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1 Optimization vs. separation

In the previous lecture we saw that the set covering and set packing integer programs over ideal and perfect

matrices can be reduced to solving the set covering and set packing linear programs, respectively. There is a

key advantage here: while integer programming is NP-hard, a linear program is polynomially solvable. That

is, the running time for solving a linear program is bounded above by a polynomial in the input size. While

this is a powerful guarantee for a general linear program, it may not be sufficient for combinatorial optimisation

problems over a graph where the number of constraints of the associated linear program is exponential in the

size of the graph. Unfortunately this was the case for the linear programs that we saw in lectures 3 and 4, as we

shall explain in the coming sections.

What comes to the rescue is that while our linear program may have exponentially many constraints, we do

not need to store all of them, or any of them for that matter, in memory to solve the problem. All we need to

retain is a so-called separation oracle which given a vector x declares in polynomial time whether x is feasible or

outputs an inequality of the program that is violated at x. Finding a separation oracle reduces to solving another

optimisation problem, one that is typically easier to solve. Let us elaborate.

LetK be a nonempty compact convex subset of Rn. We are interested in the following algorithmic problems:

1. Exact Optimisation Problem: Given c ∈ Rn, find a vector x in K which maximises c>x over K.

2. Exact Separation Problem: Given y in Rn, decide if y ∈ K, and if not, find a hyperplane separating K

from y, i.e. a vector c ∈ Rn such that c>y > max{c>x : x ∈ K}.

A powerful and brilliant result of Khachiyan [4], based on a method of Shor [6], is that these two algorithmic

problems are in fact polynomially equivalent. That is, there is a polynomial time algorithm for solving the first

problem if, and only if, there is one for solving the second one. The key insight for this equivalence comes from

the Ellipsoid Method for linear programming, which we will not focus on in this lecture.
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A convex body is a quintuple (K,n, a0, r, R) where n ≥ 2,K is a convex subset of Rn, ansdK is sandwiched

between two Euclidean balls centred at a0 of radii r and R, where 0 < r ≤ R. We have the following important

result from Grötschel, Lovász and Schrijver [1] (Theorem 3.1).

Theorem 1.1. Let K be a class of convex bodies. There is a polynomial algorithm to solve the separation

problem for the members of K if, and only if, there is a polynomial algorithm for solving the optimisation

problem for the members of K.

Consequently, to have a polynomial algorithm for optimising a linear objective over a nonempty compact

convex set K, all we need is a polynomial separation oracle, which is a polynomial algorithm for solving the

separation problem over K.

There is a fine print to be mindful of. Above we make no assumption of the set K. In fact, as we shall see

later, K may be defined by quadratic constraints, so the maximiser of the first problem, for instance, could have

irrational coordinates, so how could one even represent the answer? One could instead with a more appropriate,

and correct, formulation of the first problem known as the Weak Optimisation Problem, in which one looks for a

rational solution that is approximately optimal up to a prescribed additive, small factor of precision. Similarly,

there is the Weak Separation Problem. A subtle point is that the Ellipsoid Method, as well as the theorem above,

are proved for the weak variants with exponential convergence rate guarantees, which in turn allows one to solve

the exact variants, where possible, also in polynomial time by essentially rounding. We refer the interested reader

to the paper of Grötschel, Lovász and Schrijver [1]. The same authors also wrote a book [2] on this topic, and

we refer to Chapter 4 for more details.

In the remainder of this section, we shall focus on two profound implications of Theorem 1.1 in Combinato-

rial Optimisation.

2 The maximum cut problem for weakly bipartite graphs

Let G = (V,E) be a graph. What is the maximum size of a cut? This problem is known as the max cut problem,

and its decision version is one of Karp’s 21 NP-complete problems. Interestingly, we can model the problem via

a set covering integer program. The key idea is that every circuit intersects every cut in an even number of edges,

thus every odd circuit has at least one edge off of any given cut. This relation essentially characterises cuts:

Lemma 2.1. Let B ⊆ E be a subset such that (E − B) ∩ C 6= ∅ for every odd circuit C. Then B is contained

in a cut of G.

