MA431 Spectral Graph Theory: Lecture 4

Ahmad Abdi
Neil Olver

7 The Laplacian matrix and spectrum

Let $G=(V, E)$ be a graph (recall that loops are not allowed by parallel edges are). Denote by $\Delta(G)$ the diagonal matrix corresponding to the vertex degrees of G. That is, the rows and columns of $\Delta(G)$ are indexed by V, and for each vertex $u \in V$, the $u u$-entry of $\Delta(G)$ is equal to $\operatorname{deg}(u)$. Recall that $A(G)$ is the adjacency matrix of G.

Definition 7.1. The Laplacian matrix of G is the real symmetric matrix $\Delta(G)-A(G)$.
An orientation of G is a directed graph D that is obtained from G by orienting every edge in an arbitrary direction. The incidence matrix of D is the $0, \pm 1$ matrix whose rows and columns are indexed by the vertices and arcs, respectively, where column (v, u) is equal to $e_{u}-e_{v}$.

Proposition 7.2. Let L be the Laplacian matrix of G. Then

1. $L=M M^{\top}$, where M is the incidence matrix of any orientation of G,
2. $L=\sum_{\{u, v\} \in E}\left(e_{u}-e_{v}\right)\left(e_{u}-e_{v}\right)^{\top}$,
3. for every $x \in \mathbb{R}^{V}$,

$$
x^{\top} L x=\sum_{\{u, v\} \in E}\left(x_{u}-x_{v}\right)^{2} .
$$

In particular, L is a positive semidefinite matrix.

Proof. Exercise.

Definition 7.3. The Laplacian spectrum of G is the spectrum of its Laplacian matrix. If G has n vertices, then its spectrum is denoted $\lambda_{1}(G) \leq \cdots \leq \lambda_{n}(G)$ П

For general graphs, the Laplacian spectrum and the spectrum are not related; for example, it is possible for two cospectral graphs to have different Laplacian spectra (see Exercises). For regular graphs, however, the situation is different:

Theorem 7.4. Let G be an n-vertex graph that is k-regular. If G has spectrum $\theta_{1} \geq \theta_{2} \geq \cdots \geq \theta_{n}$, then its Laplacian spectrum is $k-\theta_{1} \leq k-\theta_{2} \leq \ldots \leq k-\theta_{n}$.

[^0]Proof. Let $A:=A(G)$, and let v_{1}, \ldots, v_{n} be eigenvectors of A with eigenvalues $\theta_{1}, \ldots, \theta_{n}$, respectively. Let $L:=\Delta(G)-A$ be the Laplacian matrix of G. As G is k-regular, $\Delta(G)=k I$, so $L=k I-A$. Subsequently,

$$
L v_{i}=(k I-A) v_{i}=\left(k-\theta_{i}\right) v_{i},
$$

implying in turn that v_{1}, \ldots, v_{n} are also eigenvectors of L with eigenvalues $k-\theta_{1}, \ldots, k-\theta_{n}$, as claimed.

Given that the Laplacian matrix is positive semidefinite, its eigenvalues are nonnegative. In fact, the least eigenvalue of the Laplacian spectrum is guaranteed to be 0 :

Proposition 7.5. Let G be a graph with c connected components, let L be its Laplacian matrix, and let $\lambda_{1} \leq$ $\cdots \leq \lambda_{n}$ be the Laplacian spectrum. Then the following statements hold:

1. $L \mathbf{1}=\mathbf{0}$, that is, $\mathbf{1}$ is an eigenvector with eigenvalue 0 . In particular, $\lambda_{1}=0$.
2. If $L x=\mathbf{0}$, then x takes the same value on the vertices of each connected component of G.
3. $\operatorname{rank}(L)=n-c$. Equivalently, the eigenvalue 0 of L has multiplicity c.

