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Abstract

Let G = (V,E) be a graph. A matching is a subset of E consisting of pairwise vertex-disjoint edges. A

matching is perfect if it saturates every vertex, i.e. if every vertex is covered by some edge of the matching.

Does G have a perfect matching? If so, can we find it efficiently? Given prescribed edge weights, what is the

minimum total weight of a perfect matching?

We address the first question in §2 by providing an elegant min-max formula for the maximum cardinality

of a matching of a graph. The min-max formula does not lead lead to an efficient algorithm, so in §3, we

provide a polynomial time algorithm for finding a perfect matching of a graph (if one exists), answering the

second question. We then address the third question in §4 by providing a facet description for the incidence

vectors of perfect matchings of a graph.

1 Kőnig’s Theorem and Hall’s Marriage Theorem

Let us start with two classical results in Graph Theory about matchings in bipartite graphs.

Let G = (V,E) be a graph. Denote by ν(G) the maximum cardinality of a matching. What is ν(G)? A

simple upper bound on ν(G) comes from “vertex covers”. A vertex cover is a subset of vertices incident with

every edge of the graph, that is, a vertex cover is the complement of a stable set. Denote by τ(G) the minimum

cardinality of a vertex cover. Every vertex cover contains a distinct vertex from every edge of a matching, so

ν(G) ≤ τ(G). These two parameters are not always equal. For example, for a triangle, ν = 1 while τ = 2.

However, for bipartite graphs, the two parameters are equal!

Theorem 1.1 (Kőnig’s Theorem). Let G = (V,E) be a bipartite graph. Then the minimum cardinality of a

vertex cover is equal to the maximum cardinality of a matching.

For the proof, we need a notion that will be useful throughout this lecture. Given a matching M , an M -

alternating circuit is a circuit whose edges are alternately in and out of M . An M -alternating path is a path

whose edges are alternately in and out of M . An M -augmenting path is an alternating path whose end vertices

are unmatched. We shall drop the prefix M - from these two notions whenever there is no ambiguity. Observe

that if P is an augmenting path, then the symmetric difference M4P is a matching of cardinality one larger

than M .

1



Proof. Let L ∪R be a bipartition of G. Pick a maximum matching M .

Claim. There exists a vertex cover K that consists only of matched vertices, and intersects every edge of M

exactly once.

Proof of Claim. Let U be the set of unmatched vertices in L. Consider all M -alternating paths with an end in

U . By construction, the inner nodes of all such paths are matched, and since M is a maximum matching, each

such path has only one unmatched end, which by definition belongs to U . Let SR (resp. SL) be the set of all the

nodes in R (resp. L − U ) that belong to such an M -alternating path. Then SL, SR are comprised of matched

vertices. By definition, U ∪SL has no neighbour in R−SR (or else, SR would have been larger), and there is no

matching edge between SR and L− (U ∪ SL) (or else, SL would have been larger). This has two implications:

• K := SR ∪ (L− (U ∪ SL)) is a vertex cover,

• K intersects every edge of M at most, and therefore exactly, once.

By definition of U , L − (U ∪ SL) consists of matched vertices, so K consists of matched vertices. Thus, K is

the desired set. ♦

Since K consists only of matched vertices, and intersects every edge of M exactly once, it follows that

|K| = |M |, so the minimum cardinality of a vertex cover is equal to the maximum cardinality of a matching.

As a consequence, we get the following classical result, which implies when a bipartite graph has a perfect

matching:

Theorem 1.2 (Hall’s Marriage Theorem). Let G be a bipartite graph with bipartition L ∪ R. Then exactly one

of the following two statements holds:

1. G has a matching that saturates every vertex in L,

2. there exists a subset A ⊆ L such that |A| > |N(A)|, where N(A) denotes the set of neighbours of A.

In particular, if |L| = |R|, then G does not have a perfect matching if, and only if, (2) holds.

