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The Laplacian, the Matrix-Tree Theorem, and Consequences
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Recap

Let G = (V ,E ) be an n-vertex graph.
The Laplacian matrix of G is L := �(G )� A(G ), where �(G ) = Diag(deg(u) : u 2 V ).
Denote by �1(G )  · · ·  �n(G ) the spectrum of L.
Denote by T (G ) the number of spanning trees of G .

Proposition
L =

P
e={u,v}2E (eu � ev )(eu � ev )>,

for each x 2 RV , x>Lx =
P

e={u,v}2E (xu � xv )2,
L1 = 0 and �1(G ) = 0,
rank(L) = n � c , where c is the number of connected components of G .

Deletion-contraction formula
For each e 2 E , T (G ) = T (G \ e) + T (G/e).
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The Matrix-Tree Theorem

The Matrix-Tree Theorem
T (G ) = det(L0) where L0 is any (n � 1)⇥ (n � 1) principal submatrix of L.

L[i ]: the submatrix of L obtained after removing row i and column i .

It suffices to prove that det(L[n]) = T (G ).

We proceed by induction.
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The Matrix-Tree Theorem

The Matrix-Tree Theorem
T (G ) = det(L0) where L0 is any (n � 1)⇥ (n � 1) principal submatrix of L.

Base case: n = 2. If G consists of m parallel edges, then L =
�

m �m
�m m

�
, so the result follows.
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The Matrix-Tree Theorem

The Matrix-Tree Theorem
T (G ) = det(L0) where L0 is any (n � 1)⇥ (n � 1) principal submatrix of L.

Base case: G is not connected.

L[n] is singular, so det(L[n]) = 0.

Clearly, T (G ) = 0.

So det(L[n]) = T (G ).
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The Matrix-Tree Theorem

The Matrix-Tree Theorem
T (G ) = det(L0) where L0 is any (n � 1)⇥ (n � 1) principal submatrix of L.

Induction step: n � 3 and G connected.

Pick e 2 E incident with n 2 V , say e = {n � 1, n}.
We know

T (G ) = T (G/e) + T (G \ e).
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The Matrix-Tree Theorem

The Matrix-Tree Theorem
T (G ) = det(L0) where L0 is any (n � 1)⇥ (n � 1) principal submatrix of L.

Induction step: n � 3 and G connected.

Pick e 2 E incident with n 2 V , say e = {n � 1, n}.
Denote by Lc the Laplacian matrix of G/e. By IH,

T (G/e) =
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The Matrix-Tree Theorem

The Matrix-Tree Theorem
T (G ) = det(L0) where L0 is any (n � 1)⇥ (n � 1) principal submatrix of L.

Induction step: n � 3 and G connected.

Denote by Ld the Laplacian matrix of G \ e. By IH,

T (G \ e) = det(Ld [n]) =
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The Matrix-Tree Theorem

The Matrix-Tree Theorem
T (G ) = det(L0) where L0 is any (n � 1)⇥ (n � 1) principal submatrix of L.

Induction step: n � 3 and G connected.

In summary,

det(Lc [n � 1]) = det(L[n][n � 1])

det(Ld [n]) = det(L[n])� det(L[n][n � 1]).

Thus,

T (G ) = T (G/e) + T (G \ e) = det(Lc [n � 1]) + det(Ld [n]) = det(L[n])

thereby completing the IS.
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Consequences

Cayley’s formula
The number of spanning trees of Kn is

Proof.
The Laplacian matrix is L := , so L[n] = whose spectrum is

so
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Consequences

Theorem
T (G ) = 1

n

Qn
i=2 �i (G ).

Proof.
Exercise.

Theorem
Every entry of adj(L) is equal to T (G ).

Proof.
Exercise.
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Kirchhoff polynomial

For every e 2 E , introduce a variable xe .
The Kirchhoff polynomial of G is

Kir(G ; x) =
X

spanning tree T

Y

e2T
xe

Note T (G ) =

Deletion-contraction formula
For e 2 E , Kir(G ; x) = xe · Kir(G/e; xe) + Kir(G \ e; xe).
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Kirchhoff polynomial

For every e 2 E , introduce a variable xe .
The Kirchhoff polynomial of G is

Kir(G ; x) =
X

spanning tree T

Y

e2T
xe

Note T (G ) = Kir(G ; 1).

Deletion-contraction formula
For e 2 E , Kir(G ; x) = xe · Kir(G/e; xe) + Kir(G \ e; xe).

xe is the vector obtained from x after dropping coordinate e.

