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Linear Algebra: A Brief Review

Let A be an n× n matrix over the complex numbers. The characteristic polynomial of A is pA(x) := det(xI −
A), where I is the n × n identity matrix. Notice that pA(x) is a polynomial of degree n, and that its distinct

roots are precisely the distinct eigenvalues of A.

The algebraic multiplicity of an eigenvalue λ ∈ C is the largest integer d such that (x − λ)d is a factor of

pA(x). As a consequence, the sum of the algebraic multiplicities of the distinct eigenvalues of A is equal to

n. The geometric multiplicity of an eigenvalue λ ∈ C is the dimension of its eigenspace. It is known that the

geometric multiplicity is always less than or equal to the algebraic multiplicity.

Two n × n matrices A,B are similar if for an invertible matrix P , we have A = P−1BP . It is known that

similar matrices have the same characteristic polynomial.

Suppose A is a real symmetric matrix, an assumption that is often made in this course. Then the eigenvalues

of A are real numbers (this is a nice exercise). Moreover, A is diagonalizable, that is, it is similar to a diagonal

matrix D (this follows from the theorem below). In this case, the geometric and algebraic multiplicities of every

eigenvalue coincide, so we may speak of the multiplicity of an eigenvalue. Moreover, the diagonal entries of D

are the eigenvalues of A, repeated according to their multiplicity.

Theorem 0.1 (Spectral Decomposition Theorem). Let A be an n×n real symmetric matrix. Then the following

statements hold:

1. There exists an orthonormal basis u1, u2, . . . , un ∈ Rn such that each ui is an eigenvector for A.

For each i, let λi be the eigenvalue corresponding to ui. Let D be the diagonal matrix whose diagonal entries

are λ1, . . . , λn. Define the n× n orthogonal matrix P := [u1, u2, . . . , un]. Then

2. A = PDP−1 = PDP>. That is,

A =

n∑
i=1

λiuiu
>
i .

For each eigenvalue λ of A, let Eλ :=
∑(

uiu
>
i : λi = λ

)
. Then

3. Eλ is the matrix of projection onto the λ-eigenspace. In particular, E2
λ = Eλ.
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4. Given that ev(A) denotes the set of distinct eigenvalues of A, we have the following:

I =
∑

λ∈ev(A)

Eλ,

A =
∑

λ∈ev(A)

λEλ.

Proof. Exercise.

As a consequence, we get the following theorem:

Theorem 0.2 (Courant-Fischer Theorem). Let A be an n × n real symmetric matrix with eigenvalues λ1 ≥
· · · ≥ λn. Then the following statements hold:

1. min{x>Ax : x>x = 1} = λn. Moreover, equality is achieved only by vectors in the λn-eigenspace.

2. max{x>Ax : x>x = 1} = λ1. Moreover, equality is achieved only by vectors in the λ1-eigenspace.

Let u1, . . . , un be an orthogonal basis of eigenvectors corresponding to the eigenvalues λ1, . . . , λn, respectively.

For each j ∈ {1, . . . , n−1}, let Uj be the subspace spanned by u1, . . . , uj . Then we have the following Rayleigh

equalities:

3. min{x>Ax : x>x = 1, x ∈ Uj} = λj . Moreover, equality is achieved only by vectors in the λj-

eigenspace.

4. max{x>Ax : x>x = 1, x ∈ U⊥j } = λj+1. Moreover, equality is achieved only by vectors in the

λj+1-eigenspace.

Moreover, for any subspace U of dimension j ∈ {1, . . . , n− 1}, we have the following Rayleigh inequalities:

5. min{x>Ax : x>x = 1, x ∈ U} ≤ λj . Moreover, if equality holds, then U contains an eigenvector with

eigenvalue λj .

6. max{x>Ax : x>x = 1, x ∈ U⊥} ≥ λj+1. Moreover, if equality holds, then U⊥ contains an eigenvector

with eigenvalue λj+1.

Proof. Exercise.

There is a subtle difference between (3)-(4) and (5)-(6). Notice that in (3)-(4), we have a characterization of

when equality holds, whereas in (5)-(6), we do not. The reason for this difference is made clear when one proves

the statements; we invite the reader to do so.

Let us present one final application of the Spectral Decomposition Theorem. A real symmetric matrix A

is positive semidefinite (PSD), denoted as A < 0, if x>Ax ≥ 0 for all vectors x, and it is positive definite if

x>Ax > 0 for all nonzero vectors x. We have the following characterization of PSD matrices:
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Theorem 0.3 (Characterization of PSD Matrices). Let A be an n×n real symmetric matrix. Then the following

statements are equivalent:

1. A is positive semidefinite (resp. positive definite),

2. every eigenvalue of A is nonnegative (resp. strictly positive),

3. A = B>B for a real matrix B (resp. nonsingular real matrix B).

Proof. Exercise.

