MA431 Lecture 6

Ahmad Abdi
London School of Economics and Political Science

Feb 25, 2022

Outline

(1) Recap
(2) Flows of minimum energy
(3) Projection onto cut space
(9) Electrical flows and electrical potentials
(6) Computing i and Π
(0) Effective resistance
(1) Kirchhoff's effective resistance theorem
(8) A strengthening of Kirchhoff's effective resistance theorem
(0) Uniform sampling of spanning trees

The incidence matrix of an orientation

- Let $G=(V, E)$ be a connected graph with n vertices and m edges.
- Denote by $\vec{G}=(V, \vec{E})$ an arbitrary orientation of G.

Recall

The incidence matrix of \vec{G} is the $V \times \vec{E}$ matrix B where column $(v, u) \in \vec{E}$ is equal to $e_{u}-e_{v}$.
Recall
The Laplacian matrix of G is $B B^{\top}$.

Cycle and cut spaces

Cycle space

$$
W^{\diamond}=\left\{f \in \mathbb{R}^{\vec{E}}: B f=\mathbf{0}\right\}
$$

Cut space

$$
W^{\star}=\left\{B^{\top} \pi: \pi \in \mathbb{R}^{V}\right\}
$$

Remark
(1) $W^{\star}=\left(W^{\diamond}\right)^{\perp}$ and $W^{\diamond}=\left(W^{\star}\right)^{\perp}$
($\mathbb{R}^{\vec{E}}=W^{\diamond} \oplus W^{\star}$.

Cycle and cut spaces

Theorem G comected

$\operatorname{dim}\left(W^{\diamond}\right)=m-n+1$ and $\operatorname{dim}\left(W^{\star}\right)=n-1$.
Consequence for the cycle space
(1) $\left\{\chi\left(C_{e}\right): e \in \vec{E} \backslash T\right\}$ is a basis for W^{\diamond}.
(2) $W^{\diamond}=\operatorname{span}\{\chi(C): C$ is a directed cycle of $\overleftrightarrow{G}\}$.

Consequence for the cut space
(1) $\left\{\chi\left(\delta^{+}\left(S_{e}\right)\right): e \in T\right\}$ is a basis for W^{\star}.
(2) $W^{\star}=\operatorname{span}\left\{\chi\left(\delta^{+}(S)\right): S \subseteq V, S \neq \emptyset, V\right\}$.
(0) $W^{\star}=\operatorname{span}\left\{\chi\left(\delta^{+}(r)\right): r \in V\right\}$.

- $\left\{\chi\left(\delta^{+}(r)\right): r \in V \backslash t\right\}$ is a basis for W^{\star}, for any $t \in V$.

$$
\nabla, \text { grad, and } \nabla \text { grad }
$$

The linear operator ∇

Let $f \in \mathbb{R}^{\vec{E}}$. Think of f as a flow on \vec{G} where $f_{(u, v)}$ is the amount of flow going from u to v.

Net flow

For each $v \in V$, define

$$
\nabla f_{v}=(\nabla f)_{v}:=\sum_{(u, v) \in \vec{E}} f_{(u, v)}-\sum_{(v, w) \in \vec{E}} f_{(v, w)} .
$$

$\nabla: \mathbb{R}^{\vec{E}} \rightarrow \mathbb{R}^{V}$ is a linear operator represented by the matrix B. That is, for each $f \in \mathbb{R}^{\vec{E}}$, the image ∇f is the matrix product $B f$.

Definition

A circulation of \vec{G} is a flow $f \in \mathbb{R}^{\vec{E}}$ s.t. $\nabla f=\mathbf{0}$.

Remark

W^{\diamond} is precisely the set of all circulations of \vec{G}.