Proof.
Exercise.
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Weighted Matrix-Tree Theorem

Define L(G , x) to be the V ⇥ V matrix s.t.
for u 2 V : the (u, u)-entry is

P
(xe : e 2 E is incident with v),

for distinct u, v 2 V : the (u, v)-entry is �
P

(xe : e 2 E has ends u, v).

The Weighted Matrix-Tree Theorem
Kir(G ; x) = det(L0) where L0 is any (n � 1)⇥ (n � 1) principal submatrix of L(G , x).

Proof.
Exercise.
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Weighted Matrix-Tree Theorem
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Laplacian of weighted graph

Define w 2 RE such that w � 0.

Definition
The Laplacian matrix of the weighted graph (G ,w) is Lw := L(G ,w).

Proposition
1 Lw =

P
e={u,v}2E we · (eu � ev )(eu � ev )>,

2 for each x 2 RV , x>Lwx =
P

e={u,v}2E we(xu � xv )2,
3 Lw is PSD,
4 Lw1 = 0, and 0 is the least eigenvalue of Lw ,
5 if w > 0, then rank(Lw ) = n � c , where c is the number of connected components of G .

Proof.
Exercise.
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Laplacian of weighted graph
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Laplacian of weighted graph

Define w 2 RE such that w � 0.

Definition
The Laplacian matrix of the weighted graph (G ,w) is Lw := L(G ,w).

Given a weighted graph (G ,w), we may assume G is simple and w > 0.
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The cycle and cut spaces
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The incidence matrix of an orientation

Let G = (V ,E ) be a connected graph with n vertices and m edges.

Denote by
!
G = (V ,

!
E ) an arbitrary orientation of G .

Recall
The incidence matrix of

!
G is the V ⇥

!
E matrix B where column (v , u) 2

!
E is equal to eu � ev .

Recall
The Laplacian matrix of G is BB>.
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Cycle and cut spaces

Cycle space

W ⇧ =
n
f 2 R

!
E : Bf = 0

o

Cut space
W ? =

�
B>⇡ : ⇡ 2 RV

 

Remark
1 W ? = (W ⇧)? and W ⇧ = (W ?)?

2 R
!
E = W ⇧ �W ?.

We shall count the dimensions of W ⇧,W ?, and provide bases for each.
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The bidirection and signed characteristic vectors

Denote by
$
G = (V ,

$
E ) the bidirection of G .

For each e 2
$
E , the signed characteristic vector of e is the vector �e 2 R

!
E defined as

(�e)a =

8
><

>:

1 if a = e,

�1 if a is the reverse of e,
0 otherwise.

For any F ✓
$
E , define

�(F ) :=
X

e2F
�e .
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Directed cycles

Lemma
Let C ✓

$
E be a directed cycle of

$
G . Then �(C ) 2 W ⇧.

Corollary

W ⇧ ◆ span{�(C ) : C is a directed cycle of
$
G}.
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Directed cycles

Lemma
Let C ✓

$
E be a directed cycle of

$
G . Then �(C ) 2 W ⇧.

Corollary

W ⇧ ◆ span{�(C ) : C is a directed cycle of
$
G}.
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Fundamental cycles

Let T ✓
!
E be a spanning tree. Let e 2

!
E \ T .

Fundamental cycle
The fundamental cycle associated with e w.r.t T is the unique cycle in T [ {e}.
Think of this as a directed cycle Ce ✓

$
E where e appears in the forward direction.

Lemma
{�(Ce) : e 2

!
E \ T} are linearly independent in W ⇧.

Corollary
dim(W ⇧) � m � n + 1.
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Fundamental cycles

Let T ✓
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Fundamental cycles

Let T ✓
!
E be a spanning tree. Let e 2

!
E \ T .

Fundamental cycle
The fundamental cycle associated with e w.r.t T is the unique cycle in T [ {e}.
Think of this as a directed cycle Ce ✓
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E where e appears in the forward direction.

Lemma
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Cuts

Let S be a nonempty proper subset of V .

Definition
The cut of

$
G associated with S is

�+(S) := {(u, v) 2
$
E : u 2 S , v /2 S}.

Lemma
�(�+(S)) 2 W ?.
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Cuts

Let S be a nonempty proper subset of V .

Definition
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Cuts

Let S be a nonempty proper subset of V .

Definition
The cut of

$
G associated with S is

�+(S) := {(u, v) 2
$
E : u 2 S , v /2 S}.

Remark
The row of B corresponding to node v is precisely ��(�+(v)).

Lemma
�(�+(S)) 2 W ?

.
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Cuts

Let S be a nonempty proper subset of V .