Proof. Clearly both statements cannot hold simultaneously. Assume that (1) does not hold. Let M be a maxi-

mum matching, and let K be a minimum vertex cover. By Kőnig’s Theorem, |M | = |K|. In particular, every

vertex of K is saturated, and K intersects every edge of M exactly once. Let A := L −K. As K is a vertex

cover, its complement is a stable set, so N(A) ⊆ K ∩R. Every edge of M with an end in K ∩R must have its

other end in L−K = A, so |A| ≥ |K ∩R| ≥ |N(A)|. Moreover, since M does not saturate every vertex in L,

it does not saturate some vertex in L−K = A, so |A| > |K ∩R| ≥ |N(A)|, implying that (2) holds.
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2 The Tutte-Berge formula

In the previous section, we gave a min-max formula for the maximum cardinality of a matching in bipartite

graphs, which in turn led to a characterisation of when a bipartite graph has a perfect matching. In this section,

we extend both of these results to arbitrary graphs.

Let G = (V,E) be a graph. Given a subset U ⊆ V , define

def(U) := oc(G \ U)− |U |

where oc(H) denotes the number of odd (connected) components of a graph H , where “odd” refers to the parity

of the number of vertices. The key idea is that if a matching saturates every vertex of an odd component of

G \ U , then at least one of the vertices of the component must be matched with a vertex of U . Consequently,

if def(U) > 0, then no matching can ever saturate every vertex that belongs to an odd component of G \ U ,

implying in turn that there is no perfect matching. What’s more, maximising the deficiency tells us exactly how

many vertices a maximum matching is shy of for being a perfect matching. To elaborate, recall that ν(G) denotes

the maximum cardinality of a matching of G. Let

def(G) := max{def(U) : U ⊆ V }.

Lemma 2.1. Let G = (V,E) be a graph, and choose U ⊆ V such that def(U) = def(G). Then the number

of unsaturated vertices in every matching is at least def(G). Moreover, if equality holds, then the matching is

maximum, and every vertex of U is saturated in every maximum matching of G.

Proof. Let M be a matching, and let V1, . . . , Vk be the vertex sets of the odd components of G \ U . Then, for

each i ∈ [k], some vertex of Vi is either not saturated, or matched with a vertex of U . Subsequently, the number

of unsaturated vertices of M is at least k− |U |, which is def(G). Moreover, if we have equality here, then M is

a maximum matching, and every vertex of V − (V1 ∪ · · · ∪ Vk), which includes U , is saturated, as required.

We are now ready to prove the following important result in Matching Theory:

Theorem 2.2 (Tutte-Berge Formula). Let G = (V,E) be a graph. Then for every maximum matching, the

number of unsaturated vertices is equal to def(G). That is,

ν(G) =
1

2
(|V | − def(G)) .

In particular, G has a perfect matching if, and only if, oc(G \ U) ≤ |U | for all U ⊆ V .

Proof. We proceed by induction on |E|. The base case |E| = 0 is obvious. For the induction step, assume that

|E| ≥ 1. It can be readily checked that the number of unsaturated vertices in every matching is at least def(G).

To prove the other direction, pick an edge e with ends u, v.

If an end of e, say u, is saturated in every maximum matching, then ν(G \ u) = ν(G)− 1. By the induction

hypothesis, for a maximum matching M ′ of G \ u, and a subset U ′ ⊆ V − {u}, the number of M ′-unsaturated
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vertices in G \ u is oc(G \ u \ U ′) − |U ′|. Let U := U ′ ∪ {u}, and let M be a maximum matching of G. By

assumption, |M | = |M ′|+ 1, so the number of M -unsaturated vertices of G is

oc(G \ u \ U ′)− |U ′| − 1 = oc(G \ U)− |U | = def(U) ≤ def(G),

thereby proving the other direction.

Otherwise, there exists a maximum matching Mu that does not saturate u, and a maximum matching Mv

that does not saturate v. The maximality of the matchings implies that Mu saturates v, and Mv saturates u. (In

particular, Mu,Mv are distinct matchings.)

Consider the symmetric difference F := Mu4Mv . Then F is the vertex-disjoint union of alternating

paths and alternating circuits, where each alternating path starts from an Mu-unsaturated vertex and ends at

an Mv-unsaturated vertex, because both Mu,Mv are maximum matchings. Since u is Mv-saturated and Mu-

unsaturated, it is the end of an alternating path Pu. Similarly, since v is Mu-saturated and Mv-unsaturated, it is

the end of an alternating path Pv . These two alternating paths must be the same, for if not, then (Mu4Pv)∪{e}
would be a matching of larger cardinality than Mu, which is a contradiction.