The linear operator grad

Definition (gradient)

Let grad : $\mathbb{R}^{V} \rightarrow \mathbb{R}^{\vec{E}}$ be the operator defined as follows: for each $\pi \in \mathbb{R}^{V}$,

$$
(\operatorname{grad} \pi)_{(u, v)}=\pi_{v}-\pi_{u}
$$

grad is a linear operator represented by the matrix B^{\top}. That is, for each $\pi \in \mathbb{R}^{V}$, the image $\operatorname{grad} \pi$ is the matrix product $B^{\top} \pi$.

```
Range of grad
range(grad)}={\mp@subsup{B}{}{\top}\pi:\pi\in\mp@subsup{\mathbb{R}}{}{V}}=\mp@subsup{\omega}{}{*
```


The Laplacian as a differential operator

Summary

(1) ∇ is represented by B.
(2) grad is represented by B^{\top}.

Lemma
∇ and grad are adjoint operators: $\langle\nabla f, \pi\rangle=\langle f, \operatorname{grad} \pi\rangle$.

Lemma
$\nabla \operatorname{grad}: \mathbb{R}^{V} \rightarrow \mathbb{R}^{V}$ is a linear operator represented by the Laplacian matrix L of G.

$$
L=B B^{\top}
$$

Electrical flows

Energy
Let $b \in \mathbb{R}^{V}$ be a demand vector such that $b=\nabla f$ for some flow $f \in \mathbb{R}^{\vec{E}}$.
Energy
The energy of f is $\|f\|^{2}=\sum_{e \in \vec{E}} f_{e}^{2}$.
Goal
Find a flow of minimum energy satisfying the demands b. That is, solve the quadratic program:

$$
\min \left\{\left\|f^{\prime}\right\|^{2}: \nabla f^{\prime}=b, f^{\prime} \in \mathbb{R}^{\vec{E}}\right\}
$$

Answer: The flow turns out to be unique! Let's find it.

Orthogonal projection onto cut space

Definition

Denote by $P_{\star}: \mathbb{R}^{\vec{E}} \rightarrow \mathbb{R}^{\vec{E}}$ the linear operator that projects orthogonally onto W^{\star}.

$\mathbb{R}^{\vec{E}}$

Orthogonal projection onto cut space

Definition

Denote by $P_{\star}: \mathbb{R}^{\vec{E}} \rightarrow \mathbb{R}^{\vec{E}}$ the linear operator that projects orthogonally onto W^{\star}.

```
Lemma
If \(\nabla f^{\prime}=\nabla f\), then \(P_{\star} f^{\prime}=P_{\star} f\).
```


Orthogonal projection onto cut space

Definition

Denote by $P_{\star}: \mathbb{R}^{\vec{E}} \rightarrow \mathbb{R}^{\vec{E}}$ the linear operator that projects orthogonally onto W^{\star}.

Lemma

If $\nabla f^{\prime}=\nabla f$, then $P_{\star} f^{\prime}=P_{\star} f$.

Proof.

- $\nabla\left(f^{\prime}-f\right)=\nabla f^{\prime}-\nabla f=0$, so $f^{\prime}-f \in W^{\diamond}$.
- Thus, f^{\prime}, f have the same orthogonal projection onto $\left(W^{\diamond}\right)^{\perp}=W^{\star}$.

Flow of minimum energy

Let $b \in \mathbb{R}^{V}$ be a demand vector such that $b=\nabla f$ for some flow $f \in \mathbb{R}^{\vec{E}}$.

Theorem

Let $\iota:=P_{\star} f$. Then ι is the unique optimal solution to

$$
\min \left\{\left\|f^{\prime}\right\|^{2}: \nabla f^{\prime}=b, f^{\prime} \in \mathbb{R}^{\vec{E}}\right\}
$$

Flow of minimum energy

Let $b \in \mathbb{R}^{V}$ be a demand vector such that $b=\nabla f$ for some flow $f \in \mathbb{R}^{\vec{E}}$.

