CO 750 Packing and Covering: Lecture 22

Ahmad Abdi

July 18, 2017

10.3 A signed graph without an odd- K_{5} minor is weakly bipartite.

Recall that a pseudo-odd- K_{5} is a signed graph $(G, E(G))$ for which the following statements hold: there exist a partition of $V(G)$ into parts $S_{0}, S_{1}, S_{2}, S_{3}$ and distinct vertices $x, y \in S_{0}$ such that

- there is an edge $e \in E$ whose ends are x, y, and for each $i \in\{0,1,2,3\}, S_{i}$ is stable in $G \backslash e$,
- $G \backslash e$ has internally vertex-disjoint $x y$-paths P_{1}, P_{2}, P_{3}, where for each $i \in[3], V\left(P_{i}\right) \subseteq S_{0} \cup S_{i}$,
- for distinct $i, j \in[3], G\left[S_{i} \cup S_{j}\right]$ has a path with one end in $V\left(P_{i}\right)$ and the other in $V\left(P_{j}\right)$.

We showed last time that,
Theorem 10.9. A pseudo-odd- K_{5} has an odd- K_{5} minor.
Using this result, we will be able to continue with our proof of the following theorem. Our proof is due to Schrijver (2002).

Theorem 10.10 (Guenin 2001). A signed graph without an odd- K_{5} minor is weakly bipartite.
Proof. Let $(G=(V, E), \Sigma)$ be a signed graph that is not weakly bipartite. We will show that (G, Σ) has an oddK_{5} minor. To this end, as we argued last time, we may assume that G is connected, and that every proper minor of (G, Σ) is weakly bipartite. Let \mathcal{C} be the clutter of odd circuits of (G, Σ). It then follows from Proposition 10.6 that \mathcal{C} is a minimally non-ideal clutter. Take an edge $e \in E$. Using Lehman's Theorem 9.12, we showed the following last time:

Claim 1. There are minimum odd circuits C_{1}, C_{2}, C_{3} and minimum signatures B_{1}, B_{2}, B_{3} such that for distinct $i, j \in[3]$,
(C1) $\left|C_{i} \cap B_{i}\right| \geq 3$ and $C_{i} \cap B_{j}=\{e\}$,
(C2) $C_{i} \cap C_{j}=\{e\}=B_{i} \cap B_{j}$,
(C3) the only odd cycles contained in $C_{i} \cup C_{j}$ are C_{i}, C_{j},
(C4) the only signatures contained in $B_{i} \cup B_{j}$ are B_{i}, B_{j}.

Let x, y be the ends of e. For each $i \in[3]$, let $P_{i}:=C_{i}-\{e\}$. Notice that P_{1}, P_{2}, P_{3} are $x y$-paths that are (edge-)disjoint by (C2).

Claim 2. For distinct $i, j \in[3], P_{i}$ and P_{j} are internally vertex-disjoint xy-paths.
Proof of Claim. Suppose for a contradiction that P_{1}, P_{2} have a vertex v other than x, y in common. Let $C:=$ $P_{1}[x, v] \cup P_{2}[v, y] \cup\{e\}$. Observe that C is a cycle, and because for the signature B_{3} we have $B_{3} \cap C=\{e\}$ by $(\mathrm{C} 1)$, it follows that C is an odd cycle. However, C is an odd cycle contained in $C_{1} \cup C_{2}$ that is different from C_{1}, C_{2}, a contradiction to (C3). Thus, P_{1}, P_{2} are internally vertex-disjoint, and similarly, for distinct $i, j \in[3]$, P_{i} and P_{j} are internally vertex-disjoint.

For distinct $i, j \in[3]$, pick $U_{i j} \subseteq V-\{x\}$ such that $B_{i} \triangle B_{j}=\delta\left(U_{i j}\right)$ - as $e \notin B_{i} \triangle B_{j}$, it follows that $U_{i j} \subseteq V-\{x, y\}$.

Claim 3. There are disjoint vertex subsets $U_{1}, U_{2}, U_{3} \subseteq V$ such that for every permutation i, j, k of $1,2,3$,
(C5) $U_{i j}=U_{i} \cup U_{j}$, and
(C6) each edge with an end in U_{i} and the other in U_{j} belongs to B_{k}, each edge with an end in U_{k} and the other in $V-\left(U_{1} \cup U_{2} \cup U_{3}\right)$ also belongs to B_{k}, and $B_{k}-\{e\}$ has no other edges.

