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Abstract

A vector is dyadic if each of its entries is a dyadic rational number, i.e. of the form a
2k

for

some integers a, k with k ≥ 0. A linear system Ax ≤ b with integral data is totally dual dyadic

if whenever min{b>y : A>y = w, y ≥ 0} for w integral, has an optimal solution, it has a dyadic

optimal solution. In this paper, we study total dual dyadicness, and give a co-NP characterization of

it in terms of dyadic generating sets for cones and subspaces, the former being the dyadic analogue

of Hilbert bases, and the latter a polynomial-time recognizable relaxation of the former. Along the

way, we see some surprising turn of events when compared to total dual integrality, primarily led

by the density of the dyadic rationals. Our study ultimately leads to a better understanding of total

dual integrality and polyhedral integrality. We see examples from dyadic matroids, T -joins, cycles,

and perfect matchings of a graph.
∗An extended abstract of this work appeared in IPCO 2022.
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1 Introduction

A dyadic rational is a number of the form a
2k

for some integers a, k where k ≥ 0. The dyadic rationals

are precisely the rational numbers with a finite binary representation, and are therefore relevant for

(binary) floating-point arithmetic in numerical computations. Modern computers represent the rational

numbers by fixed-size floating points, inevitably leading to error terms, which are compounded if serial

arithmetic operations are performed such as in the case of mixed-integer linear, semidefinite, and more

generally convex optimization. This has led to an effort to mitigate floating-point errors [31] as well as

the need for exact solvers [10, 29].

We address a different, though natural theoretical question: When does a linear program admit

an optimal solution whose entries are dyadic rationals? A vector is dyadic if every entry is a dyadic

rational. Consider the following primal dual pair of linear programs for A ∈ Zm×n, b ∈ Zm and

w ∈ Zn.

(P ) max{w>x : Ax ≤ b} (D) min{b>y : A>y = w, y ≥ 0}.

(0 and 1 denote respectively the all-zeros and all-ones column, or row, vectors of appropriate dimen-

sion.) When does (D) admit a dyadic optimal solution for all w ∈ Zn? How about (P)? Keeping

close to the integral case, these questions lead to the notions of totally dual dyadic systems and dyadic

polyhedra. In this paper, we reassure the reader that dyadic polyhedra enjoy a similar characterization

as integral polyhedra, but in studying totally dual dyadic systems, we see an intriguing and somewhat

surprising turn of events when compared to totally dual integral (TDI) systems [13]. As such, we shall

keep the focus of the paper on total dual dyadicness and its various characterizations. The characteri-

zations lead to dyadic generating sets for cones and subspaces, where the first notion is polyhedral and

can be thought of as a dyadic analogue of Hilbert bases, while the second notion is lattice-theoretic

and new. We shall see some intriguing examples of totally dual dyadic systems and dyadic generating

sets from Integer Programming, Combinatorial Optimization, and Graph Theory. Our study eventually

leads to a better understanding of TDI systems and integral polyhedra.

Our characterizations extend easily to the p-adic rationals for any prime number p ≥ 3. For this

reason, we shall prove our characterizations in the general setting. Interestingly, however, most of our
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examples do not extend to the p-adic setting for p ≥ 3.

1.1 Totally dual p-adic systems and p-adic generating sets

Let p ≥ 2 be a prime number. A p-adic rational is a number of the form a
pk

for some integers a, k

where k ≥ 0. A vector is p-adic if every entry is a p-adic rational. Consider a linear system Ax ≤ b

where A ∈ Zm×n, b ∈ Zm. We say that Ax ≤ b is totally dual p-adic if for all w ∈ Zn for which

min{b>y : A>y = w, y ≥ 0} has an optimum, it has a p-adic optimal solution. For p = 2, we

abbreviate ‘totally dual dyadic’ as ‘TDD’. We emphasize that for any statement that includes p-adic

numbers, or a definition that relies on p-adic numbers (such as totally dual p-adic systems) we assume

that p ≥ 2 and that p is a prime.

