CO 750 Packing and Covering: Lecture 5

Ahmad Abdi

May 16, 2017

4.3 Hall's theorem for balanced hypergraphs

Recall the following two lemmas from the last lecture:

Lemma 4.7. Let A be an $m \times n$ balanced matrix. Then the polyhedron

$$P = \{x, s, t \ge \mathbf{0} : Ax + Is - It = \mathbf{1}\}$$

is integral.

Lemma 4.8. Let A be a balanced matrix. Then the linear system $x, s, t \ge 0$, Ax + Is - It = 1 is totally dual integral.

We are now ready to prove the following generalization of Hall's Theorem 4.6 for balanced hypegraphs:

Theorem 4.9 (Conforti, Cornuéjols, Kapoor, Vušković 1996). Let G = (V, E) be a balanced hypergraph. Then the following statements are equivalent:

- *G* has no perfect matching,
- there are disjoint vertex sets R, B such that |R| > |B| and for every edge $e, |e \cap B| \ge |e \cap R|$.

Proof. (\Leftarrow) Suppose for a contradiction that G has a perfect matching e_1, \ldots, e_k . Then

$$|R| = \sum_{i=1}^{k} |e_i \cap R| \le \sum_{i=1}^{k} |e_i \cap B| = |B| < |R|,$$

a contradiction. (\Rightarrow) Suppose G has no perfect matching. Let A be the vertex-edge incidence matrix of G. Notice that A is a balanced matrix. Consider the linear program

(P)
$$\begin{array}{ccc} \max & \mathbf{0}^{\top} x - \mathbf{1}^{\top} s - \mathbf{1}^{\top} t \\ \text{s.t.} & A x + I s - I t = \mathbf{1} \\ x, s, t \geq \mathbf{0} \end{array}$$

Since G has no perfect matching, (P) has no integer feasible solution of value ≥ 0 . It therefore follows from Lemma 4.7 that the optimal value of (P) is < 0. As a result, by Lemma 4.8, the dual program has an integral

feasible solution of negative value, that is, there is an integral point \bar{y} such that

$$1 | y < 0$$

$$A^{\top} y \ge 0$$

$$y \le 1$$

$$y \ge -1$$

Let $B := \{v \in V : \bar{y}_v = 1\}$ and $R := \{v \in V : \bar{y}_v = -1\}$. Clearly, $B \cap R = \emptyset$. The first inequality implies that |R| > |B| while the second inequality implies that, for each edge $e, |e \cap B| \ge |e \cap R|$, as required. \Box

This result has a nice Kőnig-type consequence. Given a hypergraph, the *degree* of a vertex is the number of edges containing that vertex. For an integer $d \ge 1$, a hypergraph is *d*-regular if every vertex has degree d.

Corollary 4.10. *The edges of a balanced hypergraph with maximum degree d can be partitioned into d match-ings.*

Proof. Let G = (V, E) be a balanced hypergraph with maximum degree $d \ge 1$. Let us first prove the result for *d*-regular hypergraphs:

Claim 1. If G is d-regular, then its edges can be partitioned into d perfect matchings.

Proof of Claim. We prove this by induction on $d \ge 1$. The base case d = 1 is obvious. Assume that $d \ge 2$. Let us use Theorem 4.9 to find a perfect matching in G. Take disjoint vertex subsets R, B of V such that for every edge $e, |e \cap B| \ge |e \cap R|$. Then

$$d\cdot |B| = \sum_{e\in E} |e\cap B| \ge \sum_{e\in E} |e\cap R| = d\cdot |R|,$$

implying in turn that $|B| \ge |R|$. It therefore follows from Theorem 4.9 that G has a perfect matching $M_d \subseteq E$. Notice that $G \setminus M_d$ is (d-1)-regular, so by the induction hypothesis, the edges of $G \setminus M_d$ can be partitioned into d-1 perfect matchings M_1, \ldots, M_{d-1} . Together with M_d , we get a partition of the edges of G into d perfect matchings, thereby completing the induction step. \Diamond

Claim 2. There is a d-regular balanced hypergraph H = (V, E') such that $E \subseteq E'$.