Theorem

Let $\iota:=P_{\star} f$. Then ι is the unique optimal solution to

$$
\min \left\{\left\|f^{\prime}\right\|^{2}: \nabla f^{\prime}=b, f^{\prime} \in \mathbb{R}^{\vec{E}}\right\}
$$

Proof.

- Let f^{\prime} be an arbitrary feasible solution.
- We know $P_{\star} f^{\prime}=\iota$.
- Let $g \in \mathbb{R}^{\vec{E}}$ be the orthogonal projection of f^{\prime} onto W^{\diamond}.
- Then

$$
\begin{aligned}
& f^{\prime}=g+i \\
& \left\|f^{\prime}\right\|^{2}=\|g\|^{2}+\|i\|^{2}
\end{aligned}
$$

Flow of minimum energy
Claim I
$\nabla \iota=b$. That is, ι is also a feasible solution to the quadratic program.

$$
\nabla i=\nabla\left(f^{\prime}-g^{\prime}\right)=\nabla f^{\prime}-\underbrace{\nabla g}_{0}=\nabla f=b
$$

Flow of minimum energy
Claim 1
$\nabla \iota=b$. That is, ι is also a feasible solution to the quadratic program.
g is a circulation so $\nabla g=0$, so $\nabla \iota=\nabla f-\nabla g=b$.
Claim 2
$\left\|f^{\prime}\right\|^{2} \geq\|\iota\|^{2}$ with equality of $f^{\prime}=\iota$.
Follows from $\left\|f^{\prime}\right\|^{2}=\|g\|^{2}+\|i\|^{2}$.

Electrical flow

Definition

ι is called the electrical flow satisfying the demands b.
Think of \vec{G} as an electrical network, the vertices as nodes, and the arcs as resistors of unit resistance, and therefore unit conductance, connecting the end nodes.

Electrical flow

Definition
ι is called the electrical flow satisfying the demands b.
Think of \vec{G} as an electrical network, the vertices as nodes, and the arcs as resistors of unit resistance, and therefore unit conductance, connecting the end nodes.

Lemma

$$
\langle\iota, f\rangle=\|\iota\|^{2} .
$$

Proof.
Recall $f=i+g$ for some $g \in w^{\wedge}$. Then

$$
\langle\iota, f\rangle=\langle i, i+g\rangle=\langle i, i\rangle+\underset{n}{\langle i, g\rangle}=\langle i, i\rangle
$$

Electrical potentials
We know $\iota \in W^{\star}=\operatorname{range}(\operatorname{grad})$. Thus, $\iota=\operatorname{grad} \pi$ for some $\pi \in \mathbb{R}^{V}$.

Electrical potentials

We know $\iota \in W^{\star}=$ range (grad). Thus, $\iota=\operatorname{grad} \pi$ for some $\pi \in \mathbb{R}^{V}$.

Definition

$\pi_{\nu}, v \in V$ are called the electrical potentials.
Kirchhoff's second law (potential difference)
${ }^{\iota}(u, v)=\pi_{v}-\pi_{u}$ for all $(u, v) \in \vec{E}$.

Electrical potentials

We know $\iota \in W^{\star}=$ range(grad). Thus, $\iota=\operatorname{grad} \pi$ for some $\pi \in \mathbb{R}^{V}$.

Definition

$\pi_{v}, v \in V$ are called the electrical potentials.
Kirchhoff's second law (potential difference)
${ }^{\iota}(u, v)=\pi_{v}-\pi_{u}$ for all $(u, v) \in \vec{E}$.

Remark

The electrical potentials are unique up to shifting by a constant.

$$
\text { grad: } \mathbb{R}^{V} \rightarrow \mathbb{R}^{\vec{E}}
$$

Matrix of projection onto W^{\star}
Recall
$P_{\star}: \mathbb{R}^{\vec{E}} \rightarrow \mathbb{R}^{\vec{E}}$ is the linear operator that projects orthogonally onto W^{\star}.
Let Π be the $\vec{E} \times \vec{E}$ matrix where column e is precisely $P_{\star} \chi^{e}$.

