
CO 750 Packing and Covering: Lecture 7

Ahmad Abdi

May 25, 2017

5.2 Odd holes and odd antiholes

We say that a simple graph is minimally imperfect if it is not perfect, but every proper induced subgraph is

perfect. Equivalently, a simple graph G is minimally imperfect if χ(G) > ω(G), but for every proper induced

subgraph G′, χ(G′) = ω(G′). The latter implies that a minimally imperfect graph is always connected.

Remark 5.8. A graph is perfect if, and only if, it has no minimally imperfect induced subgraph.

Let H be an odd circuit with at least 5 vertices. Then 3 = χ(H) > ω(H) = 2, so G is imperfect. Since every

proper induced subgraph ofH is bipartite, and therefore perfect, it follows thatH is minimally imperfect. Notice

that the Weak Perfect Graph Theorem 5.7 equivalently states that,

Corollary 5.9. The complement of a minimally imperfect graph is also minimally imperfect.

Thus, the complement of an odd circuit with at least 5 vertices is also minimally imperfect. Let G be a simple

graph. We say that G has an odd hole if it has as an induced subgraph an odd circuit with at least 5 vertices, and

we say that G has an odd antihole if G has an odd hole. It follows from the preceding remark that,

Remark 5.10. A perfect graph has no odd hole and no odd antihole.

In 1961, Claude Berge conjectured that the converse of this statement is also true. In 2006, this conjecture was

proved by Chudnovsky, Robertson, Seymour and Thomas, and their theorem is referred to as the strong perfect

graph theorem. We will see some of the milestones and highlights leading to the proof, as well as a sketch of the

proof.

5.3 Star cutsets and antitwins

Let G = (V,E) be a simple graph. A star cutset is a non-empty X ⊆ V such that

• a vertex of X is adjacent to all the other vertices in X , and

• G \X is not connected.

Lemma 5.11 (Chvátal 1985). A minimally imperfect graph does not have a star cutset.
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Proof. Let G = (V,E) be a minimally imperfect graph, and let ω := ω(G). Then

ω(G \ S) = ω for every stable set S ⊆ V .

Suppose for a contradiction that G has a star cutset X ⊆ V . Then the vertices of G \X can be partitioned into

non-empty parts V1, V2 such that G has no edge between V1 and V2. Since every proper induced subgraph of G

is perfect, for each i ∈ [2], there is a vertex-coloring fi : X ∪ Vi → [ω] of the induced subgraph G[X ∪ Vi].
Since X is a star cutset, it has a vertex v that is adjacent to all other vertices of X . For i ∈ [2], let Si := {w ∈
X ∪ Vi : fi(w) = fi(v)}. Clearly, each Si is stable and Si ∩ X = {v}. Moreover, since there are no edges

between V1 and V2, it follows that S := S1 ∪ S2 is also stable. In particular, ω(G \ S) = ω, so G \ S has a

clique C of cardinality ω. However, either C ⊆ X ∪ V1 or C ⊆ X ∪ V2, implying in turn that C is an ω-clique

of some G[X ∪ Vi] \ Si, which has an (ω − 1)-vertex-coloring, a contradiction.

This lemma was a key milestone for what led to the proof of the strong perfect graph theorem. To demonstrate

the power of this lemma, let us see some applications of it. Let G1 be a perfect graph, and take a vertex

v ∈ V (G1). To duplicate v is to introduce a new vertex v̄, join it to all the neighbors of v, and then join it to v̄.

More generally, given another perfect graph G2 over a disjoint vertex set, to substitute G2 for v is to remove v,

and join every vertex of G2 to all the neighbors of v in G1 \ v.

Theorem 5.12 (Lovász 1972). Let G1, G2 be perfect graphs over disjoint vertex sets. If G is obtained by

substituting G2 for a vertex v of G1, then G is perfect. In particular, duplication preserves perfection.

Proof. Suppose otherwise. Since every induced subgraph of G is either an induced subgraph of G1, or of G2, or

arises from induced subgraphs ofG1, G2 by substitution, we may assume thatG is minimally imperfect. Clearly,

G2 has at least two vertices, and G1 \ v has at least one vertex. Take an arbitrary vertex u of G2, and denote

by N its neighbors of G in V (G1 \ v). Notice that for each vertex in V (G2), its neighbors of G in V (G1 \ v)

is precisely N . As G is minimally imperfect, G is minimally imperfect by Corollary 5.9, so G is connected,

implying in turn that V (G1 \ v)−N 6= ∅. Let X := {u} ∪N . Then X is a star cutset as u is adjacent to all the

vertices in N , and in G \X , there are no edges between V (G2)−{u} and V (G1 \ v)−N . This contradicts the

Star Cutset Lemma 5.11.

Let G = (V,E) be a simple graph. A skew partition is a partition of V into a pair (A,B) such that G[A]

is not connected and G[B] is not connected. Notice that if (A,B) is a skew partition for G, then it is a skew

partition for G. Notice further that if X is a star cutset and |X| ≥ 2, then (V −X,X) is a skew partition. In an

attempt to generalize Lemma 5.11, Chvátal (1985) conjectured that a minimally imperfect graph does not have

a skew partition. The length of a path is the number of edges in it. A path of G is called an antipath of G. We

say that a skew partition (A,B) is balanced if

• there is no induced odd path between non-adjacent vertices in B with interior in A,

• there is no induced odd antipath between adjacent vertices in A with interior in B.
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Theorem 5.13 (Chudnovsky, Robertson, Seymour, Thomas 2006). A minimally imperfect graph does not have

a balanced skew partition.

Let G = (V,E) be a simple graph. Distinct vertices u, v are antitwins if every other vertex is adjacent to

precisely one of u, v. Notice that if u, v are antitwins in G, then they are also antitwins in G. We will see in the

next lecture that,

Lemma 5.14 (Oraliu 1988). A minimally imperfect graph does not have antitwins.
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