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11 Cube-ideal sets

Take an integer n > 1. Recall that a set S C {0, 1}" is cube-ideal if its convex hull conv(.S) can be described
by hypercube inequalities
1>2;,>0 i € [n]

and generalized set covering inequalities:

inJrZ(lij) >1 for disjoint I, J C [n].
iel jeJ

Recall further that the cuboid of S, denoted cuboid(.S), is the clutter over ground set [2n] whose members have

incidence vectors

(1,1 —z1, 0,1 —29,...,xpn, 1 —xp) T € S.

Note that {2¢ — 1,24}, 7 € [n] are covers of cuboid(S), and that every member of cuboid(.S) has cardinality 7.

Today we will show a set is cube-ideal if and only if its cuboid is ideal.

11.1 Ideal cuboids

Let C be a clutter over ground set E. Denote by QQ(C) the set covering polyhedron
{xERE:x(C)Zl Cec}.

Here, 2(C) = > (ze : e € C'). Two elements of a clutter are coexclusive if they are never used together in a

minimal cover. We will need the following basic result on coexclusive elements:

Theorem 11.2 (Abdi, Cornuéjols, Pashkovich 2018). Let C be a clutter and take distinct elements e, f. The

following statements are equivalent:
(i) e, f are coexclusive,

(ii) for all members C.,C such that CcN{e, f} = {e} and Cy N{e, f} = {f}, (CcUC}) —{e, f} contains

another member,



(iii) for every extreme point x* of Q(C), x + i <L

Proof. (i) = (ii): Suppose e, f are coexclusive elements of clutter C. Take members C., Cy where C.N{e, f} =
{e} and C; N {e, f} = {f}. We will show that C. U Cy — {e, f} contains a member, thereby proving (ii).
Suppose otherwise. Then the complement of C. U Cy — {e, f} is a cover, so it contains a minimal cover B.
Since BN C. # 0 and BN Cy # 0, we get that {e, f} C B, contradicting the fact that e, f are coexclusive.
(ii) = (iii): Take an extreme point 2* of Q(C). We will show that a2 + :c’]; < 1, proving (iii). If 5 = 0 or
x’]; = 0, then clearly x} + x} < 1. Otherwise, there is a member C, with e € C. and a member C'; with f € Cy
such that z*(Ce) = z*(Cy) = 1. If {e, f} C C,, then z7 + 2} < 2*(C,) = 1. We may therefore assume
that C. N {e, f} = {e} and, similarly, C; N {e, f} = {f}. It now follows from (ii) that there is a member
C CC.uUCy—e, f}. Then

ol +af + 1 <al a2 (0) < at(Ce) +27(Cp) = 2,

proving (iii). (iii) = (i): Since the incidence vector of every minimal cover B is an extreme point 2* of Q(C),

we get from z7 + 27 < 1 that B contains at most one e, f. So e, f are coexclusive, proving (i). O

Recall that if C is ideal, then the extreme points of Q)(C) are precisely the incidence vectors of the minimal

covers, s0 Q(C) = conv ({xp : B € b(C)}) + R¥. We will need this below:

Lemma 11.3 (Guenin 1998, Nobili and Sassano 1998). Take a clutter C over ground set E = {e1, f1,...,en, fn},
where for each i € [n), {e;, f;} intersects every member exactly once. Then the following statements are equiv-

alent:
(i) b(C) is ideal,
(ii) conv{xc: C €C} =Q(b(C)) N{z:xe, +zy, =1Vi€ [n]}.

Proof. (i) = (ii): Since x¢ € {x (T, Ty, =1Vi € [n}} for every member C, the inclusion C holds. Let us

prove the reverse inclusion D. Since b(C) is ideal, we get that
Q(b(C)) = conv{xc : C € C} +RY.

It is easy to see that this equation implies the reverse inclusion. (ii) = (i): Let x* be an extreme point of
Q(b(C)). It suffices to show that z* is integral. Since {e;, f;} is a cover of C, it contains a member of b(C), so
z;, +x}, > 1. Moreover, since ¢;, f; are exclusive in C, they are coexclusive in b(C), so by Theorem 11.2 (iii),
), +a% < 1. Soforeachi € [n], 2}, + «% = 1, implying in turn by (ii) that 2* € conv{xc : C € C}. Since

x* is an extreme point, it must be one of the incidence vectors and hence integral, as required. O
We are now ready to prove the following:

Theorem 11.4 (Abdi, Cornuéjols, GuriCanovd, Lee 2018+). Tuke an integer n > 1 and a subset S C {0,1}™.
Then S is cube-ideal if, and only if, cuboid(S) is an ideal clutter.



Proof. Let C := cuboid(S). Notice that C is over ground set E = {1, 2,...,2n—1,2n}, where for each i € [n],
{2¢ — 1, 2i} intersects every member exactly once. We may therefore apply Lemma 11.3. (<) Assume that C is

ideal. It follows from Theorem 7.8 that b(C) is an ideal clutter also. Thus by Lemma 11.3, we have that
conv{Xc :C e C} = Q(b(C)) N {x T Xoiq + a0 =1Vi € [n]}
Eliminating the even coordinates using the Fourier-Motzkin elimination method, we get that

Conv(S):{yE[O,l]":Z(yi:2i—1€B)+Z(1—yj:2j€B)21 VBeb(C)}.

As aresult, S is cube-ideal. (=) Assume conversely that S is cube-ideal, so

conV(S)z{yE[O,l]":Z(yi:iEI)—I—Z(l—yj:jEJ)21 V(I,J)EV},

for some appropriate set V. We may assume that for each (I, J) € V, I N J = (). After the change of variables

y; — X2;—1 and 1 — y; — xo; to the equation above, we get that

Z($21_1Z€I)+Z<l‘2]je<})21 V(I,J)EV }

. _ RQn .
COHV{XC CGC} {IE + Toi—1+ T2, =1 Vi€ |[n]

Together with Lemma 11.3, this equation implies that b(C) is an ideal clutter, so by Theorem 7.8, C is an ideal

clutter, as required. O

11.2 The sums of circuits property

Take an integer n > 1 and a set S C {0, 1}". We say that S is a binary space (or a vector space over GF'(2)) if
e 0c S, and
e ifa,b € Sthenal\b e S.

When is a binary space cube-ideal? To answer this question, we need to introduce some terminology. The

orthogonal complement of S is
St:={de{0,1}":d"c=0 (mod2) VceS}.

It is clear that S is another binary space, and it is widely known that (S+)* = S. To describe S+ explicitly,
we first write
S={ze{0,1}": Az =0 (mod 2)}

for some m x n matrix A with 0 — 1 entries. Then S* is equal to the row space of A modulo 2:
St = {ATx cx e {0,1}™}.

Denote by E the column labels of A. We say that a subset C' C FE is a cycle if xo € S, and that a subset
D C Eisacocycle if xyp € S*. Notice that a cycle and a cocycle will always have an even number elements in

common.



Example. Let G = (V, E) be a graph where loops are viewed as vertex-less edges. Then
S :={xc : C C Eis a graph cycle} C {0,1}¥

is a binary space, because for graph cycles Cy, Cy, their symmetric difference C1 ACy is also a graph cycle. We
can represent S as

S={ze{0,1}* : Az =0 (mod 2)}

where A is the vertex-edge incidence matrix of G. As a result, the cocycles of S correspond to the points in the

row space of A modulo 2, implying in turn that the cocycles of S are precisely the cuts of G.