Remark

Π represents the linear operator P_{\star} in the basis $\left\{\chi^{e}: e \in \vec{E}\right\}$.

Matrix of projection onto W^{\star}

Recall

$P_{\star}: \mathbb{R}^{\vec{E}} \rightarrow \mathbb{R}^{\vec{E}}$ is the linear operator that projects orthogonally onto W^{\star}.
Let Π be the $\vec{E} \times \vec{E}$ matrix where column e is precisely $P_{\star} \chi^{e}$.

Remark

Π represents the linear operator P_{\star} in the basis $\left\{\chi^{e}: e \in \vec{E}\right\}$.

Remark orthogonal

Π is a projection matrix, so $\Pi^{2}=\Pi$ and $\Pi^{\top}=\Pi$.
idempotent
self_adjoint

$$
\langle x, \pi y\rangle=\langle\pi x, y\rangle
$$

Computing ι and Π
Question
Given $b=\nabla f$, how do we compute ι ?
(1) We know $\iota_{e}=\pi_{v}-\pi_{u}$ for each $e=(u, v) \in \vec{E}$. That is, $\iota=\operatorname{grad} \pi$.
(2) So how do we compute π ?
(3) We know

$$
b=\nabla \iota=\nabla \operatorname{grad} \pi=L \pi
$$

(9) We can get one solution π by solving

$$
\pi=L^{+} b \quad L^{+} \text {: pleudoinverse of } L
$$

(9) Putting it altogether we get
(0) Then

$$
\begin{aligned}
\pi f=\iota=\operatorname{grad} \pi=\operatorname{grad} L^{+} b & =\operatorname{grad} L^{+} \nabla f \\
& =B^{\top} L^{+} B f
\end{aligned}
$$

$$
\Pi=B^{\top} L^{+} B
$$

Effective resistance between two nodes

Take distinct vertices $s, t \in V$. Send an electrical unit flow ι^{\prime} from s to t, with electrical potentials $\pi_{v}^{\prime}, v \in V$.

Definition

The potential difference $\pi_{t}^{\prime}-\pi_{s}^{\prime}$ is the effective resistance between s and t.

Effective resistance of an edge
Take an edge $e=(s, t) \in \vec{E}$.

Definition

The effective resistance of edge e is the effective resistance between s and t.

Effective resistance of an edge
Take an edge $e=(s, t) \in \vec{E}$.

Definition

The effective resistance of edge e is the effective resistance between s and t.

Theorem (Characterization of Effective Resistance)

Let ι^{\prime} be the electrical unit flow from s to t. Let $\pi_{v}^{\prime}, v \in V$ be the electrical potentials. Then
(1) $\pi_{t}^{\prime}-\pi_{s}^{\prime}=i_{e}^{\prime}$ by Kircchoff's 2nd law
(2) the effective resistance of e is ι_{e}^{\prime}

Effective resistance of an edge
Take an edge $e=(s, t) \in \vec{E}$.

Definition

The effective resistance of edge e is the effective resistance between s and t.

Theorem (Characterization of Effective Resistance)

Let ι^{\prime} be the electrical unit flow from s to t. Let $\pi_{v}^{\prime}, v \in V$ be the electrical potentials. Then
(1) $\pi_{t}^{\prime}-\pi_{s}^{\prime}=\iota_{e}^{\prime}$
(2) the effective resistance of e is ι_{e}^{\prime}
(3) the effective resistance of e is $\Pi_{e, e}$
(c) $\iota_{e}^{\prime}=\left\|\iota^{\prime}\right\|^{2}$.