Proof. (1) follows immediately from the definition of the Laplacian matrix.
(2) Let x be a vector such that $L x=\mathbf{0}$. By Proposition7.2.

$$
0=x^{\top} L x=\sum_{\{u, v\} \in E}\left(x_{u}-x_{v}\right)^{2},
$$

implying that $x_{u}=x_{v}$ whenever u, v are adjacent. Thus x takes the same value on the vertices of each connected component, as required.
(3) Let V_{1}, \ldots, V_{c} be the vertex sets of the connected components of G. For each $i \in[c]$, let $v_{i} \in\{0,1\}^{V}$ be the incidence vector of V_{i}. We claim that v_{1}, \ldots, v_{c} is a basis for the null space of L, i.e. $\{x: L x=\mathbf{0}\}$. Clearly, $L v_{i}=\mathbf{0}$, and the v_{i} are linearly independent. Now choose a vector x such that $L x=\mathbf{0}$. Then, by (2), x is a linear combination of v_{1}, \ldots, v_{c}. Thus, v_{1}, \ldots, v_{c} is a basis for the null space of L, implying in turn that $\operatorname{rank}(L)=n-c$.

Given that the least Laplacian eigenvalue is zero, one may ask questions about the second least Laplacian eigenvalue of a graph. Fiedler [2] calls $\lambda_{2}(G)$ the algebraic connectivity of G.

One can also get an upper-bound of n on the largest eigenvalue $\lambda_{n}(G)$ of the Laplacian of a simple graph G - see Exercises).

8 The Matrix-Tree Theorem

Let $G=(V, E)$ be an n-vertex graph, and let L be the Laplacian matrix. Denote by $T(G)$ the number of spanning trees of a graph - so if G is not connected, this number is zero. In this section, we prove Kirchhoff's

Matrix-Tree Theorem, which states that $T(G)$ is equal to the determinant of any $(n-1) \times(n-1)$ principal submatrix of L.

The Matrix-Tree Theorem is by and large a consequence of the Laplace (cofactor) expansion for the determinant, combined with a powerful deletion-contraction recursive formula for $T(G)$. To elaborate on the latter, let G be a graph, and let e be an edge. The deletion $G \backslash e$ is the graph obtained from G after removing the edge e. The contraction G / e is the graph obtained after identifying the ends of G, and deleting all the loops created \square^{2} Observe that contracting may create (additional) parallel edges.

Lemma 8.1. Let G be a graph. Then for every edge e,

$$
T(G)=T(G / e)+T(G \backslash e)
$$

Proof. The spanning trees of G can be separated into two groups, those that contain the edge e, and those that do not. The ones in the second group are precisely the spanning trees of $G \backslash e$. The ones are in the first group, however, are in correspondence with the spanning trees of G / e. More precisely, if T^{\prime} is a spanning tree of G / e then $T^{\prime} \cup\{e\}$ is a spanning tree of G containing e, and if T is a spanning tree of G containing e then $T-\{e\}$ is a spanning tree of $G \backslash e$. The formula above is an immediate consequence of this grouping of the spanning trees of G.

In the next lecture, we will prove the following theorem:
Theorem 8.2 (Matrix-Tree Theorem). Let G be an n-vertex graph, and let L be its Laplacian matrix. Then $T(G)$ is equal to the determinant of any $(n-1) \times(n-1)$ principal submatrix of L.

Acknowledgements

The presentation of $\$ 7$ and $\$ 8$ is inspired by [3], Chapter 13.
The Matrix-Tree Theorem dates back to the 1800s. Gustav Kirchhoff proved the "dual" of it in 1847 [4], but it was James Maxwell who stated the result explicitly in A Treatise on Electricity and Magnetism, I [5] (see Part II, Chapter 6, pp. 329-337). The theorem, as is, was stated and proved by Trent [6]. See also [1] for other references.

References

[1] S. Chaiken and D. Kleitman. Matrix tree theorems. Journal of Combinatorial Theory, Series A, 24:377-381, 1978.
[2] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslovak Mathematical Journal, 25(4):619-633, 1975.
[3] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, New York, NY, 2000.

[^1][4] G. Kirchhoff. Uber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer ströme gefuhrt wird. Ann. Phys. Chem., 72(497-508), 1847.
[5] J. C. Maxwell. A Treatise on Electricity and Magnetism, I. Oxford University Press (Clarendon), London, 3rd ed. edition, 1892.
[6] H. M. Trent. Note on the enumeration and listing of all possible trees in a connected linear graph. Proc. Nat. Acad. Sci. U.S.A., 40:1004-1007, 1954.

[^0]: ${ }^{1}$ Note that for the Laplacian spectrum, λ_{1} denotes the least eigenvalue, while for the usual spectrum, θ_{1} denotes the largest eigenvalue.

[^1]: ${ }^{2}$ In general, loops are not deleted after edge contractions, but in our context we must.

