MA431 Lecture 7

Ahmad Abdi

London School of Economics and Political Science

March 4, 2022

Outline

- The Transfer-Current Theorem
- Weights as conductances, deletion, and contraction
- Sayleigh monotonicity principle (weighted extension)

Electrical flow

Let $b \in \mathbb{R}^V$ be a demand vector such that $b = \nabla f$ for some flow $f \in \mathbb{R}^{\vec{E}}$.

Theorem

Let $\iota := P_{\star}f$. Then ι is the unique optimal solution to

$$\min\left\{\|f'\|^2:\nabla f'=b,f'\in\mathbb{R}^{\overrightarrow{E}}\right\}.$$

= 2 fé

Recall

 ι is called the electrical flow satisfying demands b.

Electrical flow

Let $b \in \mathbb{R}^V$ be a demand vector such that $b = \nabla f$ for some flow $f \in \mathbb{R}^{\vec{E}}$.

Theorem

Let $\iota := P_{\star}f$. Then ι is the unique optimal solution to

$$\min\left\{\|f'\|^2:
abla f'=b, f'\in \mathbb{R}^{ec{E}}
ight\}.$$

Recall

 ι is called the electrical flow satisfying demands b.

Remark

 ι is the unique flow in W^* satisfying the demands b.

Matrix of projection onto W^*

Recall

 $P_{\star}: \mathbb{R}^{\vec{E}} \to \mathbb{R}^{\vec{E}}$ is the linear operator that projects orthogonally onto W^{\star} .

Let Π be the $\vec{E} \times \vec{E}$ matrix where column *e* is precisely $P_{\star}\chi^{e}$.

Remark

 Π represents the linear operator P_{\star} in the basis $\{\chi^e : e \in \vec{E}\}$.

Remark

 Π is an orthogonal projection matrix, so $\Pi^2 = \Pi$ and $\Pi^{\top} = \Pi$.

Matrix of projection onto W^*

Recall

 $P_{\star}: \mathbb{R}^{\vec{E}} \to \mathbb{R}^{\vec{E}}$ is the linear operator that projects orthogonally onto W^{\star} .

Let Π be the $\vec{E} \times \vec{E}$ matrix where column *e* is precisely $P_{\star}\chi^{e}$.

Remark

 Π represents the linear operator P_{\star} in the basis $\{\chi^e : e \in \vec{E}\}$.

Remark

 Π is an orthogonal projection matrix, so $\Pi^2 = \Pi$ and $\Pi^\top = \Pi.$

Kirchhoff's effective resistance theorem (rephrased)

If T is a uniformly random spanning tree, then $\Pr[e \in T] = \prod_{e,e}$.

The Transfer-Current Theorem

If T is a uniformly random spanning tree, then for any $F \subseteq \vec{E}$,

 $\Pr[F \subseteq T] = \det(\Pi_F)$

where Π_F denotes the principal submatrix of Π indexed by F.

Proof by induction on |F|.

• Base case: |F| = 1.

This holds by Kirchhoff's effective residence them.

The Transfer-Current Theorem

If T is a uniformly random spanning tree, then for any $F \subseteq \vec{E}$,

```
\Pr[F \subseteq T] = \det(\Pi_F)
```

where Π_F denotes the principal submatrix of Π indexed by F.

```
Induction step: |F| ≥ 2.
Case 1: F contains a cycle, C. Then Pr[F⊆T] = 0 clearly.
Then X(C) is a circulation of G
whose support is in F.
We have TT X(C) = 0. Thus, the Glumns of TT
Gener ponding to F are line dep. Thus, det (TTF) = 0.
```

The Transfer-Current Theorem

If T is a uniformly random spanning tree, then for any $F \subseteq \vec{E}$,

 $\Pr[F \subseteq T] = \det(\Pi_F)$

where Π_F denotes the principal submatrix of Π indexed by F.

Induction step: $|F| \ge 2$.

• Case 2: F is a forest. Let $e = (s, t) \in F$ and $\hat{F} = F \setminus e$. Then

$$\Pr[F \subseteq T] = \frac{T(G/F)}{T(G)} = \frac{T(G/\hat{F}/e)}{T(G/\hat{F})} \cdot \frac{T(G/\hat{F})}{T(G)} = \hat{i} \frac{e}{e} \cdot \det(TT\hat{F})$$
where $\hat{i} e$ is the elec. unit the eff. res. det $(TT\hat{F})$
flow from s to t in G/\hat{F} . $\hat{f} e$ in $det(TT\hat{F})$
 G/\hat{F} by IH

For each $a = (u, v) \in \vec{E}$, denote by i^a the unit electrical flow in G from u to v.

Lemma

$$\hat{i}^{e} = i^{e} - \sum_{a \in \hat{F}} \alpha_{a} i^{a}$$
 for some multipliers $\alpha_{a} \in \mathbb{R}$.

Note. $\hat{i}^e \in \mathbb{R}^{\vec{E} \setminus \hat{F}}$. For the above equality to make sense, we extend \hat{i}^e to a vector $\hat{i}^e \in \mathbb{R}^{\vec{E}}$ by appending 0s to it.