Proof. Exercise.

By the lemma above, B is a maximum cut if, and only if, E − B is a minimum edge subset that intersects

every odd circuit. Denote by C(G,E) the family of odd circuits of G. We can formulate the maximum cut
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problem as the following set covering integer program for w = 1.

min w>x

s.t. x(C) ≥ 1 C ∈ C(G,E)

xe ∈ {0, 1} e ∈ E
(1)

Let us focus on instances G where this integer program is equivalent to its linear relaxation:

min w>x

s.t. x(C) ≥ 1 C ∈ C(G,E)

xe ≥ 0 e ∈ E
xe ≤ 1 e ∈ E.

(2)

G = (V,E) is a weakly bipartite graph if for all w ∈ RE for which (2) has an optimal solution, there exists an

integral optimal solution. That is, for weakly bipartite graphs, the integer program (1) is equivalent to its linear

relaxation (2) for any linear objective function. However, as the reader will have noticed, the linear program may

have exponentially many constraints, so in order to solve it efficiently, we will need a polynomial separation

oracle. Somewhat miraculously there is one!

Theorem 2.2. There is a polynomial algorithm for finding a minimum cost odd circuit of a graph G = (V,E)

with cost vector c ∈ RE≥0.

Proof. Let C be a minimum cost odd circuit of G, and let st be any edge of the circuit. Observe that the even

st-path in C is a minimum cost even st-path.Now to solve the problem, for any edge st, we find a minimum

cost even st-path Pst – we explain how this can be done efficiently shortly. Then we add {st}∪Pst to the list of

candidate minimum cost odd circuits. We do this for every edge st, and then among the candidate odd circuits,

we pick the one of minimum cost.

What remains to justify is a polynomial algorithm for finding Pst. We saw in the lecture 1 exercises that

finding a minimum cost even st-path can be reduced to a minimum cost perfect matching problem in an instance

with at most twice as many vertices, where every edge cost is either 0 or ce for some e ∈ E. Since the latter

has a polynomial algorithm as explained in lecture 1, we obtain a polynomial algorithm for finding Pst, as

required.

We may now use the equivalence of separation and optimisation to prove the following theorem.

Theorem 2.3. There is a polynomial algorithm for finding a maximum weight cut of any weakly bipartite graph

G = (V,E) with edge weights w ∈ RE .

Proof. As we argued above, finding a maximum weight cut of G is equivalent to solving the integer program

(1). Since G is weakly bipartite, the integer program is equivalent to its linear relaxation (2). Thus, all we need

to do is solve the LP in polynomial time.

Even though the LP may have exponentially many inequalities, it has a polynomial separation oracle. To see

this, let x? ∈ RE . We need to decide in polynomial time whether x? is feasible for the LP (2), or output an

inequality that is violated. If x? /∈ [0, 1]E , then we have an obvious violated inequality. Otherwise, x? ∈ [0, 1]E .
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We then treat x? as edge costs of G (these are different from the edge weights w), and look for a minimum cost

odd circuit C of G, which can be done in polynomial time by Theorem 2.2. If x?(C) ≥ 1, we conclude that x?

is a feasible solution for the LP. Otherwise, x?(C) < 1, so we output x(C) ≥ 1 as an inequality of the LP that

is violated at the given point x?.

We presented a polynomial separation oracle for (2). By Theorem 1.1 we then have a polynomial algorithm

for solving the (2), as required.

As we proved in lecture 3, any planar graph is weakly bipartite, for example. There is a powerful characteri-

sation of such graphs due to Guenin [3]. To describe it, let G = (V,E) be a graph. We say that G has an odd-K5

minor if there exist subsets I, J ⊆ E such that I ∩ J = ∅, J = δ(U) for some U ⊆ V , and the minor G \ I/J
obtained after deleting I and contracting J is isomorphic to the complete graph K5 on five vertices.

