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6 Perfect matrices

Let G = (V,E) be a perfect graph. Let A be the 0− 1 matrix whose columns are labeled by V and whose rows

are the incidence vectors of the stable sets of G. Take weights c ∈ ZV
+ . Consider the set packing primal-dual

pair

(P )

max c>x

s.t. Ax ≤ 1

x ≥ 0

and (D)

min 1>y

s.t. A>y ≥ c
y ≥ 0.

We can rewrite the primal as

(P )

max
∑

(cvxv : v ∈ V )

s.t.
∑

(xv : v ∈ S) ≤ 1 ∀ stable sets S
xv ≥ 0 ∀v ∈ V.

Observe that a clique gives a feasible solution to this program. So the maximum weight of a clique is a lower-

bound on the optimal value of (P). To make this precise, letGc be the graph obtained fromG after replacing each

vertex v by cv duplicates. (If cv = 0 then delete v.) Notice that by Theorem 5.12, Gc is also a perfect graph.

Observe that the maximum weight of a clique of G is equal to the maximum cardinality ω(Gc) of a clique of

Gc. Thus, ω(Gc) is a lower-bound on the optimal value of (P). Let us next rewrite the dual as

(D)

min
∑

(yS : stable sets S)

s.t.
∑

(yS : stable sets S such that v ∈ S) ≥ cv ∀v ∈ V
yS ≥ 0 ∀ stable sets S.

Observe that a covering of V (Gc) using stable sets gives a feasible solution to (D). Thus, the minimum number

of stable sets needed to cover V (Gc), which is χ(Gc), is an upper-bound on the optimal value of (D). Since Gc

is perfect, we have χ(Gc) = ω(Gc), implying in turn that,

Corollary 6.1. Let G be a perfect graph. Then the set packing system corresponding to the stable sets of G is

totally dual integral. In particular, the set packing polytope{
x ∈ RV

+ :
∑

(xv : v ∈ S) ≤ 1 ∀ stable sets S
}

is integral.
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In fact, we will see that these are essentially the only examples of integral set packing polytopes and totally dual

integral set packing systems! To this end, let A be a 0 − 1 matrix without a column of all zeros. We say that A

is perfect if the set packing polytope {x ≥ 0 : Ax ≤ 1} is integral.

6.1 Perfection implies total dual integrality

From the discussion in the previous section, it seems more natural to call a matrix perfect when the corresponding

set packing system is totally dual integral. The following amazing result justifies our choice of terminology:

Theorem 6.2 (Fulkerson 1972). Let A be a perfect matrix. Then the linear system x ≥ 0, Ax ≤ 1 is totally

dual integral.

Proof. Denote by E the column labels of A. Consider the set packing primal-dual pair

(P )

max c>x

s.t. Ax ≤ 1

x ≥ 0

and (D)

min 1>y

s.t. A>y ≥ c
y ≥ 0

c ∈ ZE .

As A is perfect, (P) has an integral optimal solution for all c ∈ ZE . We will prove by induction on the optimal

value ω ∈ Z+ of (P) that (D) has an integral dual solution for all c ∈ ZE . If ω = 0 for some c ∈ ZE , then as A

has no column of all zeros, it follows that c ≤ 0, implying in turn that 0 is an optimal solution for (D). For the

induction step, assume that ω ≥ 1 for some c ∈ ZE . Take an arbitrary row a of A such that

a>x? = 1 for all optimal solutions x? of (P).

(To find this row, take an optimal dual solution y?, and pick a so that y?a > 0; apply the complementary slackness

conditions.) We may assume that a is the first row of A. Consider the set packing primal-dual pair

(P ′)

max (c− a)>x

s.t. Ax ≤ 1

x ≥ 0

and (D′)

min 1>y

s.t. A>y ≥ c− a
y ≥ 0

Clearly, the optimal value of (P’) is at most ω, and our choice of a implies that it is exactly ω − 1. Thus, by the

induction hypothesis, (D’) has an integral optimal solution ȳ = (ȳ1, z̄) of value ω − 1. Let y? := (ȳ1 + 1, z̄).

Then y? is an integral feasible solution for (D) and has value ω, so it is optimal. This completes the induction

step.

6.2 The pluperfect graph theorem

In an attempt to prove it, Ray Fulkerson proposed and proved a polyhedral analogue of the weak perfect graph

theorem, and he called it the pluperfect graph theorem. To prove his theorem, we will need two ingredients. Let

A be a non-negative matrix without a column of all zeros. Let

P := {x ≥ 0 : Ax ≤ 1}.
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The antiblocker of P is the set

a(P ) := {y ≥ 0 : x>y ≤ 1 ∀x ∈ P}.

Proposition 6.3. Let A be a non-negative matrix without a column of all zeros. Let B be the matrix whose rows

are the extreme points of P := {x ≥ 0 : Ax ≤ 1}. Then B is non-negative, has no column of all zeros, and

a(P ) = {y ≥ 0 : By ≤ 1}

a(a(P )) = P.

Proof. Clearly, B is a non-negative matrix. Since A has no column of all zeros, P is a polytope, so every point

of P can be written as a convex combination of the rows of B – this has two consequences. Firstly, as ε1 ∈ P
for a sufficiently small ε > 0, B cannot have a column of all zeros. Secondly, {y ≥ 0 : By ≤ 1} ⊆ a(P ). As

the reverse inclusion holds trivially, we see that a(P ) = {y ≥ 0 : By ≤ 1}. For the next equation, by definition

a(a(P )) = {x ≥ 0 : y>x ≤ 1 ∀y ∈ a(P )}.

So clearly, P ⊆ a(a(P )). To prove the reverse inclusion, it suffices to show that every row a of A belongs to

a(P ). Since a ≥ 0 and Ba ≤ 1, the result follows.

Next we study the extreme points of the antiblocker. Let’s see an example first. Consider the matrix

A :=

1 1 0

0 1 1

1 0 1

 .

Then the extreme points of P := {x ≥ 0 : Ax ≤ 1} are the rows of the matrix

B :=


1
2

1
2

1
2

1 0 0

0 1 0

0 0 1

0 0 0

 .

By Proposition 6.3, the antiblocker of P is the polytope a(P ) = {x ≥ 0 : Bx ≤ 1}. Aside from the three rows

of A, the extreme points of a(P ) are (1 0 0), (0 1 0), (0 0 1), (0 0 0), which are all orthogonal projections of the

rows of A. In the next lecture, we will show that this is true in general.
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