Proof of Theorem
(3) $T_{e, e}=\left(P_{-x} x^{e}\right)_{e}$

Note that x^{e} is a flow of unit value from s to t !

$$
\begin{aligned}
& =\left(i^{\prime}\right)_{e} \\
& =i_{e}^{\prime}
\end{aligned}
$$

another flow satisfying
(4)

$$
\begin{aligned}
\left\|i^{\prime}\right\|^{2}=\left\langle i^{\prime}, i^{\prime}\right\rangle & =\left\langle i^{\prime}, x^{\prime} e\right\rangle \\
& =i_{e}^{\prime} .
\end{aligned}
$$

Effective resistance and connectivity
Lemma
(1) The effective resistance of $e \in \vec{E}$ is at most 1 .
(2) The effective resistance of $e \in \vec{E}$ is 1 if and only if $G \backslash e$ is not connected.

Proof.
Exercise.
(2)

Intuition: The higher the effective resistance, the "move important" the edge.

Effective resistance and connectivity

Lemma

(1) The effective resistance of $e \in \vec{E}$ is at most 1 .
(c) The effective resistance of $e \in \vec{E}$ is 1 if and only if $G \backslash e$ is not connected.

Proof.

Exercise.
Rayleigh monotonicity principle
Let $G^{\prime}=\left(V, E^{\prime}\right)$ with $E^{\prime} \supseteq E$. Then for any two vertices $u, v \in V$, the effective resistance between u and v in G^{\prime} is smaller than or equal to the effective resistance between u and v in G.

Proof.

Exercise.

k edges

Kirchhoff's effective resistance theorem
Take an edge $e=(s, t) \in \vec{E}$.
Recall
$T(G)$ is the number of spanning trees of G.
Theorem
The effective resistance of e is $\frac{T(G / e)}{T(G)}$.
$T(G / e)=\neq$ spanning trees of G that contain e
$\therefore \frac{T(G / e)}{T(G)}=\begin{gathered}\text { the proportion of spanning trees that } \\ \text { Gater } e\end{gathered}$ contain e

Kirchhoff's effective resistance theorem

Take an edge $e=(s, t) \in \vec{E}$.

Recall

$T(G)$ is the number of spanning trees of G.

Theorem

The effective resistance of e is $\frac{T(G / e)}{T(G)}$.
Relabel $V=\{1, \ldots, n\}$ and $e=(n, n-1)$.

Recall

Let ι^{\prime} be the electrical unit flow from n to $n-1$. Let $\pi_{v}^{\prime}, v \in V$ be the electrical potentials. Then the effective resistance of e is $\pi_{n-1}^{\prime}-\pi_{n}^{\prime}$.

Proof of Kirchhoff's effective resistance theorem

- Let us apply Cramer's rule to solve

$$
L \pi^{\prime}=\underbrace{e_{n-1}-e_{n}}_{\text {demand vector }}
$$

Proof of Kirchhoff's effective resistance theorem

- Let us apply Cramer's rule to solve

$$
L \pi^{\prime}=e_{n-1}-e_{n}
$$

- The rows of L add up to $\mathbf{0}$, so we may drop the last row of $L \pi^{\prime}=e_{n-1}-e_{n}$.
- Force $\pi_{n}^{\prime}=0$.

Proof of Kirchhoff's effective resistance theorem

- Let us apply Cramer's rule to solve

$$
L \pi^{\prime}=e_{n-1}-e_{n}
$$

- The rows of L add up to 0 , so we may drop the last row of $L \pi^{\prime}=e_{n-1}-e_{n}$.
- To ensure that π^{\prime} is unique, we enforce in addition

$$
\pi_{n}^{\prime}=0
$$

Proof of Kirchhoff's effective resistance theorem

- Let us apply Cramer's rule to solve

$$
L \pi^{\prime}=e_{n-1}-e_{n}
$$

- The rows of L add up to 0 , so we may drop the last row of $L \pi^{\prime}=e_{n-1}-e_{n}$.
- To ensure that π^{\prime} is unique, we enforce in addition

$$
\pi_{n}^{\prime}=0
$$

- As a result, π^{\prime} is obtained by solving

See th Matrix. Tree

$$
L[n] y=e_{n-1}
$$

- By Cramer's rule,

$$
\pi_{n-1}^{\prime}-\pi_{n}^{\prime}=\pi_{n-1}^{\prime}=y_{n-1}=\frac{\operatorname{det}(L[n][n-1])}{\operatorname{det}(L[n])}=\frac{1 T(G / e)}{T(G)}
$$

The diagonal entries of \square
Kirchhoff's effective resistance theorem
The effective resistance of e is $\frac{T(G / e)}{T(G)}$.