Theorem 2.4 (Characterisation of Weakly Bipartite Graphs). A graph is weakly bipartite if, and only if, it has

no odd-K5 minor.

This theorem is equivalent to the characterisation of weakly bipartite signed graphs we mentioned in lec-

ture 3.

3 Computing the stability number of perfect graphs: a failed attempt

Let G = (V,E) be a simple graph. Denote by α(G) the maximum size of a stable set of G. The problem of

computing α(G) is equivalent to the maximum clique problem, which is one of Karp’s 21 NP-complete problems.

Consider the following linear relaxation of the parameter:

α?(G) := max 1>x

s.t. x(K) ≤ 1 for every clique K ⊆ V of G
xv ≥ 0 v ∈ V.

(3)

As we saw in lecture 4, if G is a perfect graph, then α(G) = α?(G). Thus, is there a polynomial algorithm for

solving (3) for an arbitrary graph? As optimisation and separation are equivalent, we may equivalently ask for a

polynomial separation oracle for the LP. Unfortunately, this problem is NP-hard.

Theorem 3.1. Separation over the feasible region of (3) for an arbitrary graph G = (V,E) is an NP-hard

problem.

Proof. Exercise.

One can now apply the contrapositive of Theorem 1.1 to conclude the following.

Corollary 3.2. Computing α?(G) for an arbitrary graph G = (V,E) is NP-hard.

There is a subtle point here. Technically, Theorem 1.1 only tells us that solving (3) for an arbitrary linear

objective function is NP-hard. However, the fact that the right-hand-side values of the clique inequalities are 1,

allows us to conclude the above.
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Things look hopeless now. It seems that the equivalence of separation and optimisation is only giving us a

negative result. However, that is not the case. This equivalence does indeed lead to a polynomial algorithm for

finding α?(G) = α(G) for perfect graphs. We just need to apply the result to a different (non-linear) optimisation

problem. Before explaining this, however, we need to talk about a seemingly different topic.

4 The theta function and a min-max theorem

Let G = ([n], E) be a graph. Denote by ϑ(G) the minimum of the largest eigenvalue of A, ranging over all real

symmetric n × n-matrices A where Aij = 1 if i = j or i, j are non-adjacent vertices. We have the following

inequality which provides a link between this parameter and the stability number.

Lemma 4.1. ϑ(G) ≥ α(G).

Proof. Let ϑ := ϑ(G) and α := α(G). Let A be a real symmetric n × n-matrix where Aij = 1 if i = j

or i, j are non-adjacent vertices, and whose largest eigenvalue of A is ϑ. By the Courant-Fischer Theorem,

ϑ = max{x>Ax : x>x = 1}. We shall exhibit a solution of to this program whose objective value is α. To

this end, let S be a maximum stable set. Then the S × S principal submatrix of A is an all ones submatrix. Let

x̄i := 1√
α

for all i ∈ S and x̄i := 0 for all i ∈ [n]− S. Then x̄>x̄ = 1 and

x̄>Ax̄ =

n∑
i=1

n∑
j=1

Aij x̄ix̄j = (α)2 · 1√
α
· 1√

α
= α.

Thus, ϑ ≥ α, as required.

Let M be an n × n real symmetric matrix. M is positive semidefinite (PSD) if each eigenvalue of M is

nonnegative. Equivalently, M is PSD if x>Mx ≥ 0 for all x ∈ Rn. We are now ready to prove a min-max

theorem for ϑ(G).

Theorem 4.2. ϑ(G) is equal to the maximum trace of BJ , where B is a PSD n × n-matrix of trace 1 where

Bij = 0 whenever i, j are distinct and adjacent.

Proof. Let A be a symmetric n× n-matrix where Aij = 1 if i = j or i, j are non-adjacent vertices, and whose

largest eigenvalue is ϑ(G) =: ϑ.

