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11 Cube-ideal sets

Take an integer n ≥ 1. Recall that a set S ⊆ {0, 1}n is cube-ideal if its convex hull conv(S) can be described

by hypercube inequalities

1 ≥ xi ≥ 0 i ∈ [n]

and generalized set covering inequalities:∑
i∈I

xi +
∑
j∈J

(1− xj) ≥ 1 for disjoint I, J ⊆ [n].

Recall further that the cuboid of S, denoted cuboid(S), is the clutter over ground set [2n] whose members have

incidence vectors

(x1, 1− x1, x2, 1− x2, . . . , xn, 1− xn) x ∈ S.

Note that {2i− 1, 2i}, i ∈ [n] are covers of cuboid(S), and that every member of cuboid(S) has cardinality n.

Today we will show a set is cube-ideal if and only if its cuboid is ideal.

11.1 Ideal cuboids

Let C be a clutter over ground set E. Denote by Q(C) the set covering polyhedron{
x ∈ RE

+ : x(C) ≥ 1 C ∈ C
}
.

Here, x(C) =
∑

(xe : e ∈ C). Two elements of a clutter are coexclusive if they are never used together in a

minimal cover. We will need the following basic result on coexclusive elements:

Theorem 11.2 (Abdi, Cornuéjols, Pashkovich 2018). Let C be a clutter and take distinct elements e, f . The

following statements are equivalent:

(i) e, f are coexclusive,

(ii) for all members Ce, Cf such that Ce ∩{e, f} = {e} and Cf ∩{e, f} = {f}, (Ce ∪Cf )−{e, f} contains

another member,
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(iii) for every extreme point x? of Q(C), x?e + x?f ≤ 1.

Proof. (i)⇒ (ii): Suppose e, f are coexclusive elements of clutter C. Take membersCe, Cf whereCe∩{e, f} =
{e} and Cf ∩ {e, f} = {f}. We will show that Ce ∪ Cf − {e, f} contains a member, thereby proving (ii).

Suppose otherwise. Then the complement of Ce ∪ Cf − {e, f} is a cover, so it contains a minimal cover B.

Since B ∩ Ce 6= ∅ and B ∩ Cf 6= ∅, we get that {e, f} ⊆ B, contradicting the fact that e, f are coexclusive.

(ii) ⇒ (iii): Take an extreme point x? of Q(C). We will show that x?e + x?f ≤ 1, proving (iii). If x?e = 0 or

x?f = 0, then clearly x?e +x
?
f ≤ 1. Otherwise, there is a member Ce with e ∈ Ce and a member Cf with f ∈ Cf

such that x?(Ce) = x?(Cf ) = 1. If {e, f} ⊆ Ce, then x?e + x?f ≤ x?(Ce) = 1. We may therefore assume

that Ce ∩ {e, f} = {e} and, similarly, Cf ∩ {e, f} = {f}. It now follows from (ii) that there is a member

C ⊆ Ce ∪ Cf − {e, f}. Then

x?e + x?f + 1 ≤ x?e + x?f + x?(C) ≤ x?(Ce) + x?(Cf ) = 2,

proving (iii). (iii)⇒ (i): Since the incidence vector of every minimal cover B is an extreme point x? of Q(C),
we get from x?e + x?f ≤ 1 that B contains at most one e, f . So e, f are coexclusive, proving (i).

Recall that if C is ideal, then the extreme points of Q(C) are precisely the incidence vectors of the minimal

covers, so Q(C) = conv ({χB : B ∈ b(C)}) + RE
+. We will need this below:

Lemma 11.3 (Guenin 1998, Nobili and Sassano 1998). Take a clutter C over ground setE = {e1, f1, . . . , en, fn},
where for each i ∈ [n], {ei, fi} intersects every member exactly once. Then the following statements are equiv-

alent:

(i) b(C) is ideal,

(ii) conv
{
χC : C ∈ C

}
= Q

(
b(C)

)
∩
{
x : xei + xfi = 1 ∀i ∈ [n]

}
.

Proof. (i)⇒ (ii): Since χC ∈
{
x : xei + xfi = 1 ∀i ∈ [n]

}
for every member C, the inclusion ⊆ holds. Let us

prove the reverse inclusion ⊇. Since b(C) is ideal, we get that

Q
(
b(C)

)
= conv

{
χC : C ∈ C

}
+ RE

+.

