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10.3 A signed graph without an odd-K5 minor is weakly bipartite.

Recall that a pseudo-odd-K5 is a signed graph (G,E(G)) for which the following statements hold: there exist a

partition of V (G) into parts S0, S1, S2, S3 and distinct vertices x, y ∈ S0 such that

• there is an edge e ∈ E whose ends are x, y, and for each i ∈ {0, 1, 2, 3}, Si is stable in G \ e,

• G \ e has internally vertex-disjoint xy-paths P1, P2, P3, where for each i ∈ [3], V (Pi) ⊆ S0 ∪ Si,

• for distinct i, j ∈ [3], G[Si ∪ Sj ] has a path with one end in V (Pi) and the other in V (Pj).

We showed last time that,

Theorem 10.9. A pseudo-odd-K5 has an odd-K5 minor.

Using this result, we will be able to continue with our proof of the following theorem. Our proof is due to

Schrijver (2002).

Theorem 10.10 (Guenin 2001). A signed graph without an odd-K5 minor is weakly bipartite.

Proof. Let (G = (V,E),Σ) be a signed graph that is not weakly bipartite. We will show that (G,Σ) has an odd-

K5 minor. To this end, as we argued last time, we may assume that G is connected, and that every proper minor

of (G,Σ) is weakly bipartite. Let C be the clutter of odd circuits of (G,Σ). It then follows from Proposition 10.6

that C is a minimally non-ideal clutter. Take an edge e ∈ E. Using Lehman’s Theorem 9.12, we showed the

following last time:

Claim 1. There are minimum odd circuits C1, C2, C3 and minimum signatures B1, B2, B3 such that for distinct

i, j ∈ [3],

(C1) |Ci ∩Bi| ≥ 3 and Ci ∩Bj = {e},

(C2) Ci ∩ Cj = {e} = Bi ∩Bj ,

(C3) the only odd cycles contained in Ci ∪ Cj are Ci, Cj ,

(C4) the only signatures contained in Bi ∪Bj are Bi, Bj .
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Let x, y be the ends of e. For each i ∈ [3], let Pi := Ci − {e}. Notice that P1, P2, P3 are xy-paths that are

(edge-)disjoint by (C2).

Claim 2. For distinct i, j ∈ [3], Pi and Pj are internally vertex-disjoint xy-paths.

Proof of Claim. Suppose for a contradiction that P1, P2 have a vertex v other than x, y in common. Let C :=

P1[x, v]∪P2[v, y]∪{e}. Observe that C is a cycle, and because for the signature B3 we have B3 ∩C = {e} by

(C1), it follows that C is an odd cycle. However, C is an odd cycle contained in C1 ∪ C2 that is different from

C1, C2, a contradiction to (C3). Thus, P1, P2 are internally vertex-disjoint, and similarly, for distinct i, j ∈ [3],

Pi and Pj are internally vertex-disjoint. ♦

For distinct i, j ∈ [3], pick Uij ⊆ V − {x} such that Bi4Bj = δ(Uij) – as e /∈ Bi4Bj , it follows that

Uij ⊆ V − {x, y}.

Claim 3. There are disjoint vertex subsets U1, U2, U3 ⊆ V such that for every permutation i, j, k of 1, 2, 3,

(C5) Uij = Ui ∪ Uj , and

(C6) each edge with an end in Ui and the other in Uj belongs to Bk, each edge with an end in Uk and the other

in V − (U1 ∪ U2 ∪ U3) also belongs to Bk, and Bk − {e} has no other edges.

Proof of Claim. Observe that

∅ = (B14B2)4(B24B3)4(B34B1) = δ(U12)4δ(U23)4δ(U31) = δ(U124U234U31).

As G is connected, and x, y /∈ U124U234U31, it follows that U124U234U31 = ∅. This implies that there are

disjoint vertex subsets U1, U2, U3 ⊆ V such that Uij = Ui ∪ Uj for distinct i, j ∈ [3]. This proves (C5). (C6)

follows from the definition of U1, U2, U3 and the fact (C2) that B1 ∩B2 = B2 ∩B3 = B3 ∩B1 = {e}. ♦

Claim 4. For every permutation i, j, k of 1, 2, 3, we have

(C7) V (Pi) ∩ (Uj ∪ Uk) = ∅ and V (Pi) ∩ Ui 6= ∅, and

(C8) G[Ui ∪ Uj ] is connected.

Proof of Claim. (C7) As Pi ∩ Bj = Pi ∩ Bk = ∅, and Pi is an xy-path, it follows from (C6) that V (Pi) ∩
(Uj ∪ Uk) = ∅. Moreover, by (C1), Pi ∩ Bi 6= ∅, so V (Pi) ∩ Ui 6= ∅. (C8) Suppose otherwise. Then there is

a non-empty and proper subset U of Ui ∪ Uj such that δ(U) ⊆ δ(Ui ∪ Uj) = δ(Uij) = Bi4Bj . Moreover, as

G is connected, it follows that δ(U) is a non-empty and proper subset of Bi4Bj . Then Bi4δ(U) is a signature

contained in Bi ∪Bj , so by (C4), Bi4δ(U) is either Bi or Bj , implying in turn that δ(U) is either ∅ or Bi4Bj ,

a contradiction. ♦
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Let B := B14B24B3 = B1 ∪ B2 ∪ B3. Notice that B is also a signature as B = B14δ(U2 ∪ U3), so

