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16 Intermezzo: matrix functions

Given a function f : R → R, we can extend this to a function on symmetric matrices in the following way.

First, given a diagonal matrix D, we define f(D) by applying f to each diagonal entry of D: So f(D) is

diagonal, and f(D)ii = f(Dii). Then given a symmetric matrix M with diagonalization M = P−1DP , define

f(M) = P−1f(D)P .

Put differently, f(M) applies f to each eigenvalue, while keeping the eigenspace associated with each eigen-

value unchanged.

We will particularly use this for f(x) = exp(x). For any analytic function, this definition of f does cor-

respond to the definition one gets from taking the Taylor series of f and directly applying this to matrices

(exercise).

Finally, we remark that the same definition can be applied to matrices that are merely diagonalizable, and

not necessarily symmetric.

17 Markov chains

Consider a connected graph G = (V,E). An infinite random sequence (X0, X1, X2, . . .) is called a simple

random walk on G if, for each i ≥ 0, the condition distribution of Xi+1 given Xi is the uniform distribution

over the neighbours of Xi, and the choice of neighbour is independent of the history of the process before step i

(that is, the process is Markovian).

For any i ≥ 1, let p(i) ∈ RV+ denote the probability distribution of Xi; assume the initial distribution p(0) is

given. Let A be the adjacency matrix of G, and let D be the diagonal matrix where Dvv is the degree of node v.

Now let W = AD−1.

Lemma 17.1. p(i+1) = Wp(i) for any i. That is, W is the transition matrix for simple random walk on G.

Proof. Exercise.

Observe that W is not symmetric, which is awkward. Fortunately, it is similar to a symmetric matrix,

meaning we can still apply what we know about the spectrum of symmetric matrices. Let

A = D−1/2WD1/2 = D−1/2AD−1/2.
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A is called the normalized adjacency matrix of G. You can think of it as the adjacency matrix of the weighted

graph (G,w) where the weight of an edge e = {u, v} is we = 1/
√

deg(u) · deg(v). By the Perron-Frobenius

theorem, the eigenspace of the largest eigenvalue of A has dimension 1; the same must then hold for W . Note

the vector d defined by dv = deg(v) for all v ∈ V is an eigenvector of W of eigenvalue 1, since

(Wd)v =
∑

w:{v,w}∈E

dw
deg(w)

= deg(v).

Further, no eigenvalue of W can be larger than 1; if x is an eigenvector of W , and v is an index for which

xv/deg(v) is maximal, then

(Wx)v =
∑

w:{v,w}∈E

xw
deg(w)

≤
∑

w:{v,w}∈E

xv
deg(v)

= xv.

So d spans the eigenspace of W with eigenvalue 1. Define p̄ to be the unique multiple of d with
∑
v p̄v = 1.

This is a probability distribution, and we have determined that it is the unique probability distribution for which

Wp̄ = p̄. This is the stationary distribution, the unique distribution that is invariant to the action of W .

18 Mixing times and the spectral gap

While the simple random walk is the most “obvious” random walk to define on G, it’s not always entirely

convenient. One pathology is that if G is bipartite, memory of the initial condition will remain encoded in the

current time step i. If X0 = v, then Xi will be on the same side of the bipartition for i even, and on the opposite

side for i odd. In particular, p(i) does not converge to p̄ (or to anything) as i→∞.

There are a number of possible alternative walks that avoid this problem. The first possibility is to consider

the lazy random walk: in each step, we stay put with probability 1/2, and otherwise we take a step along a

uniformly chosen adjacent edge of the graph. The problem with simple random walk relates to a potential −1

eigenvalue, but lazy random walk has all eigenvalues in [0, 1].

We will take a different route, and consider a continuous time random walk. It’s just a bit nicer mathemati-

cally (admittedly, there is a bit more formal measure-theoretic machinery needed in the background, which we

will mostly gloss over). There are two particularly natural continuous time walks:

• The node-based continuous time random walk (CTRW). Imagine that every node of the graph has an

associated independent Poisson process of unit intensity. If the walk is at some vertex v at time t, it

will remain there until the node “rings”—that is, until the smallest s > t for which s is an increment of

the point process for v—and then move to a uniformly random neighbour of v. So in other words, we

are embedding the simple random walk in continuous time, such that after each step, we wait a random

amount of time given by an exponential of unit rate.

