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The Laplacian, the Matrix-Tree Theorem, and Consequences
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Recap

e Let G = (V, E) be an n-vertex graph.
@ The Laplacian matrix of G is L := A(G) — A(G), where A(G) = Diag(deg(u) : u € V).
@ Denote by A1(G) < -+ < A\y(G) the spectrum of L.
@ Denote by T(G) the number of spanning trees of G.
Proposition
° L= fuuper(en —e)(en—e)’, } . L is PsD
o for each x e RY, xTLx = Yemfuviee(u —xv)%, Z O

@ [1=0and \(G) =0,
e rank(L) = n — ¢, where c is the number of connected components of G.
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Recap

Let G = (V, E) be an n-vertex graph.

The Laplacian matrix of G is L := A(G) — A(G), where A(G) = Diag(deg(u) : u € V).
Denote by A\1(G) < -+ < Ay(G) the spectrum of L.

Denote by T(G) the number of spanning trees of G.

Proposition

°oL= Ze:{u,v}eE(eU - ev)(eu - ev)Ty
o foreach x € RY, x"Lx =3 1, 1ee(u — %)%,
o L1=0and A\(G) =0,

e rank(L) = n — ¢, where c is the number of connected components of G.

Deletion-contraction formula
Foreachec E, T(G)=T(G\e)+ T(G/e).

o
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The Matrix-Tree Theorem

The Matrix-Tree Theorem
T(G) = det(L’) where L" is any (n — 1) x (n — 1) principal submatrix of L.

@ L[i]: the submatrix of L obtained after removing row i and column i.
@ It suffices to prove that det(L[n]) = T(G).
@ We proceed by induction.

LCn)
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The Matrix-Tree Theorem

The Matrix-Tree Theorem
T(G) = det(L’) where L" is any (n — 1) x (n — 1) principal submatrix of L.

—m

Base case: n=2. If G consists of m parallel edges, then L = (rﬂ_-'_,,’,”) so the result follows.

= T(ﬁ) = M
M det (L) = m
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The Matrix-Tree Theorem

The Matrix-Tree Theorem
T(G) = det(L’) where L" is any (n — 1) x (n — 1) principal submatrix of L. J

Base case: G is not connected.
e L[n] is singular, so det(L[n]) = 0.
@ Clearly, T(G) =0.
e So det(L[n]) = T(G).
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The Matrix-Tree Theorem

The Matrix-Tree Theorem
T(G) = det(L’) where L" is any (n — 1) x (n — 1) principal submatrix of L.

Induction step: n > 3 and G connected.
@ Pick e € E incident with n € V, say e = {n— 1, n}.

o We know

T(G)=T(G/e)+ T(G\ e).
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The Matrix-Tree Theorem

The Matrix-Tree Theorem
T(G) = det(L’) where L" is any (n — 1) x (n — 1) principal submatrix of L.

Induction step: n > 3 and G connected. 1 B
@ Pick e € E incident with n € V, say e = {n— 1, n}. L= ot )
@ Denote by L€ the Laplacian matrix of G/e. By IH, ’l

T(GJe) = det (L Tn-17)
= det (L CnCn1T)

n~-1 -e a n-|{

AN AN

G/e

Ahmad Abdi MAA431 Lecture 5



The Matrix-Tree Theorem

The Matrix-Tree Theorem
T(G) = det(L’) where L" is any (n — 1) x (n — 1) principal submatrix of L. J
Induction step: n > 3 and G connected. At
@ Denote by L9 the Laplacian matrix of G \ e. By IH, Le B
T(G\ e) = det(L9[n]) = — ) !
Ton ck ( L C’\jﬂﬂ—)j
oy Loplage 2%¢> det C LI} —
g\m\'g o ﬂ’\ A @ ne s "

d
‘ n-1 Q :4 B ‘/\:\; :é L :,_, _F'1
> N / § 4
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The Matrix-Tree Theorem

The Matrix-Tree Theorem
T(G) = det(L’) where L" is any (n — 1) x (n — 1) principal submatrix of L. J

Induction step: n > 3 and G connected.

@ In summary,

det(L[n — 1]) = det(L[n][n — 1])
det(L?[n]) = det(L[n]) — det(L[n][n — 1]).

e Thus,
T(G)=T(G/e)+ T(G\ e) =det(L[n — 1]) + det(LI[n]) = det(L[n])

thereby completing the IS.
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Consequences emplebe Ny srpb
Cayley's formula

. . n—2
The number of spanning trees of K, is n

Proof.

