# CO 750 Packing and Covering: Lecture 23 

Ahmad Abdi

July 20, 2017

## 11 Cube-ideal sets

Take an integer $n \geq 1$. Recall that a set $S \subseteq\{0,1\}^{n}$ is cube-ideal if its convex hull conv $(S)$ can be described by hypercube inequalities

$$
1 \geq x_{i} \geq 0 \quad i \in[n]
$$

and generalized set covering inequalities:

$$
\sum_{i \in I} x_{i}+\sum_{j \in J}\left(1-x_{j}\right) \geq 1 \quad \text { for disjoint } I, J \subseteq[n]
$$

Recall further that the cuboid of $S$, denoted cuboid $(S)$, is the clutter over ground set $[2 n]$ whose members have incidence vectors

$$
\left(x_{1}, 1-x_{1}, x_{2}, 1-x_{2}, \ldots, x_{n}, 1-x_{n}\right) \quad x \in S .
$$

Note that $\{2 i-1,2 i\}, i \in[n]$ are covers of cuboid $(S)$, and that every member of cuboid $(S)$ has cardinality $n$. Today we will show a set is cube-ideal if and only if its cuboid is ideal.

### 11.1 Ideal cuboids

Let $\mathcal{C}$ be a clutter over ground set $E$. Denote by $Q(\mathcal{C})$ the set covering polyhedron

$$
\left\{x \in \mathbb{R}_{+}^{E}: x(C) \geq 1 C \in \mathcal{C}\right\}
$$

Here, $x(C)=\sum\left(x_{e}: e \in C\right)$. Two elements of a clutter are coexclusive if they are never used together in a minimal cover. We will need the following basic result on coexclusive elements:

Theorem 11.2 (Abdi, Cornuéjols, Pashkovich 2018). Let $\mathcal{C}$ be a clutter and take distinct elements $e, f$. The following statements are equivalent:
(i) e, $f$ are coexclusive,
(ii) for all members $C_{e}, C_{f}$ such that $C_{e} \cap\{e, f\}=\{e\}$ and $C_{f} \cap\{e, f\}=\{f\},\left(C_{e} \cup C_{f}\right)-\{e, f\}$ contains another member,
(iii) for every extreme point $x^{\star}$ of $Q(\mathcal{C}), x_{e}^{\star}+x_{f}^{\star} \leq 1$.

Proof. (i) $\Rightarrow$ (ii): Suppose $e, f$ are coexclusive elements of clutter $\mathcal{C}$. Take members $C_{e}, C_{f}$ where $C_{e} \cap\{e, f\}=$ $\{e\}$ and $C_{f} \cap\{e, f\}=\{f\}$. We will show that $C_{e} \cup C_{f}-\{e, f\}$ contains a member, thereby proving (ii). Suppose otherwise. Then the complement of $C_{e} \cup C_{f}-\{e, f\}$ is a cover, so it contains a minimal cover $B$. Since $B \cap C_{e} \neq \emptyset$ and $B \cap C_{f} \neq \emptyset$, we get that $\{e, f\} \subseteq B$, contradicting the fact that $e, f$ are coexclusive. (ii) $\Rightarrow$ (iii): Take an extreme point $x^{\star}$ of $Q(\mathcal{C})$. We will show that $x_{e}^{\star}+x_{f}^{\star} \leq 1$, proving (iii). If $x_{e}^{\star}=0$ or $x_{f}^{\star}=0$, then clearly $x_{e}^{\star}+x_{f}^{\star} \leq 1$. Otherwise, there is a member $C_{e}$ with $e \in C_{e}$ and a member $C_{f}$ with $f \in C_{f}$ such that $x^{\star}\left(C_{e}\right)=x^{\star}\left(C_{f}\right)=1$. If $\{e, f\} \subseteq C_{e}$, then $x_{e}^{\star}+x_{f}^{\star} \leq x^{\star}\left(C_{e}\right)=1$. We may therefore assume that $C_{e} \cap\{e, f\}=\{e\}$ and, similarly, $C_{f} \cap\{e, f\}=\{f\}$. It now follows from (ii) that there is a member $C \subseteq C_{e} \cup C_{f}-\{e, f\}$. Then

$$
x_{e}^{\star}+x_{f}^{\star}+1 \leq x_{e}^{\star}+x_{f}^{\star}+x^{\star}(C) \leq x^{\star}\left(C_{e}\right)+x^{\star}\left(C_{f}\right)=2,
$$

proving (iii). (iii) $\Rightarrow$ (i): Since the incidence vector of every minimal cover $B$ is an extreme point $x^{\star}$ of $Q(\mathcal{C})$, we get from $x_{e}^{\star}+x_{f}^{\star} \leq 1$ that $B$ contains at most one $e, f$. So $e, f$ are coexclusive, proving (i).