The stationary distribution is the same as simple random walk.
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• Even nicer in many ways is the edge-based CTRW. Here, every edge of the graph has an associated

independent Poisson process of unit intensity. If the walk is at some vertex v at time t, it will remain there

until the first moment after t when one of the edges adjacent to v rings, at which point the walk moves to

the other endpoint of this edge. Equivalently, we embed simple random walk in continuous time, but the

amount of time spent at a node v has distribution given by an exponential of rate deg(v).

Notice that the expected time of an individual visit for a node v is now 1/ deg(v), and so the stationary

distribution becomes simply the uniform distribution.

We will continue by discussing the edge-based random walk, since things are cleanest, and then remark at

the end how results transfer over to the node-based CRTW or lazy walk.

Let L denote the Laplacian ofG, and λ1 = 0 < λ2 < · · · its spectrum. Let p(t) for t ∈ R+ be the probability

distribution for an edge-based CTRW on G, with p(0) given.

Lemma 18.1. For any t ≥ 0,
dp(t)

dt
= −Lp(t).

Proof. (Informal.) Condition on X(t) = v, and consider some small interval [t, t + ε). To first order in ε, the

probability that any adjacent edge {v, w} rings is ε, and these are all independent events for different edges. So

for any w adjacent to v, X(t+ ε) = w with probability about ε, and with the remaining 1− deg(v)ε probability,

X(t+ ε) = v. So of the probability mass pv(t) at v at time t, approximately ε deg(v)pv(t) will leave in the time

interval, and εpw(t) will arrive from each neighbour w. Thus (again to first order in ε)

pv(t+ ε) ≈ pv(t)(1− εdeg(v)) +
∑

w:{v,w}∈E

εpw(t) = −ε(Lp(t))v.

Thus p(t+ ε) = p(t)− εLp(t) +O(ε2), which is exactly the desired differential equation in the limit ε→ 0.

Remark 18.2. If one takes G to be a large d-dimensional grid graph, then this is a discrete approximation to

the heat equation. If you think of the probability masses as representing some kind of temperature, we start

with an initial temperature distribution p(0), and through diffusion, this gradually equilibriates until eventually

everything is at the same temperature.

It is from this differential equation that L can be seen as a “smoothing” operator.

Recalling perhaps some long-ago differential equations class, we can write down the solution to this differ-

ential equation in Lemma 18.1 immediately. It’s the same as the case of a single-variable differential equation

(f ′(x) = −αf(x) has solution f(x) = e−αf(0)), but with matrices. A proof is included for completeness.

Lemma 18.3. For any t ≥ 0,

p(t) = e−tLp(0).
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Proof. Let Q>DQ be the orthogonal diagonalization of L, and make the change of variables y = Qp. The

differential equation becomes
dy

dt
= −Dy,

which decouples completely into independent single-variable differential equations. This yields yi(t) = yi(0)e−tDii ,

that is, y(t) = e−tDy(0); changing back to the original basis yields the lemma.

The stationary distribution for the edge-based continuous time walk is the uniform distribution, which we

denote here by q̄ (since if p(t) = q̄, then dp(t)
dt = −Lq̄ = 0). Fix some initial distribution p(0). Observe that

p(0) − q̄ is orthogonal to q̄, since p(0) and q̄ are both probability distributions. Now L is positive semidefinite,

and q̄ spans the eigenspace corresponding to the 0 eigenvalue. Thus p(0) − q̄ lies in the span of the positive

eigenspaces of L. This already guarantees convergence, at a rate controlled by the smallest positive eigenvalue

of L. The proof just says the above again, slightly more carefully.

Lemma 18.4. Let λ2 be the second smallest eigenvalue of L. Then

‖p(t)− q̄‖2 ≤ e−λ2t‖p(0)− q̄‖2.