Proof of Claim. Observe that

$$
\emptyset=\left(B_{1} \triangle B_{2}\right) \triangle\left(B_{2} \triangle B_{3}\right) \triangle\left(B_{3} \triangle B_{1}\right)=\delta\left(U_{12}\right) \triangle \delta\left(U_{23}\right) \triangle \delta\left(U_{31}\right)=\delta\left(U_{12} \triangle U_{23} \triangle U_{31}\right)
$$

As G is connected, and $x, y \notin U_{12} \triangle U_{23} \triangle U_{31}$, it follows that $U_{12} \triangle U_{23} \triangle U_{31}=\emptyset$. This implies that there are disjoint vertex subsets $U_{1}, U_{2}, U_{3} \subseteq V$ such that $U_{i j}=U_{i} \cup U_{j}$ for distinct $i, j \in[3]$. This proves (C5). (C6) follows from the definition of U_{1}, U_{2}, U_{3} and the fact (C2) that $B_{1} \cap B_{2}=B_{2} \cap B_{3}=B_{3} \cap B_{1}=\{e\}$.

Claim 4. For every permutation i, j, k of $1,2,3$, we have
(C7) $V\left(P_{i}\right) \cap\left(U_{j} \cup U_{k}\right)=\emptyset$ and $V\left(P_{i}\right) \cap U_{i} \neq \emptyset$, and
(C8) $G\left[U_{i} \cup U_{j}\right]$ is connected.
Proof of Claim. (C7) As $P_{i} \cap B_{j}=P_{i} \cap B_{k}=\emptyset$, and P_{i} is an $x y$-path, it follows from (C6) that $V\left(P_{i}\right) \cap$ $\left(U_{j} \cup U_{k}\right)=\emptyset$. Moreover, by (C1), $P_{i} \cap B_{i} \neq \emptyset$, so $V\left(P_{i}\right) \cap U_{i} \neq \emptyset$. (C8) Suppose otherwise. Then there is a non-empty and proper subset U of $U_{i} \cup U_{j}$ such that $\delta(U) \subseteq \delta\left(U_{i} \cup U_{j}\right)=\delta\left(U_{i j}\right)=B_{i} \triangle B_{j}$. Moreover, as G is connected, it follows that $\delta(U)$ is a non-empty and proper subset of $B_{i} \triangle B_{j}$. Then $B_{i} \triangle \delta(U)$ is a signature contained in $B_{i} \cup B_{j}$, so by (C4), $B_{i} \triangle \delta(U)$ is either B_{i} or B_{j}, implying in turn that $\delta(U)$ is either \emptyset or $B_{i} \triangle B_{j}$, a contradiction.

Let $B:=B_{1} \triangle B_{2} \triangle B_{3}=B_{1} \cup B_{2} \cup B_{3}$. Notice that B is also a signature as $B=B_{1} \triangle \delta\left(U_{2} \cup U_{3}\right)$, so (G, B) is a resigning of (G, Σ). Let H be the graph obtained from G after contracting all the edges in each $G\left[U_{i}\right]$ and each $C_{i}-B_{i}$, and deleting all the remaining edges outside $B_{1} \cup B_{2} \cup B_{3}$. Observe that $E(H)=B$, and so $(H, E(H))$ is a minor of (G, Σ). For each $i \in[3]$, let P_{i}^{\prime} be an $x y$-path in $P_{i} \cap B_{i}$ and let U_{i}^{\prime} be the vertices of H corresponding to the vertices U_{i} of G. Let $U_{0}^{\prime}:=V(H)-\left(U_{1}^{\prime} \cup U_{2}^{\prime} \cup U_{3}^{\prime}\right)$. Notice that $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ are internally vertex-disjoint $x y$-paths of H, that $U_{0}^{\prime}, U_{1}^{\prime}, U_{2}^{\prime}, U_{3}^{\prime}$ form a partition of $V(H)$ into stable sets of $H \backslash e$ by (C6), that for each $i \in[3]$ we have $V\left(P_{i}^{\prime}\right) \subseteq U_{0}^{\prime} \cup U_{i}^{\prime}$ and $V\left(P_{i}^{\prime}\right) \cap U_{i}^{\prime} \neq \emptyset$ by (C7), and for distinct $i, j \in[3]$, $H\left[U_{i}^{\prime} \cup U_{j}^{\prime}\right]$ is connected by $(\mathrm{C} 8)$. In particular, for distinct $i, j \in[3], H\left[U_{i}^{\prime} \cup U_{j}^{\prime}\right]$ contains a path with one end in $V\left(P_{i}^{\prime}\right)$ and the other in $V\left(P_{j}^{\prime}\right)$. As a result, $(H, E(H))$ is a pseudo-odd- K_{5}, so by Theorem 10.9 , it has an odd- K_{5} minor, implying in turn that (G, Σ) has an odd- K_{5} minor, as required.