We just showed Pu = Pv . In particular, C := {e} ∪ Pu is an odd circuit that includes |C|−12 many edges

from each of Mu,Mv . Let G′ be the graph obtained by shrinking C, i.e. by contracting the edges of C. Then

Mu − C is a matching of G′, so ν(G′) ≥ ν(G) − |C|−12 . In fact, we must have equality here, because every

matching M ′ of G′ can be extended to a matching of G by adding |C|−12 appropriate edges from C to M ′, so

ν(G′) = ν(G)− |C| − 1

2
.

In particular, Mu − C is a maximum matching of G′, one that does not saturate the shrunken vertex – call it w.

Observe that the number of Mu-unsaturated vertices of G is equal to the number of (Mu − C)-unsaturated

vertices ofG′. We know what the latter is: By the induction hypothesis, there exists a subset U ⊆ (V −V (C))∪
{w} such that the number of (Mu − C)-unsaturated vertices of G′ is oc(G′ \ U) − |U |. By Lemma 2.1, U

cannot contain (Mu−C)-unsaturated vertices of G′, so w /∈ U , implying in turn that U ⊆ V . Consider now the

components of G \ U : There are those that correspond identically to the components of G′ \ U not containing

w. There is one more component, which arises from the component of G′ \U containing w after de-contracting

w to the odd circuit C; notice that these two components have the same number of vertices modulo 2, because

|C| is odd. Subsequently, oc(G \ U) = oc(G′ \ U). Consequently, the number of Mu-unsaturated vertices G is

equal to oc(G \ U)− |U | = def(U) ≤ def(G), thereby proving the other direction.

In both cases, we proved that the number of unsaturated vertices in a maximum matching was less than or

equal to def(G). This completes the induction step.

An important consequence of Theorem 2.2 is that the problem of deciding whether a graph G has a perfect

matching belongs to NP ∩ co−NP: If G = (V,E) has a perfect matching, then a polynomial certificate can

be provided, namely the perfect matching itself. Otherwise, if G does not have a perfect matching, then another

polynomial certificate can be provided, namely, a subset U ⊆ V for which def(U) > 0. This complexity result
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suggests that deciding whether a graph has a perfect matching should not be NP-complete, which as we will see

is indeed the case. In fact, we will prove that this problem belongs to P.

3 Edmonds’ Blossom Algorithm

In this section, we provide an elegant algorithm that, given a graph, runs in time polynomial in the size of the

graph and outputs either a perfect matching or certifies that none exists. The utter simplicity of the algorithm

allows it to be extended for other purposes. For example, a slight extension of it gives a polynomial algorithm

for finding a maximum matching (Exercise 6). One can also combine it with a primal-dual linear programming

technique and obtain a polynomial algorithm for finding a minimum weight perfect matching (see §4 for more).

It also gives an algorithmic characterisation of Theorem 2.2 for the existence of a perfect matching.

Input. Let G = (V,E) be a graph, and let M be a matching. If M is perfect, then we are done. Otherwise, let

r be a vertex not saturated by M , and let T be an alternating tree rooted at r.

Output. A perfect matching, or a deficient subset of V certifying that G has no perfect matching.

Alternating Tree. An M -alternating tree, or simply an alternating tree T is a subgraph of G satisfying the

following statements:

1. T is a rooted tree with root r,

2. r is the only vertex of the tree that is not saturated by M ,

3. for every vertex v of T , the unique rv-path is an alternating path.

We may then partition the vertices of T into two parts A(T ), B(T ), where A(T ) consists of those vertices v

where the rv-path in T has an odd number of edges, and B(T ) consists of the remaining vertices. Notice that

r ∈ B(T ). We ask that alternating trees satisfy one more condition:

4. every leaf of T belongs to B(T ).

Consequently,

5. every vertex in A(T ) has a unique child in T , with whom it is joined via an edge in M .

Observe that every vertex of T , other than r, is matched by an edge in M ∩ E(T ) to another vertex in T .