(≥) We shall prove something a little stronger. Let B be an arbitrary PSD n × n-matrix of trace at most 1

where Bij = 0 whenever i, j are distinct and adjacent. We claim that ϑ ≥ tr(BJ). To this end, note that

tr(BJ) =

n∑
i=1

n∑
j=1

Bij =

n∑
i=1

n∑
j=1

AijBij = tr(AB)

where the middle equality follows from our assumptions on the entries of A,B. Thus,

ϑ− tr(BJ) = ϑ− tr(AB) ≥ tr((ϑI −A)B)
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where the last equality follows from the fact that tr(B) ≤ 1. Since B is real symmetric matrix, it has an

orthonormal basis v1, . . . , vn ∈ Rn of eigenvectors with eigenvalues λ1, . . . , λn, respectively. Since B is PSD,

λ1, . . . , λn ≥ 0. By the Spectral Decomposition Theorem, B =
∑n
i=1 λiviv

>
i . Thus,

tr((ϑI −A)B) =

n∑
i=1

λitr((ϑI −A)viv
>
i ) =

n∑
i=1

λiv
>
i (ϑI −A)vi.

(Note tr(Mxx>) = x>Mx.) Since ϑ is the largest eigenvalue of A, ϑI − A is PSD, so v>i (ϑI − A)vi ≥ 0 for

each i. Thus,

ϑ− tr(BJ) = tr((ϑI −A)B) ≥ 0,

as required.

(≤) We shall construct an eligible matrixB such that ϑ = tr(BJ). It shall be of the formB =
∑N
p=1 αphph

>
p

where

1. αp ≥ 0 for each p ∈ [N ], and
∑N
p=1 αp = 1: nonnegativity of the coefficients guarantee that B is PSD,

2. hp ∈ Rn satisfies h>p hp = 1 for each p ∈ [N ]: this guarantees that tr(B) = 1,

3.
∑N
p=1 αphp,ihp,j = 0 for each ij ∈ E: this guarantees that Bij = 0 whenever ij ∈ E,

4.
∑N
p=1 αp(1

>hp)
2 = ϑ: this guarantees that tr(BJ) = 1>B1 = ϑ.

These requirements have an intuitive geometric interpretation. Equivalently, we would like to express the vector

(0, . . . , 0)× (ϑ) ∈ RE × R as a finite convex combination of vectors from the set

S :=
{

(hihj : ij ∈ E, i > j)× (1>h)2 : h ∈ Rn, h>h = 1
}
.

Suppose for a contradiction that this is not possible. Since the set S is compact, there exists a hyperplane

separating (0, . . . , 0, ϑ) from S. That is, there exist a coefficient vector (dij : ij ∈ E, i > j)× (d0) ∈ RE × R
and a right-hand-side δ ∈ R such that∑

ij∈E,i>j
dijhihj + d0(1>h)2 ≤ δ ∀ h ∈ Rn, h>h = 1

d0ϑ > δ

In particular, for h = (1, 0, . . . , 0) ∈ Rn the first inequality gives d0 ≤ δ, while δ < d0ϑ by the second

inequality. Since ϑ ≥ 1, it follows that d0 > 0. By rescaling the coefficient vector and the right-hand-side, we

can enforce d0 = 1 without changing the directions of the inequalities. Thus, for each h ∈ Rn, h>h = 1, we

have

ϑ > δ ≥
∑

ij∈E,i>j
dijhihj + (1>h)2 =

n∑
i=1

n∑
j=1

cijhihj = h>Ch

whereC is a symmetric V ×V -matrix where cij = 1+
dij
2 if ij ∈ E, and cij = 1 if i = j or i, j are non-adjacent.

Let h̄ be an eigenvector of C corresponding to the largest eigenvalue, say ϑ′, such that h̄>h̄ = 1. By definition of

ϑ, we must have that ϑ′ ≥ ϑ. However, the above inequalities imply that ϑ > h̄>Ch̄ = ϑ′, a contradiction.
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Thus,
ϑ(G) = max tr(BJ)

s.t. Bij = 0 for all ij ∈ E
tr(B) = 1

B � 0

(4)

We can in fact relax tr(B) = 1 to tr(B) ≤ 1 as we already explained in the (≥) direction of the proof of

Theorem 4.2. Observe that the feasible region of this optimisation problem is a nonempty compact convex set,

and that the objective function is linear in B. By dropping the coordinates of B below the main diagonal, and

also those corresponding to the edges of E, we obtain a convex body. Since testing the positive semidefinite

property can be done in polynomial time, one readily obtains a polynomial separation oracle for (4) and the

associated convex body. For more details, we refer the reader to [1]. We can now use Theorem 1.1 to conclude

the following.