For each $a = (u, v) \in \vec{E}$, denote by i^a the unit electrical flow in G from u to v.

Lemma

$$\hat{i}^{e} = i^{e} - \sum_{a \in \hat{F}} \alpha_{a} i^{a}$$
 for some multipliers $\alpha_{a} \in \mathbb{R}$.

Note. $\hat{i}^e \in \mathbb{R}^{\vec{E} \setminus \hat{F}}$. For the above equality to make sense, we extend \hat{i}^e to a vector $\hat{i}^e \in \mathbb{R}^{\vec{E}}$ by appending 0s to it.

The Transfer-Current Theorem Caplace expansion along first alonn

$$\begin{aligned}
& \left(\begin{array}{c} & & \\ & &$$

For each $a = (u, v) \in \vec{E}$, denote by i^a the unit electrical flow in G from u to v.

Lemma

$$\hat{i}^{e} = i^{e} - \sum_{a \in \hat{F}} lpha_{a} i^{a}$$
 for some multipliers $lpha_{a} \in \mathbb{R}$.

Proof of Lemma.

• The cuts in G/\hat{F} are precisely the cuts in G that do not contain any edge in \hat{F} .

For each $a = (u, v) \in \vec{E}$, denote by i^a the unit electrical flow in G from u to v.

Lemma

$$\hat{i}^{e} = i^{e} - \sum_{a \in \hat{F}} lpha_{a} i^{a}$$
 for some multipliers $lpha_{a} \in \mathbb{R}$.

Proof of Lemma.

- The cuts in G/\hat{F} are precisely the cuts in G that do not contain any edge in \hat{F} .
- Thus the cut space \hat{W}^{\star} of G/\hat{F} is $W^{\star} \cap \{x : x_a = 0 \ \forall a \in \hat{F}\}$ after dropping $x_a, a \in \hat{F}$.

For each $a = (u, v) \in \vec{E}$, denote by i^a the unit electrical flow in G from u to v.

Lemma

$$\hat{i}^{e} = i^{e} - \sum_{a \in \hat{F}} lpha_{a} i^{a}$$
 for some multipliers $lpha_{a} \in \mathbb{R}$.

Proof of Lemma.

- \hat{i}^e is the unit flow from s to t in G/\hat{F} that belongs to \hat{W}^* .
- \hat{i}^e is obtained from \hat{i}^e by extending $x_a = 0 \ \forall a \in \hat{F}$.

For each $a = (u, v) \in \vec{E}$, denote by i^a the unit electrical flow in G from u to v.

Lemma

$$\hat{i}^{e} = i^{e} - \sum_{a \in \hat{F}} \alpha_{a} i^{a}$$
 for some multipliers $\alpha_{a} \in \mathbb{R}$.

Proof of Lemma.

• In summary, \hat{i}^e is the flow $f \in W^\star \cap \{x : x_a = 0 \,\, \forall a \in \hat{F}\}$ in G such that

(P) $\sum_{v \in K} \nabla f_v = 0$ for each connected component K of (V, \hat{F}) not containing s or t, $\sum_{v \in K} \nabla f_v = -1$ for the connected component K containing s, and $\sum_{v \in K} \nabla f_v = 1$ for the connected component K containing t.

- We now exhibit a way to get from i^e and $i^a, a \in \hat{F}$ to \hat{i}^e .
- i^e is the unit flow from s to t in G that belongs to W^* .
- If $i_a^e = 0 \ \forall a \in \hat{F}$, then we are done.

- We now exhibit a way to get from i^e and $i^a, a \in \hat{F}$ to \hat{i}^e .
- i^e is the unit flow from s to t in G that belongs to W^* .
- If $i_a^e = 0 \ \forall a \in \hat{F}$, then we are done.
- Otherwise, we cancel out those flow values by considering

$$f := i^{e} - \sum_{a \in \hat{F}} \alpha_{a} i^{a} \in W^{*} \cap \{x : x_{a} = 0 \ \forall a \in \hat{F}\}$$

for $\alpha_{a} \in \mathbb{R}_{Q}$, $a \in \hat{F}$. (Why can this be done? Exercise.)
Then
$$\nabla f = \nabla i^{e} - \sum d_{Q} \nabla i^{Q}$$
$$= (e_{\ell} - e_{\varsigma}) - \sum_{a \in \hat{F}} d_{Q} (e_{h(a)} - e_{f(a)})$$

The Transfer-Current Theorem

If T is a uniformly random spanning tree, then for any $F \subseteq \vec{E}$,

```
\Pr[F \subseteq T] = \det(\Pi_F)
```

where Π_F denotes the principal submatrix of Π indexed by F.

Weighted extension

- Let $\vec{G} = (V, \vec{E})$ be an electrical network.
- Suppose each arc $a \in \vec{E}$ has conductance $w_a \ge 0$ and so resistance $\frac{1}{w_a} \ge 0$ $(\frac{1}{0} := \infty)$.