The Laplacian matrix is L ::nI;’—'J;, soL[n]=nl . ’Jﬂ 'whose spectrum is
N- -

(n-2) 1)
(n-0 — Ca-
) 2 L n n ’)) Nz

so det (Lgm) = ?rp&rcc A & etgeavalet = 0 1 . O
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Consequences

Theorem
T(G) = £ I Ai(G).

Proof.

Exercise. ]

Theorem
Every entry of adj(L) is equal to T(G).

Proof.

Exercise. ]
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Kirchhoff polynomial

@ For every e € E, introduce a variable xe.

@ The Kirchhoff polynomial of G is

Kir(G; x) = Z H Xe

spanning tree T ec T

o Note T(G) = Kir (G, "g_)

Deletion-contraction formula
For e € E, Kir(G; x) = x. - Kir(G/e; x¢) + Kir(G \ e; x). J
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Kirchhoff polynomial

@ For every e € E, introduce a variable xe.

@ The Kirchhoff polynomial of G is

Kir(G; x) = Z H Xe
spanning tree T ec T
e Note T(G) = Kir(G; 1).
Deletion-contraction formula
For e € E, Kir(G; x) = x. - Kir(G/e; x¢) + Kir(G \ e; x). J

x¢ is the vector obtained from x after dropping coordinate e.
Proof.
Exercise. E]J
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Weighted Matrix-Tree Theorem

Define L(G, x) to be the V' x V matrix s.t.
o for u € V: the (u, u)-entry is Y (xe : e € E is incident with v),
e for distinct u, v € V: the (u,v)-entry is — > (xe : e € E has ends u, v).

MOL&} L( G'/ 'g—) = L '(’L-L LPP[Q‘C:‘--\
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Weighted Matrix-Tree Theorem
Define L(G, x) to be the V' x V matrix s.t.
o for u € V: the (u, u)-entry is Y (xe : e € E is incident with v),
e for distinct u, v € V: the (u,v)-entry is — > (xe : e € E has ends u, v).

The Weighted Matrix-Tree Theorem

Kir(G; x) = det(L") where L" is any (n — 1) x (n — 1) principal submatrix of L(G, x). J
Proof.

Exercise. E]J
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Laplacian of weighted graph
Define w € RE such that w > 0.
Definition

The Laplacian matrix of the weighted graph (G, w) is L,, := L(G, w). J
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Laplacian of weighted graph
Define w € RE such that w > 0.
Definition

The Laplacian matrix of the weighted graph (G, w) is L,, := L(G, w).

Proposition
o LW = Ze:{u,v}eE We - (eU - ev)(eu - eV)T'

@ for each x e RY, x"L,x = De—{uvieE We(Xu — x,)?, =2 © b/je w20
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Laplacian of weighted graph

Define w € RE such that w > 0.

Definition

The Laplacian matrix of the weighted graph (G, w) is L,, := L(G, w).

Proposition
0 Lw — Ze:{u,v}eE We - (eu - ev)(eu - ev)T-
@ for each x e RY, x"L,x = De—{uvieE We(Xu — xv)2,
@ L, is PSD,
Q@ L,1=0, and 0 is the least eigenvalue of L,

@ if w > 0, then rank(L, ) = n — ¢, where c is the number of connected components of G.

V.

Proof.
Exercise. ]

o
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Laplacian of weighted graph
Define w € RE such that w > 0.
Definition

The Laplacian matrix of the weighted graph (G, w) is L,, := L(G, w).

Given a weighted graph (G, w), we may assume G is simple and w > 0.

e Wg =0 “eermagponds ko &(2(4‘43 edye @

ue We»fW#
P s o

“t

Ahmad Abdi
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The cycle and cut spaces
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The incidence matrix of an orientation /“\

—O

o Let G = (V,E) be a connected graph with n vertices and m edges.

e Denote by G = (V, E) an arbitrary orientation of G. / :’

Recall

— — —
The incidence matrix of G is the V' x E matrix B where column (v, u) € E is equal to e, — e,.