Subsequently,

6. |B(T )| = |A(T )|+ 1.
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Subroutines. There are four subroutines depending on types of edges outside of T incident with a vertex in

B(T ).

augment matching: There is an edge e incident with a vertex in B(T ) whose other end is outside of T and is not saturated

by M .

Assume that e has ends v ∈ B(T ) and u /∈ V (T ). Then the rv-path in T , together with the edge e, gives

an augmenting path, which we use to augment M to a matching whose cardinality is larger by one.

In this case, we re-initialise the algorithm with the new matching.

extend tree: There is an edge e incident with a vertex in B(T ) whose other end is outside of T and is saturated by M .

Assume that e has ends v ∈ B(T ) and u /∈ V (T ). Then u is saturated by an edge f ∈M . In this case, we

add e, f and the ends of f to the tree T to get a larger alternating tree.

In this case, we re-initialise the algorithm with the same matching but with the larger alternating tree.

frustrated tree: If every edge in E − E(T ) incident with B(T ) has its other end in A(T ), then we say that the alternating

tree is frustrated.

Lemma 3.1. If T is frustrated, then def(A(T )) > 0, and in particular, G has no perfect matching.

Proof. Every edge of T incident with B(T ) has its other end in A(T ), so our assumption implies that

every edge of G incident with B(T ) has its other end in A(T ). In particular, B(T ) is a stable set, and each

vertex of it forms an odd component of G \ A(T ). As a result, def(A(T )) = oc(G \ A(T )) − |A(T )| ≥
|B(T )| − |A(T )| = 1, as claimed.

Thus, in this case, we declare that G has no perfect matching, and output A(T ) as a deficient subset.

shrink blossom: Otherwise, there is an edge e in E − E(T ) incident with v ∈ B(T ) whose other end is u ∈ B(T ). In this

case, we get an odd circuit in the tree C called a blossom.

We then shrink the blossom C, and re-run the algorithm on G′ := G/C with the matching M ′ :=M −C
and the tree T/C. Observe that T/C is indeed an M ′-alternating tree, and since T satisfies (5), the vertex

of G′ corresponding to C, call it w, must belong to B(T/C). Unlike the previous subroutines, there are a

couple of things to be wary of here.

If at some iteration we augment the matching M ′ in G′, then we stop. The oddness of C allows us to

augment M in G accordingly, and therefore re-initialise from G with the new matching.

Otherwise, the tree T/C is extended to a frustrated tree T ′ of G′. Then Lemma 3.1 tells us that G′ has no

perfect matching. In fact, since w ∈ B(T ′) and therefore A(T ′) ⊆ V , we can argue that G has no perfect

matching:

Lemma 3.2. If T ′ is frustrated inG′, then defG(A(T
′)) > 0, and in particular,G has no perfect matching.
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Proof. Note that every vertex of B(T ′) forms an odd component of G′ \ A(T ′). Thus, every vertex of

B(T ′) \ {w} forms an odd component of G \ A(T ′), and as |C| is odd, C forms an odd component of

G \A(T ′). Thus, defG(A(T ′)) = oc(G \A(T ′))− |A(T ′)| ≥ |B(T ′)| − |A(T ′)| = 1, as required.

Thus, in this case, we declare that G has no perfect matching, and output A(T ′) as a deficient subset.

We have already shown the correctness of the algorithm. Its running time can be readily checked to be polyno-

mial:

Theorem 3.3. The Blossom Algorithm on G = (V,E) terminates after O(|V |) augmentation subroutines,

O(|V |2) tree extension subroutines, O(|V |2) shrinking subroutines, and at most one frustrated tree subroutine.

Proof. Clearly, the number of augmentation steps is at most |V |2 . In between consecutive augmentation steps,

we can have up to |V | − 1 tree extensions and O(|V |) shrinking steps, thereby proving the theorem.

4 Minimum-weight perfect matchings

Let G = (V,E) be a graph that has a perfect matching, and let w ∈ RE be edge weights. In this section, we

develop the key ideas of an algorithm for finding a minimum weight perfect matching, where the weight of a

matching M is equal to w(M) :=
∑

e∈M we.