Proof. Recall that the matrix exponential preserves the eigenspaces but exponentiates the eigenvalues. So e−2tL

has spectrum 1 = e−2tλ1 > e−2tλ2 ≥ e−2tλ3 ≥ · · · , and span({q̄}) is the eigenspace associated with eigenvalue

1. Thus e−2tLq̄ = q̄, and for any q orthogonal to q̄, q
T e−2tLq
qT q

≤ e−tλ2, by the Courant-Fischer Theorem. But

〈p(0)− q̄, q̄〉 = 1
n

∑
i∈V

(pi(0)− q̄i) = 0,

since p(0) and q̄ are both probability distributions. So

‖p(t)− q̄‖22 = ‖e−tLp(0)− e−tLq̄‖22 = (p(0)− q̄)>e−2λ2t(p(0)− q̄) ≤ e−2λ2t‖p(0)− q̄‖22,

as required.

A more standard measure of “distance” between two probability distributions is the total variation distance:

given two probability distributions p, q on V ,

dTV(p, q) := 1
2‖p− q‖1.

A reason that this is a standard measure is that it turns out that

dTV(p, q) = max
R⊆V

(∑
i∈R

pi −
∑
i∈R

qi

)
;

the probability of any event differs by at most dTV(p, q). In any case, the difference between different measures

won’t matter too much for our purposes. We certainly have

‖p− q‖2 ≤ 2dTV(p, q) ≤
√
n‖p− q‖2.

As such,
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Lemma 18.5. For any initial distribution p(0) and any ε > 0, dTV(p(t), q̄) ≤ ε as long as

t ≥ 1

2λ2
ln(n/ε).

Proof. Clearly ‖p(0)− q̄‖2 ≤ ‖p(0)‖2 + ‖q̄‖2 ≤ 2. So dTV(p(t), q̄) ≤
√
ne−λ2t, and the claim follows.

The time required until the total variation distance stays below ε (for some given parameter ε) is called the

mixing time of the random walk. Modulo the logarithmic term that we won’t focus on, this lemma tells us that

the mixing time is controlled by the second eigenvalue of L. (It’s also clear from the proof that the mixing

time cannot be much less than 1/λ2; the multiplying logarithmic terms will differ though, as they depend on

how large the component of p(0) in the λ2-eigenspace can be, under the constraint that it must be a probability

distribution. We won’t go into these details.)

18.1 Node-based CTRW and lazy random walk

We’ll quickly sketch what changes with node-based CTRW; results for lazy random walk are also similar.

The differential equation changes to

dp(t)

dt
= −LD−1p(t),

and hence

p(t) = e−tLD
−1

p(0).

Since LD−1 is not symmetric, this introduces some awkwardness. But we can define the normalized Laplacian

L:

L = I −A = D−1/2LD−1/2.

This is symmetric, and similar to LD−1, so has the same spectrum. (It is not generally the Laplacian of some

weighted graph, even though A can be viewed that way.) The second eigenvalue of L (which we will usually

denote by ν2 in these notes) thus controls the mixing time of the node-based CTRW: this logarithmic factor

changes slightly, but the mixing time can be bounded by 1/ν2 ln
(
1/(εmini p̄i)

)
. The mixing time for lazy

random walk is also the same, up to constant factors.

The value ν2 is often called the spectral gap (the name comes from looking at the eigenvalues of A instead;

ν2 is the difference between the largest and second-largest eigenvalue of A).

19 Conductance and Cheeger’s inequality

We’ll work with the node-based CTRW or lazy walk now, so that the mixing time is controlled by the second

eigenvalue of L. What is a good “combinatorial reason” that random walk might not mix on a given graph?

Suppose that there is a set S ⊆ V of nodes for which:

• there are relatively few edges crossing S, and
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• S and V \ S are both not too small, and both contain many edges.

Then if we start our random walk at some node inside S, it may take a long time before it traverses any of the

few edges crossing S. So the probability mass on V \ S may stay quite small for a long time. Since V \ S is not

too small, this will make a significant contribution to dTV(p(t), p̄).

To make this precise, define the conductance of a set S ⊆ V , written φ(S), by

φ(S) :=
|δ(S)|

min{vol(S), vol(V \ S)}
,

where

vol(S) :=
∑
v∈S

deg(v).

Notice that the volume of S is, up to scaling, the same as
∑
v∈S p̄v . The conductance φ(G) of graph G is simply

the minimum conductance over all choices of vertex sets S (excluding the empty set and the entire vertex set).

Observe that the conductance of a cut, and hence of any graph, is bounded by 1.

