CO 750 Packing and Covering: Lecture 3

Ahmad Abdi

May 9, 2017

4 Balanced matrices

Let A, B be $0-1$ matrices, where B has no column of all zeros. Why is

$$
\{x \geq \mathbf{0}: A x \geq \mathbf{1}\}
$$

called the set covering polyhedron and

$$
\{x \geq \mathbf{0}: B x \leq \mathbf{1}\}
$$

the set packing polytope? There is a neat way to look at these polyhedra that explains the terminology and gives us good intuition about what is coming. Take a loopless graph $G=(V, E)$. Let A be the edge-vertex incidence matrix of G, that is, the columns are labeled by V and the rows are the incidence vectors of the edges. Then the $0-1$ points of

$$
\{x \geq \mathbf{0}: A x \geq \mathbf{1}\}
$$

correspond to the vertex covers of G, hence the "set covering polyhedron". (A vertex cover of a graph is a set of vertices whose deletion makes the graph stable.) Let B be the vertex-edge incidence matrix of G, i.e. $B=A^{\top}$. Then the $0-1$ points of

$$
\{x \geq \mathbf{0}: B x \leq \mathbf{1}\}
$$

correspond to the matchings of G, hence the "set packing polytope".
It follows from various well-known theorems of Kőnig (1931) that if G is bipartite, then the set covering and the set packing systems associated to the (edge-vertex or vertex-edge) incidence matrix are totally dual integral. Well, in general, we can think of any $0-1$ matrix as the (vertex-edge or edge-vertex) incidence matrix of a "hypergraph". How can we generalize the notion of bipartite-ness to hypergraphs? However way we do this, we want the definition to be invariant of taking matrix transpose.

An odd square matrix of the form

$$
\left(\begin{array}{llllll}
1 & 1 & & & & \\
& 1 & 1 & & & \\
& & 1 & 1 & & \\
& & & \ddots & & \\
& & & & 1 & 1 \\
& & & & & 1
\end{array}\right)
$$

is called an odd cycle matrix. A $0-1$ matrix is balanced if it has no odd cycle submatrix (even after rearranging its rows and columns). Observe that if a matrix is balanced, then so is its transpose. Notice that an odd cycle matrix is the incidence matrix of a graph odd cycle. As a result, the incidence matrix of a bipartite graph is always balanced. We may therefore think of balanced matrices as generalizations of bipartite graphs.

4.1 A bicoloring characterization of balanced matrices

A bicoloring of a $0-1$ matrix is a partition of the columns into two color classes, where every row with at least two ones gets both colors. For instance, $R=\{1,2\}$ and $B=\{3,4\}$ yields a bicoloring of the matrix

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

whose columns are labeled $1,2,3,4$ from left to right.
Theorem 4.1 (Berge 1970). A $0-1$ matrix is balanced if, and only if, every submatrix has a bicoloring.
Proof. Let A be a $0-1$ matrix. (\Leftarrow) Since an odd cycle is not bipartite, an odd cycle matrix is not bicolorable. So, if every submatrix of A is bicolorable, A must be balanced. (\Rightarrow) Suppose otherwise. We may assume that A is a balanced matrix that is not bicolorable, but every proper submatrix is bicolorable. In particular, every row of A has at least two ones. Let V collect the column labels of A.

Claim. For every $v \in V$, there exist rows of the form $\{v, u\},\{v, w\}$ for some distinct $u, w \in V-\{v\}$.
Proof of Claim. For if not, bicolor the column submatrix of A corresponding to the columns $V-\{v\}$. Our contrary assumption allows us to extend this bicoloring to a bicoloring of A, a contradiction.

Let G be the graph on vertices V whose edges correspond to the rows in A with exactly two ones. Since A is balanced, and the edge-vertex incidence matrix of G is a submatrix of A, it follows that G is bipartite. By Claim 1, every vertex of G has degree at least 2 . In particular, G has a vertex v_{0} that is not a cut-vertex. Now bicolor the column submatrix of A corresponding to the columns $V-\left\{v_{0}\right\}$, and extend this bicoloring uniquely to a bicoloring of A, determined by the path in $G \backslash v_{0}$ between two neighbors of v_{0}, a contradiction. This finishes the proof of Theorem 4.1.

A hypergraph is a pair $G=(V, E)$ where V is a finite set of vertices, and each element of E is a non-empty subset of V, called an edge. A hypergraph is balanced if its incidence matrix is balanced.

Corollary 4.2 (Berge 1972). Let $G=(V, E)$ be a balanced hypergraph, and let $k \geq 2$ be the minimum cardinality of an edge. Then there exists a partition of V into k color classes where every edge gets at least one vertex of each color.

Proof. For $k=2$, the result follows immediately from Theorem 4.1. We may therefore assume that $k \geq 3$. Let $\left(S_{1}, \ldots, S_{k}\right)$ be an arbitrary partition of V. For each edge e, let

$$
k_{e}:=\left|\left\{i \in[k]: e \cap S_{i} \neq \emptyset\right\}\right| \in\{1, \ldots, k\} .
$$

If each k_{e} is k, then we have a k-coloring. Otherwise, assume that $k_{g}<k$ for some edge g. Since $|g| \geq k$, we may assume that

$$
\left|g \cap S_{k-1}\right| \geq 2 \quad \text { and } \quad g \cap S_{k}=\emptyset
$$

Let A be the edge-vertex incidence matrix of G. Since A is balanced, by Theorem 4.1, we may bicolor the column submatrix of A corresponding to $S_{k-1} \cup S_{k}$ and get a bicoloring $S_{k-1}^{\prime} \cup S_{k}^{\prime}$. Consider now the partition $\left(S_{1}, \cdots, S_{k-2}, S_{k-1}^{\prime}, S_{k}^{\prime}\right)$. Notice that g intersects $k_{g}+1$ many of these parts, and every other edge e intersects at least k_{e} many of these parts. By applying this argument recursively, we will achieve the desired k-coloring.

For an integer $k \geq 2$, a hypergraph is k-partite if its vertices can be partitioned into k parts such that every edge intersects each part at most once. As an immediate consequence of the preceding result, we have the following:

Corollary 4.3. Take an integer $k \geq 2$ and a hypergraph where every edge has cardinality k. If G is balanced, then it is k-partite.

4.2 Integral polyhedra associated with balanced matrices

Take a $0-1$ matrix A with column labels E, and consider the polytope

$$
P(A):=\{\mathbf{1} \geq x \geq \mathbf{0}: A x=\mathbf{1}\}
$$

Notice that for each $e \in E$,

$$
P(A) \cap\left\{x: x_{e}=0\right\}=P\left(A^{\prime}\right) \quad \text { and } \quad P(A) \cap\left\{x: x_{e}=1\right\}=P\left(A^{\prime \prime}\right)
$$

where $A^{\prime}, A^{\prime \prime}$ are appropriate submatrices of A. (Equality holds above after extending $P\left(A^{\prime}\right), P\left(A^{\prime \prime}\right)$ to \mathbb{R}^{E} by setting new coordinates to either 0 or 1.)