Any successful algorithm needs a stopping criterion, that is, it must be able to detect whether a given perfect

matching has minimum weight. This is where linear programming duality comes to the rescue.

The goal is to formulate the minimum weight perfect matching problem as a linear program. That way, the

complementary slackness conditions would give us a certificate of optimality.

A first, good attempt is the following linear program:

min w>x

s.t. x(δ(v)) = 1 v ∈ V
xe ≥ 0 e ∈ E

While guaranteed to model the problem for bipartite graphs (see Exercise 11), this linear program is too weak

to model the problem in general. For example, consider the graph displayed in Figure 1, which has a perfect

matching, whose edge labels represent the edge weights. While the minimum weight of a perfect matching is 1,

the linear program has optimal value 0, obtained by assigning x?e = 1
2 to each edge e of weight 0, and x?f = 1 to

each edge f of weight 1. We therefore need to strengthen the linear program above by adding new inequalities

satisfied by perfect matchings.

Consider the cut δ({1, 2, 3}). Observe that x? takes a value of 0 on the edges belonging to this cut, but

every perfect matching would have to an edge belonging to this cut, because both shores have an odd number

of vertices. This observation motivates the addition of the following odd cut inequalities (also called blossom

inequalities), valid for all perfect matchings, to the linear program:

x(δ(U)) ≥ 1 U ⊆ V, |U | is odd.
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Figure 1: The edge labels represent the edge weights.

It turns out that by adding these odd cut inequalities to the linear program, we correctly model the minimum

weight perfect matching problem. To prove this, we need a few ingredients.

4.1 The Edmonds-Johnson Theorem

Let G = (V,E) be an arbitrary graph, and let T be a nonempty even cardinality subset of V . A T -cut is a cut of

the form δ(U) where |U ∩ T | is odd. A T -join is a subset J ⊆ E whose odd-degree vertices coincide with T .

Lemma 4.1. Let G = (V,E) be an arbitrary graph, and let T be a nonempty even cardinality subset of V . Then

the following statements hold:

1. Every T -join and T -cut have an odd number of edges in common. In particular, every T -join and T -cut

intersect.

2. If an edge subset J intersects every T -cut, then J contains a T -join.

Proof. Exercise. (Hint. For part 2, first solve Exercise 7.)

Consider the polyhedron P (G,T ) := {x ∈ RE
+ : x(B) ≥ 1, B is a T -cut}. Lemma 4.1 (1) implies that

the incidence vector of every T -join belongs to P (G,T ). Moreover, it follows from Lemma 4.1 (2) implies

that every integral vertex of P (G,T ) is the incidence vector of an inclusionwise minimal T -join of G (see

Exercise 9). We will show that every vertex of P (G,T ) is indeed integral, thereby giving a full facet description

of the T -join polyhedron.

We will need the following lemma:

Lemma 4.2. Let G = (V,E) be a graph, and let T ⊆ V be nonempty and of even cardinality. Let x̃ be a vertex

of the polyhedron {x ∈ RE
+ : x(δ(v)) ≥ 1, v ∈ T}, and let G̃ be the subgraph of G induced on the edge set

{e ∈ E : x̃e > 0}. Then every connected component of G̃ is either

i. an odd circuit C whose vertices are in T and edges x̃e = 1
2 , or

ii. a star whose vertices, except possibly its centre, are in T and edges x̃e = 1.
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Proof. Exercise. (Hint. What can you say about the number of edges of G̃? Use linear algebra to provide an

upper bound, and graph connectivity to provide a lower bound.)

Theorem 4.3 (Edmonds-Johnson Theorem). Let G = (V,E) be a graph, and let T ⊆ V be nonempty and of

even cardinality. Then P (G,T ) is an integral polyhedron. In particular, every vertex of P (G,T ) is the incidence

vector of an inclusionwise minimal T -join of G.

Proof. We proceed by induction on |V | ≥ 2. The induction step |V | = 2 is obviously true. For the induction

step, assume that |V | ≥ 3, and let x̃ be a vertex of P (G,T ).