It is easy to see that this equation implies the reverse inclusion. (ii) ⇒ (i): Let x? be an extreme point of

Q
(
b(C)

)
. It suffices to show that x? is integral. Since {ei, fi} is a cover of C, it contains a member of b(C), so

x?ei + x?fi ≥ 1. Moreover, since ei, fi are exclusive in C, they are coexclusive in b(C), so by Theorem 11.2 (iii),

x?ei + x?fi ≤ 1. So for each i ∈ [n], x?ei + x?fi = 1, implying in turn by (ii) that x? ∈ conv
{
χC : C ∈ C

}
. Since

x? is an extreme point, it must be one of the incidence vectors and hence integral, as required.

We are now ready to prove the following:

Theorem 11.4 (Abdi, Cornuéjols, Guric̆anová, Lee 2018+). Take an integer n ≥ 1 and a subset S ⊆ {0, 1}n.

Then S is cube-ideal if, and only if, cuboid(S) is an ideal clutter.
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Proof. Let C := cuboid(S). Notice that C is over ground setE = {1, 2, . . . , 2n−1, 2n}, where for each i ∈ [n],

{2i− 1, 2i} intersects every member exactly once. We may therefore apply Lemma 11.3. (⇐) Assume that C is

ideal. It follows from Theorem 7.8 that b(C) is an ideal clutter also. Thus by Lemma 11.3, we have that

conv
{
χC : C ∈ C

}
= Q

(
b(C)

)
∩
{
x : x2i−1 + x2i = 1 ∀i ∈ [n]

}
.

Eliminating the even coordinates using the Fourier-Motzkin elimination method, we get that

conv(S) =
{
y ∈ [0, 1]n :

∑(
yi : 2i− 1 ∈ B

)
+
∑(

1− yj : 2j ∈ B
)
≥ 1 ∀B ∈ b(C)

}
.

As a result, S is cube-ideal. (⇒) Assume conversely that S is cube-ideal, so

conv(S) =
{
y ∈ [0, 1]n :

∑(
yi : i ∈ I

)
+
∑(

1− yj : j ∈ J
)
≥ 1 ∀ (I, J) ∈ V

}
,

for some appropriate set V . We may assume that for each (I, J) ∈ V , I ∩ J = ∅. After the change of variables

yi 7→ x2i−1 and 1− yi 7→ x2i to the equation above, we get that

conv
{
χC : C ∈ C

}
=

{
x ∈ R2n

+ :

∑(
x2i−1 : i ∈ I

)
+
∑(

x2j : j ∈ J
)
≥ 1 ∀ (I, J) ∈ V

x2i−1 + x2i = 1 ∀ i ∈ [n]

}
.

Together with Lemma 11.3, this equation implies that b(C) is an ideal clutter, so by Theorem 7.8, C is an ideal

clutter, as required.

11.2 The sums of circuits property

Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. We say that S is a binary space (or a vector space over GF (2)) if

• 0 ∈ S, and

• if a, b ∈ S then a4b ∈ S.

When is a binary space cube-ideal? To answer this question, we need to introduce some terminology. The

orthogonal complement of S is

S⊥ :=
{
d ∈ {0, 1}n : d>c ≡ 0 (mod 2) ∀c ∈ S

}
.

It is clear that S⊥ is another binary space, and it is widely known that (S⊥)⊥ = S. To describe S⊥ explicitly,

we first write

S =
{
x ∈ {0, 1}n : Ax ≡ 0 (mod 2)

}
for some m× n matrix A with 0− 1 entries. Then S⊥ is equal to the row space of A modulo 2:

S⊥ =
{
A>x : x ∈ {0, 1}m

}
.

Denote by E the column labels of A. We say that a subset C ⊆ E is a cycle if χC ∈ S, and that a subset

D ⊆ E is a cocycle if χD ∈ S⊥. Notice that a cycle and a cocycle will always have an even number elements in

common.
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Example. Let G = (V,E) be a graph where loops are viewed as vertex-less edges. Then

S := {χC : C ⊆ E is a graph cycle} ⊆ {0, 1}E

is a binary space, because for graph cycles C1, C2, their symmetric difference C14C2 is also a graph cycle. We

can represent S as

S =
{
x ∈ {0, 1}E : Ax ≡ 0 (mod 2)

}
where A is the vertex-edge incidence matrix of G. As a result, the cocycles of S correspond to the points in the

row space of A modulo 2, implying in turn that the cocycles of S are precisely the cuts of G.
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