Given a nonempty face F of a polyhedron Ax ≤ b, denote by AFx ≤ bF the subsystem of Ax ≤ b

corresponding to the implicit equalities of F .

We prove the following characterization, which relies on two key notions defined afterwards.

Theorem 1.1 (proved in §4). Let A ∈ Zm×n, b ∈ Zm and P := {x : Ax ≤ b}. Then the following

statements are equivalent for every prime p:

(1) Ax ≤ b is totally dual p-adic,

(2) for every nonempty face F of P , the rows of AF form a p-adic generating set for a cone,

(3) for every nonempty face F of P , the rows of AF form a p-adic generating set for a subspace.

In fact, in (2), it suffices to consider only the minimal nonempty faces.

Let {a1, . . . , an} ⊆ Zm. The set {a1, . . . , an} is a p-adic generating set for a cone (p-GSC) if

every integral vector in the conic hull of the vectors can be expressed as a p-adic conic combination

of the vectors (meaning that the coefficients used are p-adic). In contrast, {a1, . . . , an} is a p-adic

generating set for a subspace (p-GSS) if every integral vector in the linear hull of the vectors can be

expressed as a p-adic linear combination of the vectors. For p = 2, we use the acronyms DGSC and

DGSS instead of 2-GSC and 2-GSS, respectively.

Notice that an integral generating set for a cone (where the vectors are expressed as integer conic

combinations) is just a Hilbert basis [16]. (We address differing definitions of Hilbert bases in §7.)
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In a departure from Hilbert bases, where a satisfying characterization remains elusive, we have the

following polyhedral characterization of a p-GSC:

Theorem 1.2 (proved in §3). Let {a1, . . . , an} ⊆ Zm, C := cone{a1, . . . , an}, and p a prime. Then

{a1, . . . , an} is a p-GSC if, and only if, for every nonempty face F of C, {ai : ai ∈ F} is a p-GSS.

The careful reader may notice that in contrast to total dual integrality, the characterization of totally

dual p-adic systems, Theorem 1.1, enjoys a third equivalent condition, namely (3). This new condition,

as well as the characterization of a p-GSC, Theorem 1.2, is made possible due to a distinguishing

feature of the p-adic rationals: density. The p-adic rationals, as opposed to the integers, form a dense

subset of R. We shall elaborate on this in §2.

Going further, we have the following lattice-theoretic characterization of a p-GSS. We recall that

the elementary divisors (a.k.a. invariant factors) of an integral matrix are the nonzero entries of the

Smith normal form of the matrix; see §3 for more. In the following statement GCD stands for the

Greatest Common Divisor.

Theorem 1.3 (proved in §3). The following statements are equivalent for a matrixA ∈ Zm×n of rank r

and a prime p:

(1) the columns of A form a p-GSS,

(2) the rows of A form a p-GSS,

(3) whenever y>A and Ax are integral, then y>Ax is a p-adic rational,

(4) every elementary divisor of A is a power of p,

(5) the GCD of the subdeterminants of A of order r is a power of p,

(6) there exists a matrix B with p-adic entries such that ABA = A.

Theorem 1.3 is used in §3 to prove that testing the p-GSS property can be done in polynomial time.

Subsequently, the problem of testing total dual p-adicness belongs to co-NP by Theorem 1.1 (see §4),

and the problem of testing the p-GSC property belongs to co-NP by Theorem 1.2 (see §3). Whether
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the two problems belong to NP, or P, remains unsolved. It should be pointed out that testing total dual

integrality, as well as testing the Hilbert basis property, is co-NP-complete [12, 22].