(G,B) is a resigning of (G,Σ). LetH be the graph obtained fromG after contracting all the edges in eachG[Ui]

and each Ci − Bi, and deleting all the remaining edges outside B1 ∪ B2 ∪ B3. Observe that E(H) = B, and

so (H,E(H)) is a minor of (G,Σ). For each i ∈ [3], let P ′
i be an xy-path in Pi ∩ Bi and let U ′

i be the vertices

of H corresponding to the vertices Ui of G. Let U ′
0 := V (H) − (U ′

1 ∪ U ′
2 ∪ U ′

3). Notice that P ′
1, P

′
2, P

′
3 are

internally vertex-disjoint xy-paths of H , that U ′
0, U

′
1, U

′
2, U

′
3 form a partition of V (H) into stable sets of H \ e

by (C6), that for each i ∈ [3] we have V (P ′
i ) ⊆ U ′

0 ∪U ′
i and V (P ′

i )∩U ′
i 6= ∅ by (C7), and for distinct i, j ∈ [3],

H[U ′
i ∪ U ′

j ] is connected by (C8). In particular, for distinct i, j ∈ [3], H[U ′
i ∪ U ′

j ] contains a path with one end

in V (P ′
i ) and the other in V (P ′

j). As a result, (H,E(H)) is a pseudo-odd-K5, so by Theorem 10.9, it has an

odd-K5 minor, implying in turn that (G,Σ) has an odd-K5 minor, as required.

As a consequence, we get the following characterization of weakly bipartite graphs:

Corollary 10.11. Let G = (V,E) be a graph. Then the following statements are equivalent:

(i) G is not weakly bipartite,

(ii) there exist disjoint I, J ⊆ E such that J forms a cut of G \ I , and G \ I/J is a K5.

Proof. (ii)⇒ (i): Since J forms a cut of G \ I , it follows that

(K5, E(K5)) = (G \ I/J,E(G \ I/J)) = (G \ I, E(G \ I))/J = (G,E(G)) \ I/J,

so (G,E(G)) has an odd-K5 minor, implying by Remark 10.7 that (G,E(G)), and soG, is not weakly bipartite.

(i)⇒ (ii): It follows that (G,E(G)) is not weakly bipartite, so by Theorem 10.10, there are disjoint I, J ⊆ E

such that (K5, E(K5)) = (G,E(G)) \ I/J . Let H := G \ I . Then (K5, E(K5)) = (H,E(H))/J , so

E(K5) = E(H) − J is a signature of (H,E(H)) disjoint from J . As a result, J = (E(H) − J)4E(H) is a

cut of H , as required.

11 Cube-ideal sets

Take an integer n ≥ 1. We will be working over the hypercube {0, 1}n. Inequalities of the form

1 ≥ xi ≥ 0 i ∈ [n]

are called hypercube inequalities. Inequalities of the form∑
i∈I

xi +
∑
j∈J

(1− xj) ≥ 1 for disjoint I, J ⊆ [n]

are called generalized set covering inequalities. Notice that generalized set covering inequalities are precisely

those inequalities that cut off a sub-hypercube of {0, 1}n. Take a subset S ⊆ {0, 1}n. We say that S is cube-ideal

if its convex hull conv(S) can be described by hypercube and generalized set covering inequalities. When is a

set cube-ideal? This is the theme of this section.
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Example. {111, 100, 010, 001} ⊆ {0, 1}3 is cube-ideal as its convex hull is equal tox ∈ [0, 1]3 :

x1 + x2 + x3 ≥ 1

x1 + (1− x2) + (1− x3) ≥ 1

(1− x1) + x2 + (1− x3) ≥ 1

(1− x1) + (1− x2) + x3 ≥ 1

 .

Given two vectors a, b ∈ {0, 1}n, let a4b := a+ b (mod 2). Given a coordinate i ∈ [n], to twist coordinate

i of S is to replace S by

S4ei := {x4ei : x ∈ S}.

So to twist coordinate i is to make the change of variables xi 7→ 1 − xi. Since hypercube and generalized set

covering inequalities are closed under this change of variables, it follows that,

Remark 11.1. Take an integer n ≥ 1 and a subset S ⊆ {0, 1}n. If S is cube-ideal, then so is any set obtained

after twisting some coordinates.

The cuboid of S, denoted cuboid(S), is the clutter over ground set [2n] whose members have incidence

vectors

(x1, 1− x1, x2, 1− x2, . . . , xn, 1− xn) x ∈ S.

Notice that {2i−1, 2i}, i ∈ [n] are covers of cuboid(S), and that every member of cuboid(S) has cardinality n.

Example. The cuboid of {111, 100, 010, 001} ⊆ {0, 1}3 has incidence matrix
1 0 1 0 1 0

1 0 0 1 0 1

0 1 1 0 0 1

0 1 0 1 1 0

 ,

which is just the incidence matrix of Q6. Thus, Q6 is a cuboid.

We saw that {111, 100, 010, 001} is cube-ideal, and that its cuboid is Q6, which we know is an ideal clutter. In

fact, we will show next time that in general, a set is cube-ideal if and only if its cuboid is ideal.
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