Recall
The Laplacian matrix of G is BB'.

v, %)

v
o~ 2o
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Cycle and cut spaces
Cycle space
W°:{f€RE:Bf:0} Kernel oF B

Cut space

W*:{BTWZ’/TGRV}

Tow Spoce £ B

Remark

Q@ W* = (W®)* and W° = (W*)J-'_Q

@ RE = Wo @ W*, #het is, R® s decmposed into tws otbogonml subspaces. |

We shall count the dimensions of W, W*, and provide bases for each.
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. . . - . . ﬁ
The bidirection and signed characteristic vectors o G

< pxd .- . A
@ Denote by G = (V, E) the bidirection of G. / E — ﬂ Q\o

— = i
@ For each e € E, the signed characteristic vector of e is the vector y¢ € RE defined as

1 if a=ce,
(x%)a= 4 —1 if ais the reverse of e,
0 otherwise.

e Forany F C E, define

X(F) == x°

ecF
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Vv

o 5
\/:1 e/
u,} w w

—

G v

K
F = O)L\o X (F)
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Directed cycles

Lemma

Let C C E be a directed cycle of G

. Then x(C) € W*°.

We  Ared ¥o show

B x&) =

Concidy row v €V

o .

(B K,

Ahmad Abdi

-
=

3

o{('\/”\w
° a o'“
T )

Lo i Vg incdent widh tuo edges of C

o o/
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Directed cycles

Lemma

Let C C E be a directed cycle of G. Then x(C) € we.

Corollary

W® D span{x(C) : C is a directed cycle of 8}

We'll tee &lwat = ho(i( bhere.
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Fundamental cycles
Let T C E bea spanning tree. Let e € E\ T.
Fundamental cycle

The fundamental cycle associated with e w.r.t T is the unique cycle in T U {e}.
Think of this as a directed cycle C. C E where e appears in the forward direction.

€ 4
9
\o
@/{
o 'chQ)
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Fundamental cycles
Let T C E bea spanning tree. Let e € E\ T.

Fundamental cycle

The fundamental cycle associated with e w.r.t T is the unique cycle in T U {e}.
Think of this as a directed cycle C. C E where e appears in the forward direction.

Lemma

{x(Ce):e€ E\ T} are linearly independent in W<.

ExT €
x(Ce) “\ ) :; o (#4<1 is  nor 3)
cekt \T oo t :
Ahmad Abdi
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Fundamental cycles
Let T C E bea spanning tree. Let e € E\ T.

Fundamental cycle

The fundamental cycle associated with e w.r.t T is the unique cycle in T U {e}.
Think of this as a directed cycle C. C E where e appears in the forward direction.

Lemma

{x(Ce):e€ E\ T} are linearly independent in W<.

Corollary .
dim(W®)>m—n+1. ( nete VENTH = M- axl)

v

- . . “ 4 de 1)
We 1l shoy K'Y('Ce) - QE\‘TS s a Yarr Cr W , oo -N.[Ud)

= M=%\
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Cuts

Let S be a nonempty proper subset of V.
Definition

The cut of G associated with S is

57(S):={(u,v)eE:ueS,v¢S}

S
c[\ \

\,(] 8%(S)
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Cuts
Let S be a nonempty proper subset of V.
Definition

The cut of 8 associated with S is

6T(S) == {(u,v) € E:iue S,v¢ S}

Lemma
x(61(S)) € W*.
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Cuts

Let S be a nonempty proper subset of V.
Definition

The cut of G associated with S is

57(S):={(u,v)eE:ueS,v¢S}

Remark
The row of B corresponding to node v is precisely —x (6 (v)).

Lemma
x(61(S)) € W*.
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x(57(S)) = L A (5Tw)
ves

Z ~(foN Y ‘x’ @)

ves

z

C (o sQac2 -C I

oWt
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Cuts

Let S be a nonempty proper subset of V.
Definition

The cut of 8 associated with S is

57(S):={(u,v)eE:ueS,v¢S}

Lemma
x(67(8)) € w*.

Corollary
W* 2 span{x(67(S)): SC V,S#0,V}

We'll gee bt = (eldr hae,
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Fundamental cuts
Let T C E be a spanning tree. Let e € T.
Fundamental cut

The fundamental cut associated with e w.r.t T is the unique cut intersecting T at exactly {e}

Think of this as a cut §1(Se) C E where Se, V' \ Se are the two connected components of
T \ e, where S, contains the tail of e.

V\ Se

X(£(Se))
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Fundamental cuts
Let T C E be a spanning tree. Let e € T.

Fundamental cut

The fundamental cut associated with e w.r.t T is the unique cut intersecting T at exactly {e}.