1.2 Connection to integral polyhedra and TDI systems

Our characterizations stated so far, as well as our characterization of p-adic polyhedra explained in §5,

have the following intriguing consequence:

Theorem 1.4. Let A ∈ Zm×n, b ∈ Zm, and P := {x : Ax ≤ b}. Then the following are equivalent:

(1) Ax ≤ b is totally dual p-adic for all primes p,

(2) Ax ≤ b is totally dual p- and q-adic, for distinct primes p, q,

(3) for every nonempty face F of P , the GCD of the subdeterminants of AF of order rank(AF ) is 1.

Proof. (1)⇒ (2) is immediate. (2)⇒ (3) For every nonempty face F of P , the rows of AF form both

a p- and a q-GSS by Theorem 1.1, so the GCD of the subdeterminants of AF of order rank(AF ) is

both a power of p and a power of q by Theorem 1.3, so the GCD of the subdeterminants of AF of order

rank(AF ) must be 1. (3)⇒ (1) follows from Theorem 1.1 and Theorem 1.3.

If Ax ≤ b is TDI, and therefore totally dual p-adic for any prime p, then statement (3) above must

hold (this is folklore, and explored in [25]. In fact, if P is pointed, then for every vertex of P , we have

a stronger property known as local strong unimodularity [15].) It was a widely known fact that the

converse is not true. Theorem 1.4 clarifies this further by equating (3) with (1) and (2). Going a step

further, it is known that if Ax ≤ b is TDI, then {x : Ax ≤ b} is an integral polyhedron [13, 16]. We

shall strengthen this result:

Theorem 1.5 (proved in §5). If Ax ≤ b is totally dual p- and q-adic, for distinct primes p, q, then

{x : Ax ≤ b} is an integral polyhedron.

In the context of set packing systems, Fulkerson’s theorem that every integral set packing system

is TDI, can be seen as a (stronger) converse to Theorem 1.5 [14]. For set covering systems, there is a

related conjecture originally due to Paul Seymour, which may be viewed as some sort of a converse of

Theorem 1.5.
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Conjecture 1.6 (The Dyadic Conjecture [24], §79.3e). Let A be a matrix with 0, 1 entries. If Ax ≥

1, x ≥ 0 defines an integral polyhedron, then it is TDD.

The authors recently proved the first nontrivial step of the Dyadic Conjecture: If Ax ≥ 1, x ≥ 0

defines an integral polyhedron, then for every nonnegative integral w such that min{w>x : Ax ≥

1, x ≥ 0} has optimal value two, the dual has a dyadic optimal solution [1].

1.3 Examples

Our first example comes from Integer Programming, and more precisely, from matrices with restricted

subdeterminants. Similar settings to the one below have been studied previously; see for example

[19, 5] (the last reference has more relevant citations).

Theorem 1.7. Let A ∈ Zm×n be a matrix whose subdeterminants belong to {0} ∪ {±pk : k ∈ Z+}

for some prime p, and let b ∈ Zm. Then Ax ≤ b is totally dual p-adic.

Proof. Choose an integral w such that min{b>y : A>y = w, y ≥ 0} has an optimal solution. Let y?

be a basic optimal solution. We claim that y? is p-adic, thereby finishing the proof. Let I := {i ∈

[m] : y?i > 0}. Then AI , the row submatrix of A corresponding to the indices in I , has full row rank.

In particular, y?I is the unique solution to A>I z = w. By moving to a square row submatrix B of A>I of

full rank, and the corresponding subvector wB of w, we see that y?I is the unique solution to Bz = wB .

Since B is nonsingular, det(B) ∈ {±pk : k ∈ Z+}, so by Cramer’s rule y?I , and therefore y?, is

p-adic.

For example, the node-edge incidence matrix of a graph is known to satisfy the hypothesis for p = 2

(folklore), and therefore leads to a TDD system. More generally, matrices whose subdeterminants

belong to {0} ∪ {±2k : k ∈ Z+} have been studied from a matroid theoretic perspective; matroids

representable over the rationals by such matrices are known as dyadic matroids and their study was

initiated by Whittle [32].