If x̃ is also a vertex of {x ∈ RE
+ : x(δ(v)) ≥ 1, v ∈ T}, then by Lemma 4.2, then every connected component

of the subgraph ofG induced on {e ∈ E : x̃e > 0} is either type i or type ii. However, the first type of connected

components is not possible, because x̃ must satisfy the T -cut inequality x̃(V (C)) ≥ 1. This implies that x̃ is an

integral vertex, as required.

Otherwise, x̃(δ(U)) = 1 for a T -cut δ(U) such that |U |, |V − U | 6= 1. Let G1 be the graph obtained from

G after shrinking U to a single vertex u, and let T1 := (T − U) ∪ {u}. Similarly, let G2 be the graph obtained

from G after shrinking V − U to a single vertex v, and let T2 := (T ∩ U) ∪ {v}. Let x̃1, x̃2 be the restrictions

of x̃ to E(G1), E(G2), respectively. It can be readily checked that x̃i ∈ P (Gi, Ti), for each i = 1, 2. By the

induction hypothesis, each P (Gi, Ti), i = 1, 2 is an integral polyhedron, so for each i = 1, 2,

x̃i ≥
∑

J a Ti-join of Gi

λiJχJ

where λi ≥ 0 and
∑

J λ
i
J = 1. Moreover, since x̃i(δ(U)) = x̃(δ(U)) = 1, and |J ∩ δ(U)| ≥ 1 for each

Ti-join of Gi, we must have equality above for the entries corresponding to the edges in δ(U). In particular,

|J ∩ δ(U)| = 1 for all Ti-joins J such that λiJ > 0. Observe that if J1 is a T1-join of G1, J2 is T2-join of G2,

and J1 ∩ δ(U) = {e} = J2 ∩ δ(U), then J1 ∪ J2 is a T -join of G, i.e. we can glue the two sets together and

obtain a T -join of G. By gluing T1- and T2-joins carefully along the edges of δ(U), we obtain that

x̃ ≥
∑

J a T -join of G

λJχJ

where λ ≥ 0 and
∑

J λJ = 1. As x̃ is a vertex of P (G,T ), and as χJ ∈ P (G,T ) for every T -join J , we must

have equality above, and exactly one entry of λ must be nonzero, that is, x̃ is integral, thereby completing the

induction step.

4.2 An optimality certificate

Since every nonempty face of an integral polyhedron is also integral, Theorem 4.3 has the following immediate

consequence:
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Corollary 4.4. Let G = (V,E) be a graph that has a perfect matching. Then the feasible region of

(P )

min w>x

s.t. x(δ(v)) = 1 v ∈ V
x(δ(U)) ≥ 1 U ⊆ V, |U | is odd

xe ≥ 0 e ∈ E

is an integral polyhedron. That is, for all w ∈ RE , the minimum weight of a perfect matching is equal to the

optimal value of (P).

Let G = (V,E) be a graph with a perfect matching. An odd cut is a cut of the form δ(U) where |U | is odd,

i.e. a V -cut. Consider the dual linear program:

(D)

max
∑

(yv : v ∈ V ) +
∑

(yB : B is an odd cut)
s.t. yu + yv +

∑
(yB : B is an odd cut containing e) ≤ we e = uv ∈ E

yB ≥ 0 for every odd cut B

By the Complementary Slackness conditions, a perfect matching M has minimum weight if, and only if, for its

incidence vector x, there exists a dual feasible solution y such that

xe > 0 implies
∑

(yB : B is an odd cut containing e) = we − yu − yv

yB > 0 implies |B ∩M | = 1.

We have therefore obtained a stopping criterion for a successful algorithm for computing the minimum weight

of a perfect matching. One can now bootstrap the Blossom Algorithm with a primal-dual approach for finding a

minimum weight perfect matching. The interested reader is referred to an excellent treatment of this algorithm

in [1], Chapter 5. Alternatively, one can use the ellipsoid method directly on the linear program (P), but given that

we have exponentially many constraints, we would need a polynomial time separation oracle, which amounts to

finding in polynomial time a minimum weight odd cut of a graph [4]. We shall discuss this idea in more detail

in the final lecture.

Exercises

1. Let G = (V,E) be a graph, and let M be a matching. Prove that there are at least ν(G)− |M | vertex-disjoint

augmenting paths.