Recall

The effective resistance of e is $\Pi_{e, e}$.
Corollary
$\Pi_{e, e}=\frac{T(G / e)}{T(G)}$.

A strengthening of Kirchhoff's effective resistance theorem

- Take two vertices $s, t \in V$.
- For each spanning tree $T \subseteq \vec{E}$, let $f^{T} \in \mathbb{R}^{\vec{E}}$ be the flow that sends 1 unit of flow from s to t along the unique st-path in T.

A strengthening of Kirchhoff's effective resistance theorem

- Take two vertices $s, t \in V$.
- For each spanning tree $T \subseteq \vec{E}$, let $f^{T} \in \mathbb{R}^{\vec{E}}$ be the flow that sends 1 unit of flow from s to t along the unique st-path in T.
- Let

$$
g:=\frac{1}{T(G)} \sum_{T \in \mathcal{T}} f^{T}
$$

where \mathcal{T} is the set of all spanning trees.
Theorem
g is the electrical unit flow from s to t.
This implies Kirchhoff's effect hive resistance theorem (set $e=(s, t) \&$ look at g_{e}).

Proof

Claim 1
$\nabla g=e_{t}-e_{s}$.

Proof
Claim 1
$\nabla g=e_{t}-e_{s}$.

$$
\nabla g=\frac{1}{T(G)} \sum_{T \in \mathcal{T}} \nabla f^{T}=\frac{1}{T(G)} \cdot T(G) \cdot\left(e_{t}-e_{s}\right)=e_{t}-e_{s}
$$

Claim 2

$$
g \in W^{\star}=\left(W^{\diamond}\right)^{\top}
$$

- Let $C \subseteq \vec{E}$ be a directed cycle in $\stackrel{G}{G}$.
- It suffices to show $g^{\top} x(c)=0$
- The is invariant under the orientation of G, so WMA the $\underset{A n m a d A b i}{C}$ is directed cycle in \vec{G}.

Proof

Thus,

$$
g^{\top} \chi(C)=\sum_{a \in C} g_{a}
$$

Proof

Thus,

$$
\begin{aligned}
g^{\top} \chi(C) & =\sum_{a \in C} g_{a} \\
& =\frac{1}{T(G)} \sum_{a \in C} \sum_{T \in \mathcal{T}} f_{a}^{T}
\end{aligned}
$$

Proof

Thus,

$$
\begin{aligned}
g^{\top} \chi(C) & =\sum_{a \in C} g_{a} \\
& =\frac{1}{T(G)} \sum_{a \in C} \sum_{T \in \mathcal{T}} f_{a}^{T} \\
& =\frac{1}{T(G)} \sum\left(f_{a}^{T}: a \in C, T \in \mathcal{T}, a \in T\right)
\end{aligned}
$$

Proof

Thus,

$$
\begin{aligned}
g^{\top} \chi(C) & =\sum_{a \in C} g_{a} \\
& =\frac{1}{T(G)} \sum_{a \in C} \sum_{T \in \mathcal{T}} f_{a}^{T} \\
& =\frac{1}{T(G)} \sum\left(f_{a}^{T}: a \in C, T \in \mathcal{T}, a \in T\right) \\
& =\frac{1}{T(G)} \sum_{F} \sum\left(f_{a}^{T}: a \in C, T \in \mathcal{T}, T \backslash a=F\right)
\end{aligned}
$$

where $F \subseteq \vec{E}$ is any spanning forest with two connected components.

