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4 Balanced matrices

Let A,B be 0− 1 matrices, where B has no column of all zeros. Why is

{x ≥ 0 : Ax ≥ 1}

called the set covering polyhedron and

{x ≥ 0 : Bx ≤ 1}

the set packing polytope? There is a neat way to look at these polyhedra that explains the terminology and gives

us good intuition about what is coming. Take a loopless graph G = (V,E). Let A be the edge-vertex incidence

matrix of G, that is, the columns are labeled by V and the rows are the incidence vectors of the edges. Then the

0− 1 points of

{x ≥ 0 : Ax ≥ 1}

correspond to the vertex covers of G, hence the “set covering polyhedron”. (A vertex cover of a graph is a set of

vertices whose deletion makes the graph stable.) Let B be the vertex-edge incidence matrix of G, i.e. B = A>.

Then the 0− 1 points of

{x ≥ 0 : Bx ≤ 1}

correspond to the matchings of G, hence the “set packing polytope”.

It follows from various well-known theorems of Kőnig (1931) that if G is bipartite, then the set covering and

the set packing systems associated to the (edge-vertex or vertex-edge) incidence matrix are totally dual integral.

Well, in general, we can think of any 0 − 1 matrix as the (vertex-edge or edge-vertex) incidence matrix of a

“hypergraph”. How can we generalize the notion of bipartite-ness to hypergraphs? However way we do this, we

want the definition to be invariant of taking matrix transpose.

An odd square matrix of the form 

1 1

1 1

1 1
. . .

1 1

1 1
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is called an odd cycle matrix. A 0− 1 matrix is balanced if it has no odd cycle submatrix (even after rearranging

its rows and columns). Observe that if a matrix is balanced, then so is its transpose. Notice that an odd cycle

matrix is the incidence matrix of a graph odd cycle. As a result, the incidence matrix of a bipartite graph is

always balanced. We may therefore think of balanced matrices as generalizations of bipartite graphs.

4.1 A bicoloring characterization of balanced matrices

A bicoloring of a 0− 1 matrix is a partition of the columns into two color classes, where every row with at least

two ones gets both colors. For instance, R = {1, 2} and B = {3, 4} yields a bicoloring of the matrix
1 0 0 0

1 0 1 0

0 1 0 1

0 0 1 1


whose columns are labeled 1, 2, 3, 4 from left to right.

Theorem 4.1 (Berge 1970). A 0− 1 matrix is balanced if, and only if, every submatrix has a bicoloring.

Proof. Let A be a 0− 1 matrix. (⇐) Since an odd cycle is not bipartite, an odd cycle matrix is not bicolorable.

So, if every submatrix of A is bicolorable, A must be balanced. (⇒) Suppose otherwise. We may assume that

A is a balanced matrix that is not bicolorable, but every proper submatrix is bicolorable. In particular, every row

of A has at least two ones. Let V collect the column labels of A.

Claim. For every v ∈ V , there exist rows of the form {v, u}, {v, w} for some distinct u,w ∈ V − {v}.

Proof of Claim. For if not, bicolor the column submatrix of A corresponding to the columns V − {v}. Our

contrary assumption allows us to extend this bicoloring to a bicoloring of A, a contradiction. ♦

Let G be the graph on vertices V whose edges correspond to the rows in A with exactly two ones. Since A

is balanced, and the edge-vertex incidence matrix of G is a submatrix of A, it follows that G is bipartite. By

Claim 1, every vertex of G has degree at least 2. In particular, G has a vertex v0 that is not a cut-vertex. Now

bicolor the column submatrix of A corresponding to the columns V −{v0}, and extend this bicoloring uniquely

to a bicoloring of A, determined by the path in G\v0 between two neighbors of v0, a contradiction. This finishes

the proof of Theorem 4.1.

A hypergraph is a pair G = (V,E) where V is a finite set of vertices, and each element of E is a non-empty

subset of V , called an edge. A hypergraph is balanced if its incidence matrix is balanced.

Corollary 4.2 (Berge 1972). Let G = (V,E) be a balanced hypergraph, and let k ≥ 2 be the minimum

cardinality of an edge. Then there exists a partition of V into k color classes where every edge gets at least one

vertex of each color.
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Proof. For k = 2, the result follows immediately from Theorem 4.1. We may therefore assume that k ≥ 3. Let

(S1, . . . , Sk) be an arbitrary partition of V . For each edge e, let

ke := |{i ∈ [k] : e ∩ Si 6= ∅}| ∈ {1, . . . , k}.

If each ke is k, then we have a k-coloring. Otherwise, assume that kg < k for some edge g. Since |g| ≥ k, we

may assume that

|g ∩ Sk−1| ≥ 2 and g ∩ Sk = ∅.

Let A be the edge-vertex incidence matrix of G. Since A is balanced, by Theorem 4.1, we may bicolor the

column submatrix of A corresponding to Sk−1 ∪Sk and get a bicoloring S′k−1 ∪S′k. Consider now the partition

(S1, · · · , Sk−2, S
′
k−1, S

′
k). Notice that g intersects kg+1 many of these parts, and every other edge e intersects at

least ke many of these parts. By applying this argument recursively, we will achieve the desired k-coloring.

For an integer k ≥ 2, a hypergraph is k-partite if its vertices can be partitioned into k parts such that every

edge intersects each part at most once. As an immediate consequence of the preceding result, we have the

following:

Corollary 4.3. Take an integer k ≥ 2 and a hypergraph where every edge has cardinality k. If G is balanced,

then it is k-partite.

4.2 Integral polyhedra associated with balanced matrices

Take a 0− 1 matrix A with column labels E, and consider the polytope

P (A) := {1 ≥ x ≥ 0 : Ax = 1}.

Notice that for each e ∈ E,

P (A) ∩ {x : xe = 0} = P (A′) and P (A) ∩ {x : xe = 1} = P (A′′)

where A′, A′′ are appropriate submatrices of A. (Equality holds above after extending P (A′), P (A′′) to RE by

setting new coordinates to either 0 or 1.)
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