Recall that if $\mathcal{C}$ is ideal, then the extreme points of $Q(\mathcal{C})$ are precisely the incidence vectors of the minimal covers, so $Q(\mathcal{C})=\operatorname{conv}\left(\left\{\chi_{B}: B \in b(\mathcal{C})\right\}\right)+\mathbb{R}_{+}^{E}$. We will need this below:

Lemma 11.3 (Guenin 1998, Nobili and Sassano 1998). Take a clutter $\mathcal{C}$ over ground set $E=\left\{e_{1}, f_{1}, \ldots, e_{n}, f_{n}\right\}$, where for each $i \in[n],\left\{e_{i}, f_{i}\right\}$ intersects every member exactly once. Then the following statements are equivalent:
(i) $b(\mathcal{C})$ is ideal,
(ii) $\operatorname{conv}\left\{\chi_{C}: C \in \mathcal{C}\right\}=Q(b(\mathcal{C})) \cap\left\{x: x_{e_{i}}+x_{f_{i}}=1 \forall i \in[n]\right\}$.

Proof. (i) $\Rightarrow$ (ii): Since $\chi_{C} \in\left\{x: x_{e_{i}}+x_{f_{i}}=1 \forall i \in[n]\right\}$ for every member $C$, the inclusion $\subseteq$ holds. Let us prove the reverse inclusion $\supseteq$. Since $b(\mathcal{C})$ is ideal, we get that

$$
Q(b(\mathcal{C}))=\operatorname{conv}\left\{\chi_{C}: C \in \mathcal{C}\right\}+\mathbb{R}_{+}^{E}
$$

It is easy to see that this equation implies the reverse inclusion. (ii) $\Rightarrow$ (i): Let $x^{\star}$ be an extreme point of $Q(b(\mathcal{C}))$. It suffices to show that $x^{\star}$ is integral. Since $\left\{e_{i}, f_{i}\right\}$ is a cover of $\mathcal{C}$, it contains a member of $b(\mathcal{C})$, so $x_{e_{i}}^{\star}+x_{f_{i}}^{\star} \geq 1$. Moreover, since $e_{i}, f_{i}$ are exclusive in $\mathcal{C}$, they are coexclusive in $b(\mathcal{C})$, so by Theorem 11.2 (iii), $x_{e_{i}}^{\star}+x_{f_{i}}^{\star} \leq 1$. So for each $i \in[n], x_{e_{i}}^{\star}+x_{f_{i}}^{\star}=1$, implying in turn by (ii) that $x^{\star} \in \operatorname{conv}\left\{\chi_{C}: C \in \mathcal{C}\right\}$. Since $x^{\star}$ is an extreme point, it must be one of the incidence vectors and hence integral, as required.

We are now ready to prove the following:
Theorem 11.4 (Abdi, Cornuéjols, Guričanová, Lee 2018+). Take an integer $n \geq 1$ and a subset $S \subseteq\{0,1\}^{n}$. Then $S$ is cube-ideal if, and only if, cuboid $(S)$ is an ideal clutter.