2. Let G = (V,E) be a graph, and let M be a matching of cardinality at most ν(G)−
√
ν(G). Prove that there

exists an augmenting path that picks at most
√
ν(G) edges from M .

3. An edge cover of a graph G = (V,E) is an edge subset that intersects every δ(v), v ∈ V . Prove that the

minimum cardinality of an edge cover is equal to |V | − ν(G), where ν(G) is the maximum cardinality of a

matching.

4. Let r ≥ 2 be an integer. Prove that every r-regular bipartite graph has r disjoint perfect matchings.
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5. For an integer r ≥ 2, an r-graph is an r-regular graph with an even number of vertices where every odd cut

has at least r edges. Prove that every edge of an r-graph belongs to a perfect matching.

6. Extend Edmonds’ Blossom Algorithm to an algorithm that, given a graph, runs in time polynomial in the size

of the graph and outputs a maximum matching. As a consequence, give an algorithmic proof of Theorem 2.2.

7. LetG = (V,E) be a connected graph, and let T be a nonempty even cardinality subset of V . Prove that every

spanning tree of G contains a T -join.

8. Prove Lemma 4.1 parts (1) and (2).

9. Let G = (V,E) be a graph, and let T be a nonempty even cardinality subset of V . Prove that the (integral)

vertices of P (G,T ) are in correspondence with {χJ : J is an inclusionwise minimal T -join}.

10. Prove Lemma 4.2.

11. Let G = (V,E) be a bipartite graph, and let w ∈ RE . Consider the linear program

min w>x

s.t. x(δ(v)) = 1 v ∈ V
xe ≥ 0 e ∈ E.

Prove the following statements:

(a) Prove that G has a perfect matching if, and only if, the linear program has a feasible solution.

(b) Prove that the minimum weight of a perfect matching is equal to the optimal value of the linear program.

12. Let G = (V,E) be a graph, let w ∈ RE
+, and let T be a nonempty even cardinality subset of V . Let

δ(U), δ(W ) be minimum weight T -cuts, where U,W intersect and neither one is contained in the other.

Prove that either δ(U ∩W ), δ(U ∪W ) or δ(U −W ), δ(W − U) are minimum weight T -cuts.

13. Consider the graph G with edge weights w (which are possibly negative). We are interested in solving the

minimum weight matching problem on the pair (G,w). Create a second copy G? of G with the same edge

weights, and add an edge of weight 0 between u, u? for every vertex u of G. Explain how solving the

minimum weight perfect matching problem on this new instance can lead to a solution of our problem.

14. Let G = (V,E) be a graph, let s, t ∈ V be distinct vertices, and let w ∈ RE
+. An odd st-path is an st-path

with an odd number of edges. Similarly, we can define an even st-path.

(a) Find a minimum weight odd st-path by reducing it to the minimum weight perfect matching problem.

(Hint. Start with the construction in Exercise 13, then delete s?, t?.)

(b) Find a minimum weight even st-path by a reducing it to the minimum weight odd path problem between

a designated terminal pair.

11



15. Let G = (V,E) be a plane 3-graph (see Exercise 5 for the definition of an r-graph). Then the following

statements are equivalent:

(i) G has three disjoint perfect matchings,

(ii) G has two disjoint V -joins,

(iii) G has a 4-face-colouring, that is, one can colour each face using one of four colours so that faces that

share an edge get different colours.

16. LetG = (V,E) be a bipartite graph with bipartition L∪R, and let b ∈ ZV
≥0 such that b(L) = b(R). A perfect

b-matching is a vector x ∈ ZE
≥0 such that x(δ(v)) = bv for every vertex v ∈ V . Prove that exactly one of the

following statements holds:

(i) G has a perfect b-matching,

(ii) there exists a subset A ⊆ L such that b(A) > b(N(A)).

17. A simple perfect b-matching is a subset J ⊆ E whose incidence vector is a perfect b-matching. Give an

example of a bipartite instance (G, b) with a perfect b-matching but without a simple one. Conclude that

Exercise 16 does not characterise the existence of a simple perfect b-matching.
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