Moving to Combinatorial Optimization, we get examples only in the dyadic setting. Let G =

(V,E) be a graph, and T a nonempty subset of even cardinality. A T -join is a subset J ⊆ E with the

property that the odd-degree vertices of the graph induced by the edges in J is precisely T . T -joins
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were studied due to their connection to the minimum weight perfect matching problem, but also to the

Chinese postman set problem (see [9], Chapter 5). As a consequence of a recent result [3], we shall

obtain the following.

Theorem 1.8 (proved in §6). Let G = (V,E) be a graph, and T ⊆ V a nonempty subset of even

cardinality. Then the linear system x(J) ≥ 1 ∀ T -joins J ;x ≥ 0 is TDD.

The basic solutions to the dual of min{1>x : x(J) ≥ 1 ∀ T -joins J ;x ≥ 0} may be non-dyadic,

as we note in §6, thereby creating an interesting contrast between the proofs of Theorem 1.7 and

Theorem 1.8. The system in Theorem 1.8 defines an integral set covering polyhedron (see [11], Chapter

2), so Theorem 1.8 verifies Conjecture 1.6 for such instances. In fact, it has been conjectured that the

system in Theorem 1.8 is totally dual quarter-integral ([11], Conjecture 2.15).

Moving on, let G = (V,E) be a graph. A cycle is a subset C ⊆ E such that every vertex in V

is incident with an even number of edges in C. A circuit is a nonempty cycle that does not contain

another nonempty cycle. A perfect matching is a subset M ⊆ E such that every vertex in V is

incident with exactly one edge in M . Define C(G) := {χC : C a circuit of G} and M(G) := {χM :

M a perfect matching of G}. See [17] for an excellent survey on lattice and conic characterizations of

these two sets. We shall prove the following:

Theorem 1.9 (proved in §6). Let G = (V,E) be a graph. Then C(G) is a DGSC.

If G is bridgeless, then the Cycle Double Cover Conjecture [30, 27] predicts that 1 can be written

as a half-integral conic combination of the vectors in C(G). It is straightforward to verify that 1 can

be written as a conic combination of the vectors in C(G). Theorem 1.9 then implies that this can be

done dyadically. Bermond et al. [6] proved in fact, using graph techniques, that 1
4 fractions suffice.

Theorem 1.10 (proved in §6). Let G = (V,E) be a graph with |V | even. Then M(G) is a DGSC.

G is an r-graph ifG is r-regular, has an even number of vertices, and every cut with an odd number

of vertices on each shore, contains at least r edges. If G is an r-graph, then the Generalized Berge-

Fulkerson Conjecture [26] predicts that 1 can be written as a half-integral conic combination of M(G).

By leveraging Theorem 1.10 one can show that this can be done dyadically.
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In §6, we see that the preceding three theorems do not extend to the p-adic setting for p ≥ 3, further

emphazing the importance of the dyadic setting.

2 Density Lemma and the Theorem of the Alternative

Many of our results are made possible by an important feature of the p-adic rationals distinguishing

them from the integers, namely density.

Remark 2.1. The p-adic rationals form a dense subset of R.

Lemma 2.2 (Density Lemma). Let A ∈ Zm×n, b ∈ Zm. If {x : Ax = b} contains a p-adic point,

then the p-adic points in the set form a dense subset. In particular, a nonempty rational polyhedron

contains a p-adic point if, and only if, its affine hull contains a p-adic point.

Proof. Suppose {x : Ax = b} contains a p-adic point, say x̂. Since A has integral entries, its kernel

has an integral basis, say d1, . . . , dr. Observe that {x : Ax = b} is the set of vectors of the form

x̂+
∑r

i=1 λid
i where λ ∈ Rr. Consider the set

S :=

{
x̂+

r∑
i=1

λid
i : λi is p-adic for each i

}
.

By Remark 2.1, it can be readily checked that S is a dense subset of {x : Ax = b}. Since x̂ is p-adic,

and the di’s are integral, the points in S are p-adic, thereby proving the first part of the lemma.

