CO 750 Packing and Covering: Lecture 5

Ahmad Abdi

May 16, 2017

4.3 Hall's theorem for balanced hypergraphs

Recall the following two lemmas from the last lecture:
Lemma 4.7. Let A be an $m \times n$ balanced matrix. Then the polyhedron

$$
P=\{x, s, t \geq \mathbf{0}: A x+I s-I t=\mathbf{1}\}
$$

is integral.
Lemma 4.8. Let A be a balanced matrix. Then the linear system $x, s, t \geq \mathbf{0}, A x+I s-I t=\mathbf{1}$ is totally dual integral.

We are now ready to prove the following generalization of Hall's Theorem 4.6 for balanced hypegraphs:
Theorem 4.9 (Conforti, Cornuéjols, Kapoor, Vušković 1996). Let $G=(V, E)$ be a balanced hypergraph. Then the following statements are equivalent:

- G has no perfect matching,
- there are disjoint vertex sets R, B such that $|R|>|B|$ and for every edge e, $|e \cap B| \geq|e \cap R|$.

Proof. (\Leftarrow) Suppose for a contradiction that G has a perfect matching e_{1}, \ldots, e_{k}. Then

$$
|R|=\sum_{i=1}^{k}\left|e_{i} \cap R\right| \leq \sum_{i=1}^{k}\left|e_{i} \cap B\right|=|B|<|R|,
$$

a contradiction. (\Rightarrow) Suppose G has no perfect matching. Let A be the vertex-edge incidence matrix of G. Notice that A is a balanced matrix. Consider the linear program

$$
\begin{array}{ll}
(P) \quad \text { s.t. } & A x+I s-I t=\mathbf{1} \\
& x, s, t \geq \mathbf{0}
\end{array}
$$

Since G has no perfect matching, (P) has no integer feasible solution of value ≥ 0. It therefore follows from Lemma 4.7 that the optimal value of (P) is <0. As a result, by Lemma 4.8, the dual program has an integral
feasible solution of negative value, that is, there is an integral point \bar{y} such that

$$
\begin{aligned}
\mathbf{1}^{\top} y & <0 \\
A^{\top} y & \geq \mathbf{0} \\
y & \leq \mathbf{1} \\
y & \geq-\mathbf{1}
\end{aligned}
$$

Let $B:=\left\{v \in V: \bar{y}_{v}=1\right\}$ and $R:=\left\{v \in V: \bar{y}_{v}=-1\right\}$. Clearly, $B \cap R=\emptyset$. The first inequality implies that $|R|>|B|$ while the second inequality implies that, for each edge $e,|e \cap B| \geq|e \cap R|$, as required.

This result has a nice Kőnig-type consequence. Given a hypergraph, the degree of a vertex is the number of edges containing that vertex. For an integer $d \geq 1$, a hypergraph is d-regular if every vertex has degree d.

Corollary 4.10. The edges of a balanced hypergraph with maximum degree d can be partitioned into d matchings.

Proof. Let $G=(V, E)$ be a balanced hypergraph with maximum degree $d \geq 1$. Let us first prove the result for d-regular hypergraphs:

Claim 1. If G is d-regular, then its edges can be partitioned into d perfect matchings.
Proof of Claim. We prove this by induction on $d \geq 1$. The base case $d=1$ is obvious. Assume that $d \geq 2$. Let us use Theorem 4.9 to find a perfect matching in G. Take disjoint vertex subsets R, B of V such that for every edge $e,|e \cap B| \geq|e \cap R|$. Then

$$
d \cdot|B|=\sum_{e \in E}|e \cap B| \geq \sum_{e \in E}|e \cap R|=d \cdot|R|
$$

implying in turn that $|B| \geq|R|$. It therefore follows from Theorem 4.9 that G has a perfect matching $M_{d} \subseteq E$. Notice that $G \backslash M_{d}$ is $(d-1)$-regular, so by the induction hypothesis, the edges of $G \backslash M_{d}$ can be partitioned into $d-1$ perfect matchings M_{1}, \ldots, M_{d-1}. Together with M_{d}, we get a partition of the edges of G into d perfect matchings, thereby completing the induction step.