Weighted extension

- Let $\vec{G} = (V, \vec{E})$ be an electrical network.
- Suppose each arc $a \in \vec{E}$ has conductance $w_a \ge 0$ and so resistance $\frac{1}{w_a} \ge 0$ $(\frac{1}{0} := \infty)$.

Intuition

By increasing the conductance of an arc, and thus decreasing its resistance, a flow now requires less energy to traverse through the arc.

In particular,

- Deleting e "corresponds to" setting $\omega_{\alpha} = 0$
- Contracting e "corresponds to" setting $\omega_{a} = d$

Weighted extension

- Let $\vec{G} = (V, \vec{E})$ be an electrical network.
- Suppose each arc $a \in \vec{E}$ has conductance $w_a \ge 0$ and so resistance $\frac{1}{w_a} \ge 0$ $(\frac{1}{0} := \infty)$.

Intuition

By increasing the conductance of an arc, and thus decreasing its resistance, a flow now requires less energy to traverse through the arc.

In particular,

- Deleting *e* "corresponds to" setting
- Contracting *e* "corresponds to" setting

Energy
Given a flow
$$f \in \mathbb{R}^{\vec{E}}$$
, its energy in (\vec{G}, w) is $\sum_{e \in \vec{E}} \frac{1}{w_e} f_e^2 = : \langle f, f \rangle_w$
Ahmad Abdi MA431 Lecture 7

Cycle and cut spaces (weighted extension)

Inner product

$$\langle f,g \rangle_w := \sum_{e \in \overrightarrow{E}} \frac{1}{w_e} f_e g_e$$

Cycle and cut spaces (weighted extension)

Inner product

$$\langle f,g \rangle_w := \sum_{e \in \overrightarrow{E}} \frac{1}{w_e} f_e g_e$$

The cycle space of
$$(\vec{G}, w)$$
 is $W^{\diamond} := \{f : \nabla f = \mathbf{0}\}.$

Cut space (Jifferent)

The cut space of
$$(\vec{G}, w)$$
 is $\{g : \langle f, g \rangle_w = 0 \ \forall f \in W^\diamond\}$.

Cycle and cut spaces (weighted extension)

Inner product

$$\langle f,g \rangle_w := \sum_{e \in \overrightarrow{E}} \frac{1}{w_e} f_e g_e$$

Cycle space

The cycle space of
$$(\vec{G}, w)$$
 is $W^{\diamond} := \{f : \nabla f = \mathbf{0}\}.$

Cut space

The cut space of
$$(\vec{G}, w)$$
 is $\{g : \langle f, g \rangle_w = 0 \ \forall f \in W^\diamond\}$.

Remark

 W^{\diamond} and the cut space are orthogonal complements with respect to the inner product $\langle \cdot, \cdot \rangle_{w}$.

Flow of minimum energy (weighted extension)

Let $b \in \mathbb{R}^V$ be a demands vector for which there is a flow f such that $b = \nabla f$.

Flow of minimum energy

$$\mathcal{E}_{w}(b):=\min\left\{\langle g,g
angle_{w}:
abla g=b,g\in\mathbb{R}^{ec{E}}
ight\}$$

Flow of minimum energy (weighted extension)

Let $b \in \mathbb{R}^V$ be a demands vector for which there is a flow f such that $b = \nabla f$.

Flow of minimum energy

$$\mathcal{E}_{w}(b):=\min\left\{\langle g,g
angle_{w}:
abla g=b,g\in\mathbb{R}^{ec{E}}
ight\}$$

Theorem

There is a unique flow of minimum energy, namely, the orthogonal projection of f onto the cut space of (\vec{G}, w) with respect to the inner product $\langle \cdot, \cdot \rangle_w$.

Proof. Exercise.

Rayleigh monotonicity principle (weighted extension)

Let $b \in \mathbb{R}^V$ be a demands vector for which there is a flow f such that $b = \nabla f$.

Flow of minimum energy

$$\mathcal{E}_w(b) := \min\left\{ \langle g,g
angle_w :
abla g = b, g \in \mathbb{R}^{ec{oldsymbol{\mathcal{E}}}}
ight\}$$

Theorem

Consider
$$w,w'\in\mathbb{R}^{ec{E}}_+$$
 such that $w\geq w'.$ Then $\mathcal{E}_w(b)\leq\mathcal{E}_{w'}(b).$

Proof.

Easy exercise.

Rayleigh monotonicity principle (weighted extension)

Let $b \in \mathbb{R}^V$ be a demands vector for which there is a flow f such that $b = \nabla f$.

Flow of minimum energy

$$\mathcal{E}_w(b) := \min\left\{ \langle g,g
angle_w :
abla g = b, g \in \mathbb{R}^{ec{\mathcal{E}}}
ight\}$$

Theorem

Consider
$$w, w' \in \mathbb{R}^{\vec{E}}_+$$
 such that $w \geq w'$. Then $\mathcal{E}_w(b) \leq \mathcal{E}_{w'}(b)$.

Proof.

Easy exercise.

In particular,

- edge deletion increases effective resistance between two nodes,
- edge contraction decreases effective resistance between two nodes.