Proof of Claim. To obtain H, for every vertex v of G, add $d - \deg(v)$ edges of the form $\{v\}$. It is clear that H is a d-regular hypergraph. It is easy to see that H is a balanced hypergraph. \Diamond

By Claim 1, the edges of H can be partitioned into d perfect matchings. It is easy to see that this corresponds to a partition of the edges of G into d matchings, thereby finishing the proof.

In particular,

Theorem 4.11 (Kőnig 1931). Let G be a loopless bipartite graph of maximum degree d. Then the edges of G can be partitioned into d matchings, that is, G can be d-edge-colored.

5 Perfect graphs

Let G = (V, E) be a simple graph. Denote by $\chi(G)$ the minimum number of stable sets needed to cover V. Notice that $\chi(G)$ records the *chromatic number of* G, i.e. the minimum number of colors needed for a vertexcoloring. Denote by $\omega(G)$ the maximum cardinality of a clique. Since the vertices of a clique get different colors in any vertex-coloring, it follows that

$$\chi(G) \ge \omega(G).$$

Denote by \overline{G} the *complement* of G, that is, \overline{G} has vertex set V where distinct vertices u, v are adjacent in \overline{G} if they are non-adjacent in G. Notice that the cliques and stable sets of \overline{G} are precisely the stable sets and cliques of \overline{G} .

Remark 5.1. Let G = (V, E) be a simple graph. Then

 $\theta(G) := \chi(\overline{G})$

is the minimum number of cliques of G needed to cover V, and

$$\alpha(G) := \omega(\overline{G})$$

is the maximum cardinality of a stable set. In particular, $\theta(G) \ge \alpha(G)$.

Recall the following two theorems from Assignment 1:

Theorem 5.2 (Kőnig 1931). In a loopless bipartite graph, the minimum cardinality of a vertex cover is equal to the maximum cardinality of a matching.

Theorem 5.3. In a partially ordered set, the minimum number of antichains needed to cover the ground set is equal to the maximum cardinality of a chain.

We will need this result moving forward, as well as a few notions. The *line graph* of a simple graph G is the graph on vertex set E(G) where distinct $e, f \in E(G)$ are adjacent if e, f share a vertex of G. Given a partially ordered set (V, \leq) , its *comparability graph* is the graph on vertex set V where distinct $u, v \in V$ are adjacent if they are comparable.

The main theme of this section is, when does equal hold in $\chi \ge \omega$?

Theorem 5.4. $\chi(G) = \omega(G)$ if G is any of the following graphs:

- (1) $G \text{ or } \overline{G} \text{ is bipartite},$
- (2) $G \text{ or } \overline{G}$ is the line graph of a bipartite graph,
- (3) $G \text{ or } \overline{G} \text{ is a comparability graph.}$

Proof. (1) Let G be a bipartite graph. Then $\chi(G) = 2 = \omega(G)$. We need to show that $\theta(G) = \alpha(G)$. Clearly,

$$\alpha(G) = |V| - k$$

where k is the minimum cardinality of a vertex cover. Since G is bipartite,

$$\theta(G) = |V| - m$$

where *m* is the maximum cardinality of a matching. By Theorem 5.2, m = k, implying in turn that $\theta(G) = \alpha(G)$, as required. (2) Let *G* be the line graph of a bipartite graph *H*. Observe that the stable sets and cliques of *G* are in correspondence with the matchings and stars of *H*, respectively. Thus $\chi(G)$ is equal to the minimum number of colors needed in an edge-coloring of *H*, while $\omega(G)$ is equal to the maximum degree of a vertex of *H*. It therefore follows from Theorem 4.11 that $\chi(G) = \omega(G)$. Moreover, $\theta(G)$ is equal to the minimum cardinality of a vertex cover, while $\alpha(G)$ is equal to the maximum cardinality of a matching. So by Theorem 5.2, $\theta(G) = \alpha(G)$. (3) Let G = (V, E) be the comparability graph of a partially ordered set (V, \leq) . Then the cliques and stable sets of *G* are in correspondence with the chains and antichains of (V, \leq) . It therefore follows from Theorem 1.2 that $\theta(G) = \alpha(G)$, and it follows from Theorem 5.3 that $\chi(G) = \omega(G)$.