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4.2 Integral polyhedra associated with balanced matrices
Take a 0 — 1 matrix A and the polytope
PA={1>z>0: Az =1}.
Recall from the last lecture that for each column label e,
PAN{z:z.=0}=P(4") and P(A)N{z:z.=1}=P(A")
where A’ A" are appropriate submatrices of A.
Proposition 4.4. Let A be a balanced matrix. Then the polytope P(A) is integral.

Proof. Suppose otherwise. Let E be the column labels of A. We may assume that P(A) is not integral, but for
every proper submatrix A’ of A, P(A’) is integral. In particular, for every e € E, the two polytopes

PAN{z:2.,=0} and P(A)N{z:z,=1}

are integral. Let 2* be a fractional extreme point of P(A). Since the polytopes above are integral, it follows that

1 > z* > 0. Our minimality assumption implies that A is a square non-singular matrix.

Claim. Every row of A has exactly two ones.
Proof of Claim. By our minimal choice, every row of A has at least two ones. Let A’ be the matrix obtained

from A after removing the first row. Since P(A’) is integral and z* € P(A’), it follows that 2* lies on an edge

of P(A’). So for some vertices xs, xr € P(A’) and A € (0,1),
a" = Axs + (1= A)xr-

Since 1 > z* > 0, it follows that SNT = and SUT = E. Since A’xs = 1 = A’xr, every row of A other
than the first row has exactly two ones. A similar argument applied to the second row implies that even the first

row has exactly two ones. O



Since A is balanced, it is the incidence edge-vertex incidence matrix of a bipartite graph G. As A is a

square matrix, G has an even cycle, which in turn contradicts the non-singularity of A. This finishes the proof

of Proposition 4.4. O
A

Theorem 4.5 (Fulkerson, Hoffman, Oppenheim 1974). Let | B | be a balanced matrix. Then the polyhedron
C

P={x>0:Ax>1,Bx<1,Cx =1}

is integral. In particular, the set packing polytope and the set covering polyhedron corresponding to a balanced

matrix are both integral.

Proof. Let x* be an extreme point of P. Observe that * < 1, and that 2™ is also an extreme point of the

A
polytope {1 > = > 0 : Dx = 1}, where D is the row submatrix of | B | corresponding to the constraints of
c
A
Ax > 1,Bx < 1,Cx = 1 that are tight at 2*. Since | B | is balanced, so is D, so by Proposition 4.4, z* is
C
integral, as required. O

In fact, the linear system above is totally dual integral. We will prove a similar result in the next section.

4.3 Hall’s theorem for balanced hypergraphs

Let G = (V, E) be a hypergraph. A matching is a packing of pairwise disjoint edges. A perfect matching is
a matching that uses every vertex. Recall Hall’s condition for the existence of perfect matchings in bipartite

graphs:
Theorem 4.6 (Hall 1935). Let G be a bipartite graph. Then the following statements are equivalent:

e G has no perfect matching,

e there exist disjoint vertex sets R, B such that |R| > |B| and every edge with an end in R has an end in B.
We will see a generalization of this to balanced hypergraphs. We will need two lemmas.

Lemma 4.7. Let A be an m x n balanced matrix. Then the polyhedron
P={z,5,t>0:Ac+Is—It=1}

is integral.



Proof. Denote by a; the ith row of A, for each i € [m]. Take an extreme point (z*, s*,¢*) of P. Since the
corresponding columns are linearly dependent, we see that st = 0 for each ¢ € [m]. As a result, 2* is also an
extreme point of the polyhedron

T

a; x <1 Vie[m]stsF>0
r>0: a/z >1 Vi e [m]st tf >0
a =1 otherwise.

(2

By Theorem 4.5, this polyhedron is integral, implying in turn that z* is integral. This easily implies that
(z*, s*,t*) is also integral, thereby finishing the proof. O

Lemma 4.8. Let A be a balanced matrix. Then the linear system x,s,t > 0, Ax + I[s — It = 1 is totally dual

integral.

Proof. We prove this by induction on the number of rows of A. The base case is obvious. For the induction step,

consider for integral weights b, ¢, d the primal program

max bTa+cTs+dt
(P) s.t. Az +Is—It=1
z,s,t >0
and the dual
min 1Ty
s.t. ATy >0
(D) S
Y >c
-y =d

We will construct an integral optimal solution to (D). To this end, take an optimal solution ¥ to (D). If ¥ is
integral, we are done. Otherwise, we may assume that ¢ is fractional. Write § = (%1, Z). Let a be the first row
of A, and let A’ (resp. ¢’,d’) be the matrix (resp. vector) obtained from A (resp. c,d) after removing the first

row. Consider the program

min 172
(D) s.t. ATz >b—T[ila
z >
—z >d.

Since § = (71, Z) is feasible for (D), we get that Z is feasible for (D). Our induction hypothesis implies that (D)

has an integral optimal solution z*. In particular,
17z>172%

As z* is feasible for (D’), and ¢, d are integral, it follows that ([g; |, 2*) is feasible for (D), so
[ +1' 2 >1"g=p3+1"z
Combining the preceding two inequalities yields

[ +17 2 >1Tg >3 +17 2%



By Lemma 4.7, (P) has an integral optimal solution, so as b, ¢, d are integral, (P) has an integer optimal value.
Thus, by LP Strong Duality, 177 is an integer. Hence, the inequalities above imply that [7;] + 172* = 17,

so ([g1], z*) is an integral optimal solution for (D), as required. This completes the induction step. O