Definition
The cut of

$
G associated with S is

�+(S) := {(u, v) 2
$
E : u 2 S , v /2 S}.

Lemma
�(�+(S)) 2 W ?.

Corollary
W ? ◆ span{�(�+(S)) : S ✓ V , S 6= ;,V }
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Fundamental cuts

Let T ✓
!
E be a spanning tree. Let e 2 T .

Fundamental cut
The fundamental cut associated with e w.r.t T is the unique cut intersecting T at exactly {e}.
Think of this as a cut �+(Se) ✓

$
E where Se ,V \ Se are the two connected components of

T \ e, where Se contains the tail of e.

Lemma
{�(�+(Se)) : e 2 T} are linearly independent in W ?.

Corollary
dim(W ?) � n � 1.

Ahmad Abdi MA431 Lecture 5

Se V1 Se

÷÷f÷÷÷É÷.
/<%s-



Fundamental cuts

Let T ✓
!
E be a spanning tree. Let e 2 T .

Fundamental cut
The fundamental cut associated with e w.r.t T is the unique cut intersecting T at exactly {e}.
Think of this as a cut �+(Se) ✓

$
E where Se ,V \ Se are the two connected components of

T \ e, where Se contains the tail of e.

Lemma
{�(�+(Se)) : e 2 T} are linearly independent in W ?.

Corollary
dim(W ?) � n � 1.
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Fundamental cuts

Let T ✓
!
E be a spanning tree. Let e 2 T .

Fundamental cut
The fundamental cut associated with e w.r.t T is the unique cut intersecting T at exactly {e}.
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$
E where Se ,V \ Se are the two connected components of

T \ e, where Se contains the tail of e.

Lemma
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Cycle and cut spaces

We have shown dim(W ⇧) � m � n + 1 and dim(W ?) � n � 1.

Recall

R
!
E = W ⇧ �W ?.
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Cycle and cut spaces

Theorem
dim(W ⇧) = m � n + 1 and dim(W ?) = n � 1.

Consequence for the cycle space
1 {�(Ce) : e 2

!
E \ T} is a basis for W ⇧.

2 W ⇧ = span{�(C ) : C is a directed cycle of
$
G}.

Consequence for the cut space
1 {�(�+(Se)) : e 2 T} is a basis for W ?.
2 W ? = span{�(�+(S)) : S ✓ V , S 6= ;,V }.
3 W ? = span{�(�+(r)) : r 2 V }.
4 {�(�+(r)) : r 2 V \ t} is a basis for W ?, for any t 2 V .
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Cycle and cut spaces

Theorem
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r, grad, and r grad
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The linear operator r
Let f 2 R

!
E . Think of f as a flow on

!
G where f(u,v) is the amount of flow going from u to v .

Net flow
For each v 2 V , define

(rf )v :=
X

(u,v)2
!
E

f(u,v) �
X

(v ,w)2
!
E

f(v ,w).

r : R
!
E ! RV is a linear operator represented by the matrix B . That is, for each f 2 R

!
E , the

image rf is the matrix product Bf .
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Demand vectors

Question

Given a demand vector b, does there exist a flow f 2 R
!
E s.t. b = rf ?

Exercise
If b = rf for some flow f , then

P
v2V bv = 0.

Exercise
Give a characterization of all demand vectors b such that b = rf for some flow f .
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Question
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Circulations

Definition

A circulation of
!
G is a flow f 2 R

!
E s.t. rf = 0.

Remark
W ⇧ is precisely the set of all circulations of

!
G .
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The linear operator grad

Definition (gradient)

Let grad : RV ! R
!
E be the operator defined as follows: for each ⇡ 2 RV ,

(grad⇡)(u,v) = ⇡v � ⇡u
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The linear operator grad

grad is a linear operator represented by the matrix B>. That is, for each ⇡ 2 RV , the image
grad⇡ is the matrix product B>⇡.

Range of grad
range(grad) = {B>⇡ : ⇡ 2 RV }
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The Laplacian as a differential operator

Summary
1 r is represented by B .
2 grad is represented by B>.

Lemma
r and grad are adjoint operators: hrf ,⇡i = hf , grad⇡i.

Lemma
r grad : RV ! RV is a linear operator represented by the Laplacian matrix L of G .
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The Laplacian as a differential operator

Summary
1 r is represented by B .
2 grad is represented by B>.

Lemma
r and grad are adjoint operators: hrf ,⇡i = hf , grad⇡i.

Lemma
r grad : RV ! RV is a linear operator represented by the Laplacian matrix L of G .
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