Consider now a nonempty rational polyhedron P . Then P = {x : Ax ≤ b} for some integer A

and b. Its affine hull aff(P ) = {x : A′x = b′} where A′x ≤ b′ is a subsystem of Ax ≤ b. Since P 6= ∅

there exists x̄ in the relative interior of P . Hence, for some ε > 0 there exists a ball B of radius ε

centred at x̄ for which B ∩ aff(P ) ⊆ P . By density of aff(P ) there exists a p-adic point in B ∩ aff(P )

as required.

A natural follow-up question arises: When does a rational affine space contain a p-adic point?

Addressing this question requires a familiar notion in Integer Programming. Every integral matrix of

full row rank can be brought into Hermite normal form by means of elementary unimodular column

operations. In particular, if A is an integral m × n matrix of full row rank, there exists an n × n
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unimodular matrix U such that AU = (B 0), where B is a non-singular m ×m matrix, and 0 is an

m × (n − m) matrix with zero entries. By a square unimodular matrix, we mean a square integral

matrix whose determinant is ±1; note that the inverse of such a matrix is also unimodular. See ([8],

Section 1.5.2) or ([23], Chapter 4) for more details.

Lemma 2.3 (Theorem of the Alternative). Let A ∈ Zm×n, b ∈ Zm and p a prime. Then either Ax = b

has a p-adic solution, or there exists a y ∈ Rm such that y>A is integral and y>b is non-p-adic, but

not both.

Proof. Suppose Ax̂ = b for a p-adic point x̂, and y>A is integral. Then y>b = y>(Ax̂) = (y>A)x̂

is an integral linear combination of p-adic rationals, and is therefore a p-adic rational. Thus, both

statements cannot hold simultaneously. Suppose Ax = b has no p-adic solution. If Ax = b has no

solution at all, then there exists a vector y such that y>A = 0 and y>b 6= 0; by scaling y appropriately,

we can ensure that y>b is non-p-adic, as desired. Otherwise, Ax = b has a solution. We may assume

thatA has full row rank. Then there exists a square unimodular matrix U such thatAU = (B 0), where

B is a square non-singular matrix. Observe that {x : Ax = b} = {Uz : AUz = b}. Thus, as Ax = b

has no p-adic solution x, and U has integral entries, we may conclude that the system AUz = b has no

p-adic solution z either. Let us expand the latter system. Let I, J be the sets of column labels of B,0

in AU = (B 0), respectively. Then

{z : AUz = b} =

{
z : (B 0)

(
zI
zJ

)
= b

}
= {z : BzI = b, zJ free} =

{
z : zI = B−1b, zJ free

}
.

In particular, since AUz = b has no p-adic solution, the vector B−1b is non-p-adic. Thus, there exists

a row y> of B−1 for which y>b is non-p-adic. We claim that y>A is integral, thereby showing y

is the desired vector. To this end, observe that B−1AU = B−1(B 0) = (I 0), implying in turn

that B−1A = (I 0)U−1. As the inverse of a square unimodular matrix, U−1 is also unimodular and

therefore has integral entries, implying in turn that B−1A, and in particular y>A, is integral.

The reader may notice the similarity between Lemma 2.3 and its integer analogue, which charac-

terizes when a linear system of equations admits an integral solution, commonly known as the Inte-

ger Farkas Lemma (see [8], Theorem 1.20). We refrain from calling Lemma 2.3 the “p-adic Farkas

Lemma” as we reserve that title for Corollary 2.6 below.
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Remark 2.4. If t is a p- and q-adic rational, for distinct primes p, q, then t is integral.

Corollary 2.5. Let A ∈ Zm×n, b ∈ Zm. If Ax = b has p- and q-adic solutions, for distinct primes p

and q, then the system has an integral solution.

