Signed graphs
\rightarrow graph $G=(V, E)$

$$
\rightarrow \quad \Sigma \subseteq E
$$

$\rightarrow(G, \Sigma)$ is a signed graph
 $\operatorname{man} \sum$
\rightarrow a circuit/cycle C is odd if

$$
|\subset \cap \Sigma| \equiv 1 \quad(\bmod 2)
$$

otherwise it's even
$\rightarrow(G, \Sigma)$ is weakly bipartite if
What are the weakly

$$
\{C: C \text { an odd circuit }\}
$$ bipartite signed graphs?

is an ideal clutter

Signed graph minors
\rightarrow for disjoint $I, J \subseteq E$, define $(G, \Sigma) \backslash I / J$ as

- if J contains an odd circuit, set

$$
(G, \Sigma) \backslash I / J:=(G \mid I / J, \phi)
$$

- otherwise, pick a signature B disjoint from J, set

$$
(G, \Sigma) \backslash I / J:=(G \backslash I / J, B-I)
$$

Signed graph minors
Note: Consider a signed graph $(G, E(G))$ where every edge is odd. Then for every cut $\delta(u)$,

$$
(G, E(G)) / \delta(U)=(H, E(H))
$$

where $H:=G / \delta(u)$.

Remark 10.7: A weakly bipartite signed graph has no odd $-K_{5}$ minor:

$$
\left(K_{s}, E\left(K_{s}\right)\right)
$$

Goal: Prove the converse.

We need tools for finding odd $-K_{s}$ minors.

Odd_K $_{4} s$ and Whirlpools
\rightarrow The signed graph $\left(K_{4}, E\left(K_{4}\right)\right)$ is called an odd- K_{4}.

every edge is odd
\rightarrow Schrijuer (2002) gave a tool for finding odd- K_{4} minors.
odd_K $_{4} s$ and Whirlpools
\rightarrow Consider the signed graph:
 every edge is odd.
\rightarrow let's call this a whirlpool with central edges $01,02,03$.
\rightarrow The whirlpool has an odd-K K_{4} minor using the central edger.

Lemma 10.8 (Schrijver 2002)
\rightarrow given a graph $G=(V, E)$, disjoint stable sets S_{1}, S_{2}, S_{3}, distinct ups $0,1,2,3$ s.t.

- $0 \in V-\left(S_{1} \cup S_{2} \cup S_{3}\right), i \in S_{i}$ and $\{0, i\} \in E$ for $i \in[3]$,
- $G\left[S_{i} \cup S_{j}\right]$ has an $i j$-path for distinct $i, j \in[3]$.
\rightarrow Then (G, E) has en odd $-K_{4}$ minos using $01,02,03$

Proof: Proceed by induction on $|V|+|E|$.
\rightarrow let $P_{i j}$ be an $i j$-path contained in $G[5 . \cup 5 ;]$

\rightarrow we may assume that

$$
\begin{aligned}
& V=\{0\} \cup V\left(P_{12}\right) \cup V\left(P_{23}\right) \cup V\left(P_{31}\right) \\
& \epsilon=\{01,02,03\} \cup P_{12} \cup P_{23} \cup P_{31}
\end{aligned}
$$

\rightarrow if $\operatorname{deg}(v)=2$, then $(G, E(G)) / \delta(v)$ satisfies the conditions of the lemma for the same vertices $0,1,2,3$

\rightarrow so we may assume that every vortex has degree $\geqslant 3$
\rightarrow thus

$$
\begin{aligned}
& S_{i}=V\left(P_{i j}\right) \cap V\left(P_{i k}\right) \quad \forall i, j, k \in[3] \\
& \left|S_{1}\right|=\left|S_{2}\right|=\left|S_{z}\right| \geqslant 1
\end{aligned}
$$

\rightarrow if $|5|=$,1 then

$$
(G, E)=\left(K_{4}, E\left(K_{4}\right)\right.
$$

\rightarrow ofterwise, define $1^{\prime}, 2^{\prime}, 3^{\prime}$:

\rightarrow ofterwise, define $1^{\prime}, 2^{\prime}, 3^{\prime}:$
\rightarrow Contract $\delta(0)$:

\rightarrow by $I H$ there's an odd $-K_{4}$ minor using $0^{\prime} 1^{\prime}, 0^{\prime} 2^{\prime}, 0^{\prime} 3^{\prime}$

\rightarrow decontract 0 :

\rightarrow this is a whirl pool with cental edges $01,02,03$
\rightarrow so (G, E) has an odd $-K_{4}$ minx using $01,02.03$

