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4.2 Integral polyhedra associated with balanced matrices

Take a 0− 1 matrix A and the polytope

P (A) = {1 ≥ x ≥ 0 : Ax = 1}.

Recall from the last lecture that for each column label e,

P (A) ∩ {x : xe = 0} = P (A′) and P (A) ∩ {x : xe = 1} = P (A′′)

where A′, A′′ are appropriate submatrices of A.

Proposition 4.4. Let A be a balanced matrix. Then the polytope P (A) is integral.

Proof. Suppose otherwise. Let E be the column labels of A. We may assume that P (A) is not integral, but for

every proper submatrix A′ of A, P (A′) is integral. In particular, for every e ∈ E, the two polytopes

P (A) ∩ {x : xe = 0} and P (A) ∩ {x : xe = 1}

are integral. Let x? be a fractional extreme point of P (A). Since the polytopes above are integral, it follows that

1 > x? > 0. Our minimality assumption implies that A is a square non-singular matrix.

Claim. Every row of A has exactly two ones.

Proof of Claim. By our minimal choice, every row of A has at least two ones. Let A′ be the matrix obtained

from A after removing the first row. Since P (A′) is integral and x? ∈ P (A′), it follows that x? lies on an edge

of P (A′). So for some vertices χS , χT ∈ P (A′) and λ ∈ (0, 1),

x? = λχS + (1− λ)χT .

Since 1 > x? > 0, it follows that S ∩ T = ∅ and S ∪ T = E. Since A′χS = 1 = A′χT , every row of A other

than the first row has exactly two ones. A similar argument applied to the second row implies that even the first

row has exactly two ones. ♦

1



Since A is balanced, it is the incidence edge-vertex incidence matrix of a bipartite graph G. As A is a

square matrix, G has an even cycle, which in turn contradicts the non-singularity of A. This finishes the proof

of Proposition 4.4.

Theorem 4.5 (Fulkerson, Hoffman, Oppenheim 1974). Let

AB
C

 be a balanced matrix. Then the polyhedron

P = {x ≥ 0 : Ax ≥ 1, Bx ≤ 1, Cx = 1}

is integral. In particular, the set packing polytope and the set covering polyhedron corresponding to a balanced

matrix are both integral.

Proof. Let x? be an extreme point of P . Observe that x? ≤ 1, and that x? is also an extreme point of the

polytope {1 ≥ x ≥ 0 : Dx = 1}, where D is the row submatrix of

AB
C

 corresponding to the constraints of

Ax ≥ 1, Bx ≤ 1, Cx = 1 that are tight at x?. Since

AB
C

 is balanced, so is D, so by Proposition 4.4, x? is

integral, as required.

In fact, the linear system above is totally dual integral. We will prove a similar result in the next section.

4.3 Hall’s theorem for balanced hypergraphs

Let G = (V,E) be a hypergraph. A matching is a packing of pairwise disjoint edges. A perfect matching is

a matching that uses every vertex. Recall Hall’s condition for the existence of perfect matchings in bipartite

graphs:

Theorem 4.6 (Hall 1935). Let G be a bipartite graph. Then the following statements are equivalent:

• G has no perfect matching,

• there exist disjoint vertex sets R,B such that |R| > |B| and every edge with an end in R has an end in B.

We will see a generalization of this to balanced hypergraphs. We will need two lemmas.

Lemma 4.7. Let A be an m× n balanced matrix. Then the polyhedron

P = {x, s, t ≥ 0 : Ax+ Is− It = 1}

is integral.
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Proof. Denote by ai the ith row of A, for each i ∈ [m]. Take an extreme point (x?, s?, t?) of P . Since the

corresponding columns are linearly dependent, we see that s?i t
?
i = 0 for each i ∈ [m]. As a result, x? is also an

extreme point of the polyhedronx ≥ 0 :

a>i x ≤ 1 ∀i ∈ [m] s.t. s?i > 0

a>i x ≥ 1 ∀i ∈ [m] s.t. t?i > 0

a>i x = 1 otherwise.


By Theorem 4.5, this polyhedron is integral, implying in turn that x? is integral. This easily implies that

(x?, s?, t?) is also integral, thereby finishing the proof.

Lemma 4.8. Let A be a balanced matrix. Then the linear system x, s, t ≥ 0, Ax+ Is− It = 1 is totally dual

integral.

Proof. We prove this by induction on the number of rows of A. The base case is obvious. For the induction step,

consider for integral weights b, c, d the primal program

(P )

max b>x+ c>s+ d>t

s.t. Ax+ Is− It = 1

x, s, t ≥ 0

and the dual

(D)

min 1>y

s.t. A>y ≥ b
y ≥ c
−y ≥ d.

We will construct an integral optimal solution to (D). To this end, take an optimal solution ȳ to (D). If ȳ is

integral, we are done. Otherwise, we may assume that ȳ1 is fractional. Write ȳ = (ȳ1, z̄). Let a be the first row

of A, and let A′ (resp. c′, d′) be the matrix (resp. vector) obtained from A (resp. c, d) after removing the first

row. Consider the program

(D′)

min 1>z

s.t. A′>z ≥ b− dȳ1ea
z ≥ c′
−z ≥ d′.

Since ȳ = (ȳ1, z̄) is feasible for (D), we get that z̄ is feasible for (D’). Our induction hypothesis implies that (D’)

has an integral optimal solution z?. In particular,

1>z̄ ≥ 1>z?.

As z? is feasible for (D’), and c, d are integral, it follows that (dȳ1e, z?) is feasible for (D), so

dȳ1e+ 1>z? ≥ 1>ȳ = ȳ1 + 1>z̄.

Combining the preceding two inequalities yields

dȳ1e+ 1>z? ≥ 1>ȳ ≥ ȳ1 + 1>z?.
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By Lemma 4.7, (P) has an integral optimal solution, so as b, c, d are integral, (P) has an integer optimal value.

Thus, by LP Strong Duality, 1>ȳ is an integer. Hence, the inequalities above imply that dȳ1e + 1>z? = 1>ȳ,

so (dȳ1e, z?) is an integral optimal solution for (D), as required. This completes the induction step.
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