Proof. By the Theorem of the Alternative, whenever y>A is integral, y>b is both p- and q-adic, im-

plying in turn that y>b is integral by Remark 2.4. Thus, by the Integer Farkas Lemma, Ax = b has an

integral solution.

Finally, the Density Lemma and the Theorem of the Alternative have the following p-adic analogue

of the Farkas Lemma in Linear Programming.

Corollary 2.6 (p-adic Farkas Lemma). Let P be a nonempty rational polyhedron whose affine hull is

{x : Ax = b}, where A, b are integral. Then for every prime p, P contains a p-adic point if, and only

if, there does not exist y such that y>A is integral and y>b is non-p-adic.

3 p-adic generating sets for subspaces and cones

Recall that a set of vectors {a1, . . . , an} ⊆ Zm forms a p-GSS if every integral vector in the linear hull

of the vectors can be expressed as a p-adic linear combination of the vectors. Observe that every p-adic

vector in the linear hull of a p-GSS can also be expressed as a p-adic linear combination of the vectors.

Lemma 3.1. Let A ∈ Zm×n, and let U be a unimodular matrix of appropriate dimensions. Then

(1) the columns of A form a p-GSS if, and only if, the columns of UA do, and

(2) the columns of A form a p-GSS if, and only if, the columns of AU do.

Proof. (1) It suffices to prove (⇒), since U−1 is also unimodular. Pick b ∈ Zm such that (UA)x = b

has a solution x̄; we need to show that the system has a p-adic solution. Note that Ax̄ = U−1b ∈ Zm,

so by assumption, there exists a p-adic x? such that Ax? = U−1b. Left-multiplying by U , we get that

(UA)x? = b, so x? is the desired p-adic solution. (2) Once again, it suffices to prove (⇒). Pick b ∈ Zm

such that (AU)z = b has a solution z̄; we need to show that the system has a p-adic solution. Note that

Ax = b has a solution, namely Uz̄, so by assumption there exists a p-adic x? such that Ax? = b. Let

z? = U−1x?, which is also p-adic. Then (AU)z? = Ax? = b, so z? is the desired p-adic solution.
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In order to prove Theorem 1.3, we need a definition. Let A be an integral matrix of rank r. It

is well-known that by applying elementary row and column operations, we can bring A into Smith

normal form, that is, into a matrix with a leading r × r minor D and zeros everywhere else, where D

is a diagonal matrix with diagonal entries δ1, . . . , δr ≥ 1 such that δ1 | δ2 | · · · | δr (see [23], Section

4.4). It can be readily checked that for each i ∈ [r],
∏i
j=1 δj is the GCD of the subdeterminants of A

of order i (see for instance, the survey paper [28], in particular, Theorem 2.4). The δi’s are referred to

as the elementary divisors. The Smith normal form of an integral matrix, and therefore its elementary

divisors, can be computed in polynomial time [18].

Proof of Theorem 1.3. (1)⇔ (3) Suppose (1) holds. Choose x, y such that y>A and Ax are integral.

Let b := Ax ∈ Zm. By (1), there exists a p-adic x̄ such that b = Ax̄. Thus, y>Ax = y>Ax̄ = (y>A)x̄,

which is p-adic because y>A is integral and x̄ p-adic, as required. Suppose conversely that (3) holds.

Pick b ∈ Zm such that Ax̄ = b for some x̄. We need to prove that Ax = b has a p-adic solution. If

y>A is integral, then y>b = y>Ax̄, which is p-adic by (3). Thus, by the Theorem of the Alternative,

Ax = b has a p-adic solution, as required.

(2)⇔ (3) holds by applying the established equivalence (1)⇔ (3) to A>.