Theorem 4.3. There is a polynomial algorithm for computing ϑ(G) for any graph G.

5 Orthonormal representations and a successful attempt

An orthonormal representation ofG = ([n], E) is a set of vectors v1, . . . , vn in Rd (for any d) such that v>i vi = 1

for each i, and v>i vj = 0 for all non-adjacent vertices i, j. We shall need the following lemma.

Lemma 5.1. Let v1, . . . , vn be an orthonormal representation of G, and let u1, . . . , un be an orthonormal rep-

resentation of G. Then for all c, d ∈ Rn we have

n∑
i=1

(c>vi)
2(d>ui)

2 ≤ (c>c)(d>d).

Proof. Exercise.

Let M be an n × n real symmetric matrix. It is well-known that M is PSD if, and only if, M = X>X for

some real matrix X with n columns. We are now ready to provide another min-max theorem for ϑ(G).

Theorem 5.2. ϑ(G) is the maximum of
∑n
i=1(d>ui)

2 over all orthonormal representations u1, . . . , un ofG and

all vectors d such that d>d = 1.

Proof. Let ϑ := ϑ(G).

(≥) First we exhibit a vector c and an orthonormal representation v1, . . . , vn of G such that c>c = 1, and

c>vi = 1√
ϑ

for all i ∈ [n]. To this end, let A be a symmetric n × n-matrix where Aij = 1 if i = j or i, j are

non-adjacent vertices, and whose largest eigenvalue is ϑ. Since ϑI −A is PSD, it can be expressed as X>X for

some matrix X with n columns x1, . . . , xn. As ϑI − A is singular, X does not have full column rank, so there

exists a vector c that is perpendicular to its columns, and c>c = 1. Let vi := 1√
ϑ

(c + xi) for each i ∈ [n]. It
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can be readily checked that v1, . . . , vn is an orthonormal representation of G, and c>vi = 1√
ϑ

for each i ∈ [n].

Now, to prove (≥), take an orthonormal representation u1, . . . , un of G and a vector d such that d>d = 1. Then

1 = (c>c)(d>d) ≥
n∑
i=1

(c>vi)
2(d>ui)

2 =
1

ϑ

n∑
i=1

(d>ui)
2

where the middle inequality follows from Lemma 5.1. Multiplying both sides by ϑ gives the desired inequality.

(≤) We shall exhibit an orthonormal representation u1, . . . , un ofG and a vector d ∈ Rn such that d>d = 1,

and ϑ ≤
∑n
i=1(d>ui)

2. We know from Theorem 4.2 that ϑ is equal to tr(BJ) for some PSD n × n-matrix B

of trace 1 such that Bij = 0 for all ij ∈ E. We may express B as Y >Y for some matrix Y with n columns

y1, . . . , yn. As Bij = 0 for all ij ∈ E, we have y>i yj = 0 for all ij ∈ E. Subsequently, ui := 1√
y>i yi

yi, i ∈ [n]

is an orthonormal representation of G. As tr(B) = 1 and ϑ = tr(BJ) = 1>B1, we have

n∑
i=1

y>i yi = 1

(
n∑
i=1

yi

)>( n∑
i=1

yi

)
= ϑ.

Let d := 1√
ϑ

(
∑n
i=1 yi). Then d>d = 1. Moreover,

n∑
i=1

(d>ui)
2 =

(
n∑
i=1

y>i yi

)(
n∑
i=1

(d>ui)
2

)

≥

(
n∑
i=1

√
y>i yi · (d

>ui)

)2

by the Cauchy-Schwarz inequality

=

(
d>

n∑
i=1

yi

)2

= ϑ,

as required.