Given real symmetric matrices A,B of the same dimension, we write A < B if A−B is a positive semidefi-

nite matrix. The relation < defines a partial order, called the Loewner order, on the space of symmetric matrices,

that is, the following three properties are satisfied (the proof of which is left as an exercise):

• A < A (reflexivity),

• if A < B and B < A, then A = B (antisymmetry),

• if A < B and B < C, then A < C (transitivity).

The pseudoinverse. The Moore-Penrose pseudoinverse is a generalization of the inverse to all matrices.

Theorem 0.4. LetA be anm×n real matrix. Then there is a unique n×mmatrixA+, called the pseudoinverse

of A, satisfying the following:

(i) AA+A = A and A+AA+ = A+;

(ii) AA+ and A+A are symmetric.

Further, A+ satisfies the following.

1. If A is square and invertible, then A+ = A−1.

2. (A+)+ = A.

3. AA+ is the orthogonal projection onto the range of A, and A+A is the orthogonal projection onto the

range of AT .

We will primarily be interested in square symmetric matrices, in which case we have a more straightforward

interpretation. Consider the diagonalizationA = PDP> of a real symmetric matrixA, whereD is diagonal and

P orthogonal. Then we must have that A+ = PD+P> (you can easily check that this satisfies the requirements

to be the pseudoinverse of A; for example, AA+A = PDD+DP> = PDP> = A). But the pseudoinverse

of D is straightforward to see: it is diagonal, with D+
ii = 0 if Dii = 0, and D+

ii = 1/Dii otherwise. Again,

you can easily check that this indeed satisfies the requirements to be the pseudoinverse of D. Hence we have the

following.
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Lemma 0.5. If A is a symmetric n × n real matrix, with spectral decomposition A =
∑n
i=1 λiuiu

>
i (with

{u1, . . . , un} an orthonormal basis of eigenvectors), then

A+ =
∑
i:λi 6=0

1
λi
uiu
>
i .

Geometrically, we can view the pseudoinverse in the symmetric case as follows. View A as a self-adjoint

operator from Rn → Rn. Let W be the range of A. Note that W is an A-invariant subspace, and furthermore,

the map A′ : W → W obtained by restricting to W is a bijection (this is a consequence of the self-adjointness

of A). Consider the map obtained by first projecting orthogonally onto W , and then applying the inverse of A′

(viewing the result as a vector in the ambient space Rn). This is precisely the pseudoinverse.

(A similar geometric construction applies for general linear operators, but it’s a bit more complicated. It is

no longer true that A is a bijection from W to W . Instead, one defines A+
x to be the minimum norm point y such

that Ay is equal to the orthogonal projection of x onto W .)

Exercises

1. Let A be an n× n matrix. Recall that pA(x) = det(xI −A). Choose σ0(A), σ1(A), . . . , σn(A) such that

pA(x) =

n∑
k=0

(−1)kσk(A)xn−k.

Prove the following statements for each k:

(a) σk(A) is the sum of the product of any k eigenvalues, counted according to their algebraic multiplicity.

That is, if λ1, . . . , λn are the n eigenvalues of A, repeated according to the algebraic multiplicity of the

eigenvalues, then

σk(A) =
∑

S⊆[n],|S|=k

∏
i∈S

λi.

(b) σk(A) is the sum of the determinants of all principal k × k submatrices. That is,

σk(A) =
∑

(det(B) : B is a k × k principal submatrix of A) .

2. Let A be an n × n matrix. Prove that the trace of A is equal to the sum of its eigenvalues, respecting their

algebraic multiplicities.

3. Let A be an n × n matrix, and take an integer ` ≥ 1. Prove that the eigenvalues of A` are precisely the

eigenvalues of A raised to the power `, preserving algebraic multiplicities.

4. Let A be an n× n real symmetric matrix. A subspace U ⊆ Rn is A-invariant if Ax ∈ U for all x ∈ U .

(a) Prove that if U is A-invariant, then so is U⊥.

(b) Prove that any A-invariant subspace of dimension at least one contains an eigenvector of A.
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(c) Prove that for any integer 1 ≤ m < n, any orthogonal set of m eigenvectors can be extended to

orthogonal set of m+ 1 eigenvectors.

(d) Prove Theorem 0.1.

5. Prove Theorem 0.2 parts (1), (3) and (5). Then apply those parts to −A to prove parts (2), (4) and (6).

6. Let A be an n × n real symmetric matrix, and denote by ev(A) the set of distinct eigenvalues of A. Prove

that for any polynomial p,

p(A) =
∑

λ∈ev(A)

p(λ)Eλ.

Then prove that the vector space of all the polynomials in A has dimension equal to the number of distinct

eigenvalues of A.

7. Prove Theorem 0.3.

8. Prove from the definition of the pseudoinverse that it must be unique (in general, no restriction to the sym-

metric case).

9. Let A be a symmetric matrix, and suppose x = A+b. Show that x minimizes ‖Ax − b‖, and moreover, that

amongst all such minimizers, x has minimum norm.

10. Let A ∈ Rm×n and B ∈ Rn×m. Show that AB and BA have the same nonzero eigenvalues (with multiplic-

ities), and hence give a relationship between the characteristic polynomials of AB and of BA.
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