Proof

Fix F. Let $S, V \backslash S$ be the two connected components where $s \in S$.

- Case 1: $t \in S$. Then, if $T \in \mathcal{T}$ and a satisfies $T \backslash a=F$, then $f_{a}^{T}=0$, so

$$
\sum\left(f_{a}^{T}: a \in C, T \in \mathcal{T}, T \backslash a=F\right)=0
$$

Proof
Fix F. Let $S, V \backslash S$ be the two connected components where $s \in S$.

- Case 2: $t \in V \backslash S$. Then

$$
\begin{aligned}
& \sum\left(f_{a}^{T}: a \in C, T \in \mathcal{T}, T \backslash a=F\right) \\
& =\sum(1: a \in C, \operatorname{tail}(a) \in S, \operatorname{head}(a) \in V \backslash S) \\
& \quad+\sum(-1: a \in C, \operatorname{tail}(a) \in V \backslash S, \operatorname{head}(a) \in S)
\end{aligned}
$$

$$
=\left|c \cap \delta^{+}(s)\right|-\left|c \cap \delta^{-}(s)\right|
$$

$=0 \quad b / c \quad C$ il a directed cycle!

Proof

Thus,

$$
\begin{aligned}
g^{\top} \chi(C) & =\sum_{a \in C} g_{a} \\
& =\frac{1}{T(G)} \sum_{a \in C} \sum_{T \in \mathcal{T}} f_{a}^{T} \\
& =\frac{1}{T(G)} \sum_{0}\left(f_{a}^{T}: a \in C, T \in \mathcal{T}, a \in T\right) \\
& =\frac{1}{T(G)} \sum_{F} \underbrace{\sum_{0}\left(f_{a}^{T}: a \in C, T \in \mathcal{T}, T \backslash a=F\right)}_{0} \\
& =0
\end{aligned}
$$

Proof

Theorem

g is the electrical unit flow from s to t.
Proof.

Claim 1

$\nabla g=e_{t}-e_{s}$.
Claim 2
$g \in W^{\star}=\left(W^{\diamond}\right)^{\top}$.
Thus, g must be the electrical unit flow from s to t.

The columns of Π
Take $e=(s, t) \in \vec{E}$.

Recall

$P_{\star} \chi^{e}$ is the electrical unit flow from s to t.
Recall
$P_{\star} \chi^{e}$ is column e of Π.

The columns of Π

Take $e=(s, t) \in \vec{E}$.

Recall

$P_{\star} \chi^{e}$ is the electrical unit flow from s to t.

```
Recall
P\star \chi}\mp@subsup{\chi}{}{e}\mathrm{ is column e of ח.
```


We just showed

$\frac{1}{T(G)} \sum_{T \in \mathcal{T}} f^{T}$ is the electrical unit flow from s to t.
Corollary
Column e of Π is equal to $\frac{1}{T(G)} \sum_{T \in \mathcal{T}} f^{T}$.

Uniform sampling of spanning trees

Recall
$\Pi_{e, e}=\frac{T(G / e)}{T(G)}$.

Remark

$\frac{T(G / e)}{T(G)}$ is the fraction of spanning trees of G that use the edge e.

Uniform sampling of spanning trees

Recall

$\Pi_{e, e}=\frac{T(G / e)}{T(G)}$.

Remark

$\frac{T(G / e)}{T(G)}$ is the fraction of spanning trees of G that use the edge e.
Kirchhoff's effective resistance theorem (rephrased)
If T is a uniformly random spanning tree, then $\operatorname{Pr}[e \in T]=\Pi_{e, e}$.

The Transfer-Current Theorem

The Transfer-Current Theorem

If T is a uniformly random spanning tree, then for any $F \subseteq E$,

$$
\operatorname{Pr}[F \subseteq T]=\operatorname{det}\left(\Pi_{F}\right)
$$

where Π_{F} denotes the principal submatrix of Π indexed by F.