Let us now use this formula to get an upper-bound on ϑ(G) contrasting nicely with Lemma 4.1.

Lemma 5.3. α?(G) ≥ ϑ(G).

Proof. By Theorem 5.2, ϑ(G) =
∑n
i=1(d>ui)

2 for some orthonormal representation u1, . . . , un of G and some

vector d such that d>d = 1. Then for any clique K of G, the vectors ui, i ∈ K form an orthonormal set, so

1 = d>d ≥
∑
i∈K(d>ui)

2. Thus the vector xi := (d>ui)
2, i ∈ [n] satisfies x ≥ 0 and x(K) ≤ 1 for every

clique K, so ϑ(G) = 1>x ≤ α?(G), as required.

In summary, we proved in this section and the previous one that α?(G) ≥ ϑ(G) ≥ α(G). In particular, if

equality holds throughout, which is the case for any perfect graph G, then by Theorem 4.3, we can compute

α(G) in polynomial time.
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Theorem 5.4. There is a polynomial algorithm for computing the stability number of any perfect graph G.

Exercises

1. Let K be a compact convex subset of Rn containing 0. Define the polar of K, denoted K?, as the set of all

vectors y ∈ Rn such that y>x ≤ 1 for all x ∈ K. Prove the following statements:

(a) K? is a compact convex subset of Rn containing 0,

(b) (K?)? = K.

2. Let K be a compact convex subset of Rn containing 0. Given an algorithm for the optimisation problem over

the polar K?, derive an algorithm for the separation problem over K.

3. Prove Lemma 2.1.

4. Prove there is a polynomial algorithm that finds a minimum weight signature of a weakly bipartite signed

graph (G = (V,E),Σ) with edge weights w ∈ RE .

5. Let K be a family of ideal clutters. Suppose the optimisation problem

min{c>x : x(C) ≥ 1 ∀C ∈ C,1 ≥ x ≥ 0}

is polynomially solvable for any clutter C in the family K, and any rational cost vector c. Prove that the

optimisation problem

min{b>x : x(B) ≥ 1 ∀B ∈ b(C),1 ≥ x ≥ 0}

is polynomially solvable for the blocker b(C) of any clutter C ∈ K, and any rational cost vector b. (Hint. You

may use the following fact without proof: If C is an ideal clutter, then the linear program min{c>x : x(C) ≥
1 ∀C ∈ C,1 ≥ x ≥ 0} has an integral optimal solution for all c.)

6. Prove Theorem 3.1. (Hint. Given a graph G and an integer k, deciding whether G has a clique of size at least

k is NP-complete.)

7. Prove Lemma 5.1.

8. Prove that for any n-vertex simple graph G, we have ϑ(G)ϑ(G) ≥ n.

9. Let G = ([n], E) be a simple graph. Given an orthonormal representation u1, . . . , un of G, define its value

as

min
c

max
1≤i≤n

1

(c>ui)2

where the minimum ranges over all vectors c ∈ Rn such that c>c = 1. Prove that ϑ(G) is equal to the

minimum value that an orthonormal representation of G can achieve. (Hint. Read the proof of Theorem 5.2

for getting started.)

9



10. Given a simple graph G with vertex set [n] and an integer k ≥ 1, denote by Gk the graph with vertex set [n]k

where distinct vertices (u1, . . . , uk), (v1, . . . , vk) are adjacent if for each i ∈ [k], the two vertices ui, vi of G

are either equal or adjacent. Prove that ϑ(Gk) = ϑ(G)k.

11. Given a simple graph G, its Shannon capacity is Θ(G) := supk
k
√
α(Gk). Prove the following statements:

(a) Θ(G) ≥ α(G),

(b) Θ(G) = limk→∞
k
√
α(Gk),

(c) Θ(G) ≤ α?(G),

(d) Θ(G) ≤ ϑ(G).

12. Prove that the Shannon capacity of the 5-cycle is
√

5.
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