Proof. Let $\mathcal{C}:=\operatorname{cuboid}(S)$. Notice that $\mathcal{C}$ is over ground set $E=\{1,2, \ldots, 2 n-1,2 n\}$, where for each $i \in[n]$, $\{2 i-1,2 i\}$ intersects every member exactly once. We may therefore apply Lemma 11.3. ( $\Leftarrow)$ Assume that $\mathcal{C}$ is ideal. It follows from Theorem 7.8 that $b(\mathcal{C})$ is an ideal clutter also. Thus by Lemma 11.3, we have that

$$
\operatorname{conv}\left\{\chi_{C}: C \in \mathcal{C}\right\}=Q(b(\mathcal{C})) \cap\left\{x: x_{2 i-1}+x_{2 i}=1 \forall i \in[n]\right\}
$$

Eliminating the even coordinates using the Fourier-Motzkin elimination method, we get that

$$
\operatorname{conv}(S)=\left\{y \in[0,1]^{n}: \sum\left(y_{i}: 2 i-1 \in B\right)+\sum\left(1-y_{j}: 2 j \in B\right) \geq 1 \quad \forall B \in b(\mathcal{C})\right\}
$$

As a result, $S$ is cube-ideal. $(\Rightarrow)$ Assume conversely that $S$ is cube-ideal, so

$$
\operatorname{conv}(S)=\left\{y \in[0,1]^{n}: \sum\left(y_{i}: i \in I\right)+\sum\left(1-y_{j}: j \in J\right) \geq 1 \quad \forall(I, J) \in \mathcal{V}\right\}
$$

for some appropriate set $\mathcal{V}$. We may assume that for each $(I, J) \in \mathcal{V}, I \cap J=\emptyset$. After the change of variables $y_{i} \mapsto x_{2 i-1}$ and $1-y_{i} \mapsto x_{2 i}$ to the equation above, we get that

$$
\operatorname{conv}\left\{\chi_{C}: C \in \mathcal{C}\right\}=\left\{x \in \mathbb{R}_{+}^{2 n}: \begin{array}{l}
\sum_{2 i-1}\left(x_{2 i-1}: i \in I\right)+x_{2 i}=1 \quad \forall i \in\left[x_{2 j}: j \in J\right) \geq 1 \quad \forall(I, J) \in \mathcal{V} \\
x_{2 i}
\end{array}\right\}
$$

Together with Lemma 11.3, this equation implies that $b(\mathcal{C})$ is an ideal clutter, so by Theorem $7.8, \mathcal{C}$ is an ideal clutter, as required.

### 11.2 The sums of circuits property

Take an integer $n \geq 1$ and a set $S \subseteq\{0,1\}^{n}$. We say that $S$ is a binary space (or a vector space over $G F(2)$ ) if

- $\mathbf{0} \in S$, and
- if $a, b \in S$ then $a \triangle b \in S$.

When is a binary space cube-ideal? To answer this question, we need to introduce some terminology. The orthogonal complement of $S$ is

$$
S^{\perp}:=\left\{d \in\{0,1\}^{n}: d^{\top} c \equiv 0 \quad(\bmod 2) \quad \forall c \in S\right\}
$$

It is clear that $S^{\perp}$ is another binary space, and it is widely known that $\left(S^{\perp}\right)^{\perp}=S$. To describe $S^{\perp}$ explicitly, we first write

$$
S=\left\{x \in\{0,1\}^{n}: A x \equiv \mathbf{0} \quad(\bmod 2)\right\}
$$

for some $m \times n$ matrix $A$ with $0-1$ entries. Then $S^{\perp}$ is equal to the row space of $A$ modulo 2 :

$$
S^{\perp}=\left\{A^{\top} x: x \in\{0,1\}^{m}\right\}
$$

Denote by $E$ the column labels of $A$. We say that a subset $C \subseteq E$ is a cycle if $\chi_{C} \in S$, and that a subset $D \subseteq E$ is a cocycle if $\chi_{D} \in S^{\perp}$. Notice that a cycle and a cocycle will always have an even number elements in common.

Example. Let $G=(V, E)$ be a graph where loops are viewed as vertex-less edges. Then

$$
S:=\left\{\chi_{C}: C \subseteq E \text { is a graph cycle }\right\} \subseteq\{0,1\}^{E}
$$

is a binary space, because for graph cycles $C_{1}, C_{2}$, their symmetric difference $C_{1} \triangle C_{2}$ is also a graph cycle. We can represent $S$ as

$$
S=\left\{x \in\{0,1\}^{E}: A x \equiv \mathbf{0} \quad(\bmod 2)\right\}
$$

where $A$ is the vertex-edge incidence matrix of $G$. As a result, the cocycles of $S$ correspond to the points in the row space of $A$ modulo 2 , implying in turn that the cocycles of $S$ are precisely the cuts of $G$.