Think of this as a cut §1(Se) C E where Se, V' \ Se are the two connected components of
T \ e, where S, contains the tail of e.

Lemma
{x(6%(Se)) : e € T} are linearly independent in W*.
£
4 :
()C(—g ( §e )) : ; (s s ast ’B)
eeT ;
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Fundamental cuts
Let T C E be a spanning tree. Let e € T.

Fundamental cut
The fundamental cut associated with e w.r.t T is the unique cut intersecting T at exactly {e}.

Think of this as a cut §1(Se) C E where Se, V' \ Se are the two connected components of
T \ e, where S, contains the tail of e.

Lemma
{x(6%(Se)) : e € T} are linearly independent in W*.

Corollary
dim(W*) > n—1.
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Cycle and cut spaces

We have shown dim(W<®) > m — n+1 and dim(W*) > n — 1.
Recall

RE = W & W, J

c(,x'rv\ (\/Jo) ~x dim (C/J*S = M
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Cycle and cut spaces

Theorem
dim(W?®) =m—n+1 and dim(W*) =n—1. J
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Cycle and cut spaces

Theorem

dim(W?®) =m—n+1 and dim(W*) =n—1.

Consequence for the cycle space
Q {x(C):ec€ E\ T} is a basis for W°.
@ W< =span{x(C) : C is a directed cycle of 8}
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Cycle and cut spaces

Theorem
dim(W?®)=m—n+1 and dim(W*) = n— 1.

Consequence for the cycle space Wt - kernel -t B
QO {x(C):e€ E\ T} is a basis for W°.
@ W?® = span{x(C): C is a directed cycle of 8}

Consequence for the cut space e W : nw spce & R
Q@ {x(07(Se)) : e € T} is a basis for W*.
Q@ W* =span{x(6"(S)):SCV,S#0,V}.
©@ W* =span{x(6t(r)):re V}.
Q {x(67(r)):re V\ t}isa basis for W*, for any t € V.

e VYow W ox' B = %(g‘-("ﬁ)

v
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V,grad, and V grad
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The linear operator V

Let f € ]RE Think of f as a flow on G where f(u,v) is the amount of flow going from v to v.

enirh‘( P LRV
—

= 3L o)

@l’v-‘ v
Net flow Llow Ta Llow av‘- Elove v}
For each v € V, define — 1
Vﬁv = (VF)y = Z f(u,v)_ Z f(vw i‘

(u,v)eEE (v,w)eE

V :RE = RV is a linear operator represented by the matrix B. That is, for each f € RE, the
image Vf is the matrix product Bf.
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Demand vectors

. v
Question . R

Given a demand vector b, does there exist a flow f € RE sit. b= Vf?

Exercise

If b= Vf for some flow f, then > .\, b, =0.
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Demand vectors

Question

Given a demand vector b, does there exist a flow f € RE sit. b= Vf?

Exercise
If b= Vf for some flow f, then > .\, b, =0.

Exercise

Give a characterization of all demand vectors b such that b = Vf for some flow f.
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Circulations
Definition

A circulation of G is a flow f eREst. VF=0.

t)-=0

0-(l-\)= 0O
Remark

—
W? is precisely the set of all circulations of G.

lA)Qr-' i?:@-@:@g:if:vez@s,
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The linear operator grad

Definition (gradient)

Let grad : RY — RE be the operator defined as follows: for each 7 € RV,

(grad 71-)(u,v) =Ty — Ty

d < T, ~TT,
(9rad ™) vy = "V U
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The linear operator grad

grad is a linear operator represented by the matrix B'. That is, for each 7 € RY, the image
grad 7 is the matrix product B ' .

Range of grad
range(grad) = {BTr: 7€ RY} = W-“ J
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The Laplacian as a differential operator

Summary
© V is represented by B.
@ grad is represented by BT
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The Laplacian as a differential operator

Summary
© V is represented by B.
@ grad is represented by BT

Lemma

V and grad are adjoint operators: (Vf,7) = (f,grad 7).

<‘7@,'1T'7 = <@‘e; 'T\'? = <e’ @T'ﬂ-?
= < -@, 3(‘4.4 w7
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The Laplacian as a differential operator

Summary
© V is represented by B.
@ grad is represented by BT

Lemma
V and grad are adjoint operators: (Vf,7) = (f,grad 7).

Lemma

Vgrad : RY — RV is a linear operator represented by the Laplacian matrix L of G.

QV qmé)'ﬂ' = B BFT Au = 10
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