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7 The Laplacian matrix and spectrum

LetG = (V,E) be a graph (recall that loops are not allowed by parallel edges are). Denote by ∆(G) the diagonal

matrix corresponding to the vertex degrees of G. That is, the rows and columns of ∆(G) are indexed by V , and

for each vertex u ∈ V , the uu-entry of ∆(G) is equal to deg(u). Recall that A(G) is the adjacency matrix of G.

Definition 7.1. The Laplacian matrix of G is the real symmetric matrix ∆(G)−A(G).

An orientation of G is a directed graph D that is obtained from G by orienting every edge in an arbitrary

direction. The incidence matrix of D is the 0,±1 matrix whose rows and columns are indexed by the vertices

and arcs, respectively, where column (v, u) is equal to eu − ev .

Proposition 7.2. Let L be the Laplacian matrix of G. Then

1. L = MM>, where M is the incidence matrix of any orientation of G,

2. L =
∑

{u,v}∈E(eu − ev)(eu − ev)>,

3. for every x ∈ RV ,

x>Lx =
∑

{u,v}∈E

(xu − xv)2.

In particular, L is a positive semidefinite matrix.

Proof. Exercise.

Definition 7.3. The Laplacian spectrum of G is the spectrum of its Laplacian matrix. If G has n vertices, then

its spectrum is denoted λ1(G) ≤ · · · ≤ λn(G).1

For general graphs, the Laplacian spectrum and the spectrum are not related; for example, it is possible

for two cospectral graphs to have different Laplacian spectra (see Exercises). For regular graphs, however, the

situation is different:

Theorem 7.4. Let G be an n-vertex graph that is k-regular. If G has spectrum θ1 ≥ θ2 ≥ · · · ≥ θn, then its

Laplacian spectrum is k − θ1 ≤ k − θ2 ≤ . . . ≤ k − θn.
1Note that for the Laplacian spectrum, λ1 denotes the least eigenvalue, while for the usual spectrum, θ1 denotes the largest eigenvalue.
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Proof. Let A := A(G), and let v1, . . . , vn be eigenvectors of A with eigenvalues θ1, . . . , θn, respectively. Let

L := ∆(G)−A be the Laplacian matrix of G. As G is k-regular, ∆(G) = kI , so L = kI −A. Subsequently,

Lvi = (kI −A)vi = (k − θi)vi,

implying in turn that v1, . . . , vn are also eigenvectors of L with eigenvalues k− θ1, . . . , k− θn, as claimed.

Given that the Laplacian matrix is positive semidefinite, its eigenvalues are nonnegative. In fact, the least

eigenvalue of the Laplacian spectrum is guaranteed to be 0:

Proposition 7.5. Let G be a graph with c connected components, let L be its Laplacian matrix, and let λ1 ≤
· · · ≤ λn be the Laplacian spectrum. Then the following statements hold:

1. L1 = 0, that is, 1 is an eigenvector with eigenvalue 0. In particular, λ1 = 0.

2. If Lx = 0, then x takes the same value on the vertices of each connected component of G.

3. rank(L) = n− c. Equivalently, the eigenvalue 0 of L has multiplicity c.

Proof. (1) follows immediately from the definition of the Laplacian matrix.

(2) Let x be a vector such that Lx = 0. By Proposition 7.2,

0 = x>Lx =
∑

{u,v}∈E

(xu − xv)2,

implying that xu = xv whenever u, v are adjacent. Thus x takes the same value on the vertices of each connected

component, as required.

(3) Let V1, . . . , Vc be the vertex sets of the connected components of G. For each i ∈ [c], let vi ∈ {0, 1}V

be the incidence vector of Vi. We claim that v1, . . . , vc is a basis for the null space of L, i.e. {x : Lx = 0}.
Clearly, Lvi = 0, and the vi are linearly independent. Now choose a vector x such that Lx = 0. Then, by (2),

x is a linear combination of v1, . . . , vc. Thus, v1, . . . , vc is a basis for the null space of L, implying in turn that

rank(L) = n− c.

Given that the least Laplacian eigenvalue is zero, one may ask questions about the second least Laplacian

eigenvalue of a graph. Fiedler [2] calls λ2(G) the algebraic connectivity of G.

One can also get an upper-bound of n on the largest eigenvalue λn(G) of the Laplacian of a simple graph G

– see Exercises).

8 The Matrix-Tree Theorem

Let G = (V,E) be an n-vertex graph, and let L be the Laplacian matrix. Denote by T (G) the number of

spanning trees of a graph – so if G is not connected, this number is zero. In this section, we prove Kirchhoff’s
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Matrix-Tree Theorem, which states that T (G) is equal to the determinant of any (n − 1) × (n − 1) principal

submatrix of L.

The Matrix-Tree Theorem is by and large a consequence of the Laplace (cofactor) expansion for the deter-

minant, combined with a powerful deletion-contraction recursive formula for T (G). To elaborate on the latter,

let G be a graph, and let e be an edge. The deletion G \ e is the graph obtained from G after removing the edge

e. The contraction G/e is the graph obtained after identifying the ends of G, and deleting all the loops created.2

Observe that contracting may create (additional) parallel edges.

Lemma 8.1. Let G be a graph. Then for every edge e,

T (G) = T (G/e) + T (G \ e).

Proof. The spanning trees of G can be separated into two groups, those that contain the edge e, and those that

do not. The ones in the second group are precisely the spanning trees of G \ e. The ones are in the first group,

however, are in correspondence with the spanning trees of G/e. More precisely, if T ′ is a spanning tree of G/e

then T ′ ∪ {e} is a spanning tree of G containing e, and if T is a spanning tree of G containing e then T − {e} is

a spanning tree of G \ e. The formula above is an immediate consequence of this grouping of the spanning trees

of G.

In the next lecture, we will prove the following theorem:

Theorem 8.2 (Matrix-Tree Theorem). Let G be an n-vertex graph, and let L be its Laplacian matrix. Then

T (G) is equal to the determinant of any (n− 1)× (n− 1) principal submatrix of L.

Acknowledgements

The presentation of §7 and §8 is inspired by [3], Chapter 13.

The Matrix-Tree Theorem dates back to the 1800s. Gustav Kirchhoff proved the “dual” of it in 1847 [4],

but it was James Maxwell who stated the result explicitly in A Treatise on Electricity and Magnetism, I [5] (see

Part II, Chapter 6, pp. 329-337). The theorem, as is, was stated and proved by Trent [6]. See also [1] for other

references.
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