As a consequence, we get the following characterization of weakly bipartite graphs:
Corollary 10.11. Let $G=(V, E)$ be a graph. Then the following statements are equivalent:
(i) G is not weakly bipartite,
(ii) there exist disjoint $I, J \subseteq E$ such that J forms a cut of $G \backslash I$, and $G \backslash I / J$ is a K_{5}.

Proof. (ii) \Rightarrow (i): Since J forms a cut of $G \backslash I$, it follows that

$$
\left(K_{5}, E\left(K_{5}\right)\right)=(G \backslash I / J, E(G \backslash I / J))=(G \backslash I, E(G \backslash I)) / J=(G, E(G)) \backslash I / J,
$$

so $(G, E(G))$ has an odd- K_{5} minor, implying by Remark 10.7 that $(G, E(G))$, and so G, is not weakly bipartite. (i) \Rightarrow (ii): It follows that $(G, E(G))$ is not weakly bipartite, so by Theorem 10.10 , there are disjoint $I, J \subseteq E$ such that $\left(K_{5}, E\left(K_{5}\right)\right)=(G, E(G)) \backslash I / J$. Let $H:=G \backslash I$. Then $\left(K_{5}, E\left(K_{5}\right)\right)=(H, E(H)) / J$, so $E\left(K_{5}\right)=E(H)-J$ is a signature of $(H, E(H))$ disjoint from J. As a result, $J=(E(H)-J) \triangle E(H)$ is a cut of H, as required.

11 Cube-ideal sets

Take an integer $n \geq 1$. We will be working over the hypercube $\{0,1\}^{n}$. Inequalities of the form

$$
1 \geq x_{i} \geq 0 \quad i \in[n]
$$

are called hypercube inequalities. Inequalities of the form

$$
\sum_{i \in I} x_{i}+\sum_{j \in J}\left(1-x_{j}\right) \geq 1 \quad \text { for disjoint } I, J \subseteq[n]
$$

are called generalized set covering inequalities. Notice that generalized set covering inequalities are precisely those inequalities that cut off a sub-hypercube of $\{0,1\}^{n}$. Take a subset $S \subseteq\{0,1\}^{n}$. We say that S is cube-ideal if its convex hull conv (S) can be described by hypercube and generalized set covering inequalities. When is a set cube-ideal? This is the theme of this section.

Example. $\{111,100,010,001\} \subseteq\{0,1\}^{3}$ is cube-ideal as its convex hull is equal to

Given two vectors $a, b \in\{0,1\}^{n}$, let $a \Delta b:=a+b(\bmod 2)$. Given a coordinate $i \in[n]$, to twist coordinate i of S is to replace S by

$$
S \triangle e_{i}:=\left\{x \triangle e_{i}: x \in S\right\}
$$

So to twist coordinate i is to make the change of variables $x_{i} \mapsto 1-x_{i}$. Since hypercube and generalized set covering inequalities are closed under this change of variables, it follows that,

Remark 11.1. Take an integer $n \geq 1$ and a subset $S \subseteq\{0,1\}^{n}$. If S is cube-ideal, then so is any set obtained after twisting some coordinates.

The cuboid of S, denoted cuboid (S), is the clutter over ground set $[2 n]$ whose members have incidence vectors

$$
\left(x_{1}, 1-x_{1}, x_{2}, 1-x_{2}, \ldots, x_{n}, 1-x_{n}\right) \quad x \in S
$$

Notice that $\{2 i-1,2 i\}, i \in[n]$ are covers of cuboid (S), and that every member of cuboid (S) has cardinality n.
Example. The cuboid of $\{111,100,010,001\} \subseteq\{0,1\}^{3}$ has incidence matrix

$$
\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right)
$$

which is just the incidence matrix of Q_{6}. Thus, Q_{6} is a cuboid.
We saw that $\{111,100,010,001\}$ is cube-ideal, and that its cuboid is Q_{6}, which we know is an ideal clutter. In fact, we will show next time that in general, a set is cube-ideal if and only if its cuboid is ideal.

