that $|S_1| = |S_2| = |S_3| \ge 2$,

as $|V| + |E| \ge 11$. Let $2' \in S_2$ be the second vertex of the 12-path P_{12} , $3' \in S_3$ the second vertex of the 23-path P_{23} , and $1' \in S_1$ the second vertex of the 31-path P_{31} . Notice that $1' \ne 1, 2' \ne 2, 3' \ne 3$. Let $H := G/\delta(0)$, and let 0' be the vertex corresponding to 0, 1, 2, 3. Notice that $\{0', 1'\}, \{0', 2'\}, \{0', 3'\} \in E(H)$. For each $i \in [3]$, let $S'_i := S_i - \{i\}$. Then for each $i \in [3], S'_i$ is stable in H and $i' \in S'_i$. Moreover, for distinct $i, j \in [3]$, the vertices i', j' lie on the path P_{ij} by (\star) , so $H[S'_i \cup S'_j]$ contains an i'j'-path. It therefore follows from the induction hypothesis that $(G, E(G))/\delta(0) = (H, E(H))$ has an odd- K_4 minor using $\{0', 1'\}, \{0', 2'\}, \{0', 3'\}$. After decontracting $\delta(0)$, we get that (G, E(G)) has a whirlpool minor with central edges $\{0, 1\}, \{0, 2\}, \{0, 3\}$, thereby completing the induction step. \Box

This lemma is also helpful for finding an odd- K_5 minor. A *pseudo-odd*- K_5 is a signed graph (G, E(G)) for which the following statements hold: there exist a partition of V(G) into parts S_0, S_1, S_2, S_3 and distinct vertices $x, y \in S_0$ such that

- there is an edge $e \in E$ whose ends are x, y, and for each $i \in \{0, 1, 2, 3\}$, S_i is stable in $G \setminus e$,
- $G \setminus e$ has internally vertex-disjoint xy-paths P_1, P_2, P_3 , where for each $i \in [3], V(P_i) \subseteq S_0 \cup S_i$,

• for distinct $i, j \in [3], G[S_i \cup S_j]$ has a path with one end in $V(P_i)$ and the other in $V(P_j)$.

As a consequence of the Whirlpool Lemma 10.8, we get that,

Theorem 10.9. A pseudo-odd- K_5 has an odd- K_5 minor.

Proof. If $f \in E - (\{e\} \cup P_1 \cup P_2 \cup P_3)$ is an edge with an end in S_0 , then $(G \setminus f, E(G \setminus f)) = (G, E(G)) \setminus f$ is still a pseudo-odd- K_5 . We may therefore assume that each edge of $E - (\{e\} \cup P_1 \cup P_2 \cup P_3)$ has both ends in $S_1 \cup S_2 \cup S_3$. If $u \in S_0$ is an internal vertex of one of P_1, P_2, P_3 , then as S_0 is stable, $(G/\delta(u), E(G/\delta(u))) = (G, E(G))/\delta(u)$ is still a pseudo-odd- K_5 . We may therefore assume that P_1, P_2, P_3 do not have any internal vertices in S_0 . Subsequently, as S_1, S_2, S_3 are stable, it follows that for each $i \in [3], V(P_i) = \{x, y, v_i\}$ for some vertex $v_i \in S_i$. Let $(H, E(H)) := (G, E(G)) \setminus \delta(y)$. Then by the Whirlpool Lemma 10.8, (H, E(H))has an odd- K_4 minor using edges $\{x, v_1\}, \{x, v_2\}, \{x, v_3\}$. Adding vertex y and its incident edges back in, we see that (G, E(G)) has an odd- K_5 minor, as required. \Box

10.3 A signed graph without an odd- K_5 minor is weakly bipartite.

Let $(G = (V, E), \Sigma)$ be a signed graph. Let $U, U' \subseteq V$ be different components of G, if any, and let H be the graph obtained from G by identifying a vertex of U with a vertex of U'. Notice that G, H have the same edge sets, and that the odd circuits of (G, Σ) are precisely the odd circuits of (H, Σ) . Thus, (G, Σ) is weakly bipartite if, and only if, (H, Σ) is weakly bipartite. Moreover, because K_5 does not have a cut-vertex, if (H, Σ) has an odd- K_5 minor, then so does (G, Σ) . We will use these observations in the proof below, due to Schrijver (2002).

Theorem 10.10 (Guenin 2001). A signed graph without an odd- K_5 minor is weakly bipartite.

