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7 The Laplacian matrix and spectrum

Let G = (V, E) be a graph (recall that loops are not allowed by parallel edges are). Denote by A(G) the diagonal
matrix corresponding to the vertex degrees of G. That is, the rows and columns of A(G) are indexed by V, and

for each vertex u € V, the uu-entry of A(G) is equal to deg(u). Recall that A(G) is the adjacency matrix of G.
Definition 7.1. The Laplacian matrix of G is the real symmetric matrix A(G) — A(G).

An orientation of G is a directed graph D that is obtained from G by orienting every edge in an arbitrary
direction. The incidence matrix of D is the 0, &1 matrix whose rows and columns are indexed by the vertices

and arcs, respectively, where column (v, u) is equal to e,, — €.
Proposition 7.2. Let L be the Laplacian matrix of G. Then
1. L =MMT", where M is the incidence matrix of any orientation of G,

2. L= Z{w)}EE(eu —ey)(ew —ey) T,

3. forevery z € RV,

x' Lx = Z (1 — )%

{uv}eFE

In particular, L is a positive semidefinite matrix.
Proof. Exercise. O

Definition 7.3. The Laplacian spectrum of G is the spectrum of its Laplacian matrix. If G has n vertices, then
its spectrum is denoted A\ (G) < --- < )\n(G)D

For general graphs, the Laplacian spectrum and the spectrum are not related; for example, it is possible
for two cospectral graphs to have different Laplacian spectra (see Exercises). For regular graphs, however, the

situation is different:

Theorem 7.4. Let G be an n-vertex graph that is k-regular. If G has spectrum 6; > 03 > --- > 6, then its
Laplacian spectrumis k — 0y <k —60; < ... <k —0,.

Note that for the Laplacian spectrum, A1 denotes the least eigenvalue, while for the usual spectrum, 61 denotes the largest eigenvalue.



Proof. Let A := A(G), and let vy, ..., v, be eigenvectors of A with eigenvalues 61, ..., 0,, respectively. Let
L := A(G) — A be the Laplacian matrix of G. As G is k-regular, A(G) = kI, so L = kI — A. Subsequently,

LU,‘ = (k‘[ — A)Uz = (k‘ — Oi)vi,
implying in turn that vy, . . ., v, are also eigenvectors of L with eigenvalues k — 61, ...,k — 0, as claimed. [J

Given that the Laplacian matrix is positive semidefinite, its eigenvalues are nonnegative. In fact, the least

eigenvalue of the Laplacian spectrum is guaranteed to be 0:

Proposition 7.5. Let G be a graph with ¢ connected components, let L be its Laplacian matrix, and let A\; <

-+ < A, be the Laplacian spectrum. Then the following statements hold:
1. L1 = 0, that is, 1 is an eigenvector with eigenvalue 0. In particular, \; = 0.
2. If Lz = 0, then x takes the same value on the vertices of each connected component of G.
3. rank(L) = n — c. Equivalently, the eigenvalue 0 of L has multiplicity c.

Proof. (1) follows immediately from the definition of the Laplacian matrix.
(2) Let x be a vector such that Lz = 0. By Proposition[7.2]

0=2z'Lz= Z (T4 — 0)?,
{u,v}eE

implying that x,, = z,, whenever u, v are adjacent. Thus z takes the same value on the vertices of each connected
component, as required.

(3) Let V4, ..., V. be the vertex sets of the connected components of G. For each i € [c], let v; € {0, 1}V
be the incidence vector of V;. We claim that vy, . .., v, is a basis for the null space of L, i.e. {z : Lz = 0}.
Clearly, Lv; = 0, and the v; are linearly independent. Now choose a vector x such that Lz = 0. Then, by (2),
x is a linear combination of vy, ..., v.. Thus, v1,..., v, is a basis for the null space of L, implying in turn that
rank(L) =n —c. O

Given that the least Laplacian eigenvalue is zero, one may ask questions about the second least Laplacian
eigenvalue of a graph. Fiedler [2] calls Ao(G) the algebraic connectivity of G.
One can also get an upper-bound of n on the largest eigenvalue A, (G) of the Laplacian of a simple graph G

— see Exercises).

8 The Matrix-Tree Theorem

Let G = (V, E) be an n-vertex graph, and let L be the Laplacian matrix. Denote by T'(G) the number of

spanning trees of a graph — so if G is not connected, this number is zero. In this section, we prove Kirchhoff’s



Matrix-Tree Theorem, which states that T'(G) is equal to the determinant of any (n — 1) x (n — 1) principal
submatrix of L.

The Matrix-Tree Theorem is by and large a consequence of the Laplace (cofactor) expansion for the deter-
minant, combined with a powerful deletion-contraction recursive formula for T'(G). To elaborate on the latter,
let G be a graph, and let e be an edge. The deletion G \ e is the graph obtained from G after removing the edge
e. The contraction G /e is the graph obtained after identifying the ends of G, and deleting all the loops createdE]

Observe that contracting may create (additional) parallel edges.

Lemma 8.1. Let G be a graph. Then for every edge e,
T(G)=T(G/e)+T(G\e).

Proof. The spanning trees of GG can be separated into two groups, those that contain the edge e, and those that
do not. The ones in the second group are precisely the spanning trees of G \ e. The ones are in the first group,
however, are in correspondence with the spanning trees of G/e. More precisely, if 7" is a spanning tree of G//e
then 7" U {e} is a spanning tree of G containing e, and if 7" is a spanning tree of G containing e then T' — {e} is

a spanning tree of G \ e. The formula above is an immediate consequence of this grouping of the spanning trees
of G. O

In the next lecture, we will prove the following theorem:

Theorem 8.2 (Matrix-Tree Theorem). Let G be an n-vertex graph, and let L be its Laplacian matrix. Then

T(G) is equal to the determinant of any (n — 1) x (n — 1) principal submatrix of L.

Acknowledgements

The presentation of §7]and §8]is inspired by [3]], Chapter 13.

The Matrix-Tree Theorem dates back to the 1800s. Gustav Kirchhoff proved the “dual” of it in 1847 [4]],
but it was James Maxwell who stated the result explicitly in A Treatise on Electricity and Magnetism, I [3] (see
Part II, Chapter 6, pp. 329-337). The theorem, as is, was stated and proved by Trent [6]]. See also [1] for other

references.
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