Claim 2. There is a d-regular balanced hypergraph $H=\left(V, E^{\prime}\right)$ such that $E \subseteq E^{\prime}$.
Proof of Claim. To obtain H, for every vertex v of G, add $d-\operatorname{deg}(v)$ edges of the form $\{v\}$. It is clear that H is a d-regular hypergraph. It is easy to see that H is a balanced hypergraph.

By Claim 1, the edges of H can be partitioned into d perfect matchings. It is easy to see that this corresponds to a partition of the edges of G into d matchings, thereby finishing the proof.

In particular,
Theorem 4.11 (Kőnig 1931). Let G be a loopless bipartite graph of maximum degree d. Then the edges of G can be partitioned into d matchings, that is, G can be d-edge-colored.

5 Perfect graphs

Let $G=(V, E)$ be a simple graph. Denote by $\chi(G)$ the minimum number of stable sets needed to cover V. Notice that $\chi(G)$ records the chromatic number of G, i.e. the minimum number of colors needed for a vertexcoloring. Denote by $\omega(G)$ the maximum cardinality of a clique. Since the vertices of a clique get different colors in any vertex-coloring, it follows that

$$
\chi(G) \geq \omega(G)
$$

Denote by \bar{G} the complement of G, that is, \bar{G} has vertex set V where distinct vertices u, v are adjacent in \bar{G} if they are non-adjacent in G. Notice that the cliques and stable sets of \bar{G} are precisely the stable sets and cliques of \bar{G}.

Remark 5.1. Let $G=(V, E)$ be a simple graph. Then

$$
\theta(G):=\chi(\bar{G})
$$

is the minimum number of cliques of G needed to cover V, and

$$
\alpha(G):=\omega(\bar{G})
$$

is the maximum cardinality of a stable set. In particular, $\theta(G) \geq \alpha(G)$.
Recall the following two theorems from Assignment 1:
Theorem 5.2 (Kőnig 1931). In a loopless bipartite graph, the minimum cardinality of a vertex cover is equal to the maximum cardinality of a matching.

Theorem 5.3. In a partially ordered set, the minimum number of antichains needed to cover the ground set is equal to the maximum cardinality of a chain.

We will need this result moving forward, as well as a few notions. The line graph of a simple graph G is the graph on vertex set $E(G)$ where distinct $e, f \in E(G)$ are adjacent if e, f share a vertex of G. Given a partially ordered set (V, \leq), its comparability graph is the graph on vertex set V where distinct $u, v \in V$ are adjacent if they are comparable.

The main theme of this section is, when does equal hold in $\chi \geq \omega$?
Theorem 5.4. $\chi(G)=\omega(G)$ if G is any of the following graphs:
(1) G or \bar{G} is bipartite,
(2) G or \bar{G} is the line graph of a bipartite graph,
(3) G or \bar{G} is a comparability graph.

Proof. (1) Let G be a bipartite graph. Then $\chi(G)=2=\omega(G)$. We need to show that $\theta(G)=\alpha(G)$. Clearly,

$$
\alpha(G)=|V|-k
$$

where k is the minimum cardinality of a vertex cover. Since G is bipartite,

$$
\theta(G)=|V|-m
$$

where m is the maximum cardinality of a matching. By Theorem 5.2, $m=k$, implying in turn that $\theta(G)=$ $\alpha(G)$, as required. (2) Let G be the line graph of a bipartite graph H. Observe that the stable sets and cliques of G are in correspondence with the matchings and stars of H, respectively. Thus $\chi(G)$ is equal to the minimum number of colors needed in an edge-coloring of H, while $\omega(G)$ is equal to the maximum degree of a vertex of H. It therefore follows from Theorem 4.11 that $\chi(G)=\omega(G)$. Moreover, $\theta(G)$ is equal to the minimum cardinality of a vertex cover, while $\alpha(G)$ is equal to the maximum cardinality of a matching. So by Theorem 5.2, $\theta(G)=\alpha(G)$. (3) Let $G=(V, E)$ be the comparability graph of a partially ordered set (V, \leq). Then the cliques and stable sets of G are in correspondence with the chains and antichains of (V, \leq). It therefore follows from Theorem 1.2 that $\theta(G)=\alpha(G)$, and it follows from Theorem 5.3 that $\chi(G)=\omega(G)$.