Cheeger’s inequality shows that the conductance of G does control the spectral gap, and hence the mixing

time. The relationship is not exact: there is a quadratic gap between upper and lower bounds.

Theorem 19.1 (Cheeger’s inequality). With ν2 denoting the second eigenvalue of L, we have

1
2ν2 ≤ φ(G) ≤

√
2ν2.

The first inequality is called the “easy direction”: it shows that if we have a cut of small conductance, then

mixing is slow. The second inequality is called the “hard direction”: it shows the less intuitively clear fact that if

mixing is slow, then there must be a cut of reasonably low conductance that certifies this.

We will prove the two inequalities under the assumption that G is d-regular, meaning that L = 1
dL. The

proof in the general case follows similar lines, though some additional technical awkwardnesses do need to be

overcome.

19.1 The easy direction

By the CFT, and using L = 1
dL, we have

ν2 = min
x 6=0,x⊥1

x>Lx

dx>x
=: R(x).

Observe that R(1S) = |δ(S)|/ vol(S), and so φ(S) = min{R(1S), R(1V \S)}. However, 1S and 1V \S are not

generally orthogonal to 1, so we cannot deduce that ν2 ≤ φ(S) from this. Instead, we choose an appropriate

convex combination of 1S and 1V \S that is orthogonal to 1 (we took a different approach in the lecture).
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So let z = 1
|S|1S −

1
|V \S|1V \S , so that z ⊥ 1. Then ν2 ≤ R(z). We then just compute:

R(z) =

∑
vw∈E(zv − zw)2

d
∑
v∈V z

2
v

=
|δ(S)| ·

(
1
|S| + 1

|V \S|

)2
d
(
|S|
|S|2 + |V \S|

|V \S|2

)
=
|δ(S)|
d
·
(

1
|S| + 1

|V \S|

)
≤ 2
|δ(S)|
d
·max{1/|S|, 1/|V \ S|}

= 2φ(S).

Thus ν2 ≤ 2φ(G) as required.

19.2 The hard direction

We will see the proof of the hard direction, also for a d-regular graph G, next time. The proof of the hard

direction will be constructive: it will provide us an efficient way of finding a cut of small conductance (if there

is one). This will be of independent interest, since it provides a way of partitioning the graph.
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See, e.g., [1] for much more detail and rigour on Markov chains and mixing.
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Exercises

1. Show that the spectral approach to extending a function f : R→ R to symmetric matrices matches the Taylor

expansion approach, whenever f is analytic.

2. Give an example to demonstrate that the hitting time is not a symmetric quantity.

3. Is the commute time monotone, in the sense that adding edges to a network can only decrease the commute

time between two nodes?
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4. The cover time of a connected graph G (which we will denote by Cover(G) is the maximum over all choices

of starting node s, of the expected time needed for a simple random walk starting from s to visit each node of

G.

Let R be the maximum over u, v ∈ V of the effective resistance between u and v in G; also let m denote the

number of edges of G. Show that

Cover(G) = Ω(mR) and Cover(G) = O(log |V | ·mR).

5. Show that the commute time between any two nodes of a connected graph with n nodes is at most n3. Find

an example where the commute time between some pair of vertices is Ω(n3).

6. Give a bound of the form O
(

1/ν2 log(K/ε)
)

for the mixing time of the lazy random walk. (One option

would be to show a bit more, and argue that the mixing time for lazy simple random walk is within constant

factor of mixing time of node-based CTRW).

7. Show that the spectrum of the normalized Laplacian of a graph lies in [0, 2].

8. Consider Cn, the cycle of length n. Show that one direction of Cheeger’s inequality is tight for Cn up to

constant factors, for all n.

9. Consider Qn, the n-dimensional binary hypercube; identify its vertex set with {−1, 1}n.

Determine the second eigenvalue of the Laplacian of Qn. (Hint: for a ∈ {−1, 1}n, consider vectors x ∈
RV (Qn) of the form xv = (−1)a·v for all v ∈ {−1, 1}n.)

Hence show that one direction of Cheeger’s inequality is tight (up to constant factors) for the hypercube. Also

give bounds on the mixing time, both directly from the second eigenvalue, and from Cheeger’s inequality.
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