Proof. Let $(G = (V, E), \Sigma)$ be a signed graph that is not weakly bipartite. We will show that (G, Σ) has an odd- K_5 minor. To this end, we may assume that G is connected, and that every proper minor of (G, Σ) is weakly bipartite. Let C be the clutter of odd circuits of (G, Σ) . It then follows from Proposition 10.6 that C is a minimally non-ideal clutter. Take an edge $e \in E$. Using Lehman's Theorem 9.12, we prove the following:

Claim 1. There are minimum odd circuits C_1, C_2, C_3 and minimum signatures B_1, B_2, B_3 such that for distinct $i, j \in [3]$,

- (C1) $|C_i \cap B_i| \ge 3$ and $C_i \cap B_j = \{e\},\$
- (C2) $C_i \cap C_j = \{e\} = B_i \cap B_j$,
- (C3) the only odd cycles contained in $C_i \cup C_j$ are C_i, C_j ,
- (C4) the only signatures contained in $B_i \cup B_j$ are B_i, B_j .

Proof of Claim. Let n := |E| and let \mathcal{B} be the clutter of minimal signatures. By Theorem 10.5, we have $\mathcal{B} = b(\mathcal{C})$. Let M (resp. N) be the row submatrix of $M(\mathcal{C})$ (resp. $M(\mathcal{B})$) corresponding to the minimum odd circuits (resp. minimum signatures). By Theorem 9.12, M (resp. N) is a square and non-singular matrix that

is r-regular (resp. s-regular) for some integers $r, s \ge 2$ such that $rs \ge n + 1$. Moreover, for some labeling C_1, \ldots, C_n of the minimum odd circuits and labeling B_1, \ldots, B_n of the minimum signatures, we have that for all $i, j \in [n]$,

$$|C_i \cap B_j| = \begin{cases} rs - n + 1 & \text{if } i = j \\ 1 & \text{if } i \neq j, \end{cases}$$

and for all elements $g, h \in E$,

$$\left|\left\{i \in [n] : g \in C_i, h \in B_i\right\}\right| = \begin{cases} rs - n + 1 & \text{if } g = h\\ 1 & \text{if } g \neq h. \end{cases}$$

As signatures and odd circuits intersect in an odd number of edges, and $rs-n+1 \ge 2$, it follows that $rs-n+1 \ge 3$. By the previous equation, after possibly re-indexing the C_i and B_i 's, we have that

$$e \in C_i \cap B_i$$
 $i = 1, \ldots, rs - n + 1.$

Consider C_1, C_2, C_3 and B_1, B_2, B_3 . We will show that these are the desired sets. (C1) clearly holds. (C2) If $f \in (C_1 \cap C_2) - \{e\}$, then $\{i \in [n] : f \in C_i, e \in B_i\} \supseteq \{1, 2\}$, which is not the case. This shows that $C_1 \cap C_2 = \{e\}$ and similarly, $C_2 \cap C_3 = C_3 \cap C_1 = \{e\}$. Moreover, if $g \in (B_1 \cap B_2) - \{e\}$, then $\{i \in [n] : e \in C_i, g \in B_i\} \supseteq \{1, 2\}$, which is not the case. Thus, $B_1 \cap B_2 = \{e\}$ and similarly, $B_2 \cap B_3 = B_3 \cap B_1 = \{e\}$. (C3) Let C be an odd cycle contained in $C_i \cup C_j$. Then $C' := C_i \triangle C_j \triangle C$ is an odd cycle. As $C \cup C' \subseteq C_i \cup C_j$ and $C \cap C' \subseteq C_i \cap C_j$, it follows that

$$2r = |C_i| + |C_j| = |C_i \cup C_j| + |C_i \cap C_j| \ge |C \cup C'| + |C \cap C'| = |C| + |C'| \ge 2r,$$

so equality holds throughout. That is, C, C' are minimum odd circuits and $\chi_{C_i} + \chi_{C_j} = \chi_C + \chi_{C'}$. As M is non-singular, it follows that $\{C, C'\} = \{C_i, C_j\}$, as required. (C4) Let B be a signature contained in $B_i \cup B_j$. Pick $W_i, W_j, W \subseteq V$ such that $B_i = \Sigma \triangle \delta(W_i), B_j = \Sigma \triangle \delta(W_j)$ and $B = \Sigma \triangle \delta(W)$. Then for $W' := W_i \triangle W_j \triangle W$ we have

$$B' := B_i \triangle B_j \triangle B = \Sigma \triangle \delta(W_i) \triangle \Sigma \triangle \delta(W_j) \triangle \Sigma \triangle \delta(W) = \Sigma \triangle \delta(W'),$$

so B' is also a signature. As $B \cup B' \subseteq B_i \cup B_j$ and $B \cap B' \subseteq B_i \cap B_j$, it follows that

$$2s = |B_i| + |B_j| = |B_i \cup B_j| + |B_i \cap B_j| \ge |B \cup B'| + |B \cap B'| = |B| + |B'| \ge 2s,$$

so equality holds throughout. That is, B, B' are minimum signatures and $\chi_{B_i} + \chi_{B_j} = \chi_B + \chi_{B'}$. As N is non-singular, it follows that $\{B, B'\} = \{B_i, B_j\}$, as required.

We will not be using Lehman's Theorem 9.12 anymore. TO BE CONTINUED