(1)⇔ (4): By Lemma 3.1, the condition (1) is preserved under elementary unimodular row/column

operations; these operations clearly preserve (4) as well. Thus, it suffices to prove the equivalence

between (1) and (4) for integral matrices in Smith normal form. That is, we may assume that A has a

leading r × r minor D and zeros everywhere else, where D is a diagonal matrix with diagonal entries

δ1, . . . , δr ≥ 1 such that δ1 | δ2 | · · · | δr. Suppose (1) holds. We need to show that each δi is a power of

p. Consider the feasible system Ax = ei; every solution x to this system satisfies xj = 0, j ∈ [r]−{i}

and xi = 1
δi

. Since the columns of A form a p-GSS, 1
δi

must be p-adic, so δi is a power of p, as

required. Suppose conversely that (4) holds. We need to show that whenever Ax = b, b ∈ Zm has a

solution, then it has a p-adic solution. Clearly, it suffices to prove this for b = ei, i ∈ [r], which holds

because each δi, i ∈ [r] is a power of p.

(4)⇔ (5) is rather immediate; the only additional remark is that every divisor of a power of p is

also a power of p.

(6)⇒ (3) If y>A andAx are integral, then y>Ax = y>(ABA)x = (y>A)B(Ax), which is p-adic
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since y>A,Ax are integral and B has p-adic entries, as required.

(4) ⇒ (6) Choose unimodular matrices U,W such that UAW is in Smith normal form with el-

ementary divisors δ1, . . . , δr. Let B′ be the n × m matrix with a leading diagonal matrix D−1 =

Diag( 1
δ1
, . . . , 1

δr
), and zeros everywhere else. Let B := WB′U , which is a matrix with p-adic entries

since each δi is a power of p. We claim that ABA = A, thereby proving (6). This equality holds if,

and only if, UABAW = UAW since U and W are invertible square matrices. To this end, we have

UABAW = UA(WB′U)AW = (UAW )B′(UAW )

=

(
D 0
0 0

)(
D−1 0

0 0

)(
D 0
0 0

)
= UAW,

where the penultimate equality holds due to the definition of B′ and the Smith normal form of UAW .

In light of the previous theorem we may say that an integral matrix forms a p-GSS if its rows,

respectively its columns, form a p-GSS. Consider the following complexity problem:

(A) Given an integral matrix, does it form a p-GSS?

Theorem 3.2. Problem (A) belongs to P.

Proof. Let A be an integral matrix. By Theorem 1.3, A forms a p-GSS if, and only if, each elementary

divisor of A is a power of p. Since the elementary divisors of A can be found in polynomial time, the

theorem follows.

Recall that a set of vectors {a1, . . . , an} ⊆ Zm forms a p-GSC if every integral vector in the conic

hull of the vectors can be expressed as a p-adic conic combination of the vectors. Observe that every

p-adic vector in the conic hull of a p-GSC can also be expressed as a p-adic conic combination of the

vectors.

Proposition 3.3. If {a1, . . . , an} ⊆ Zm is a p-GSC, then it is a p-GSS.

Proof. Let A ∈ Zm×n be the matrix whose columns are a1, . . . , an. Take b ∈ Zm such that Ax̄ = b

for some x̄. We need to show that the system Ax = b has a p-adic solution. To this end, let x̄′ :=

x̄ − bx̄c ≥ 0 and b′ := Ax̄′ = b − Abx̄c ∈ Zm. Thus, Ax = b′, x ≥ 0 has a solution, namely x̄′, so
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it has a p-adic solution, say z̄′, as the columns of A form a p-GSC. Let z̄ := z̄′ + bx̄c, which is also

p-adic. Then Az̄ = Az̄′+Abx̄c = b′+Abx̄c = b, so z̄ is a p-adic solution to Ax = b, as required.

The converse of this result, however, does not hold. For example, let k ≥ 3 be an integer, n :=

pk + 1, and m an integer in {4, . . . , pk} such that m− 1 is not a power of p. Consider the matrix

A :=

(
Jn − In

Jm − Im
0

)
where Jd, Id denote the all-ones square and identity matrices of dimension d, respectively. We claim

that the columns of A form a p-GSS but not a p-GSC. To see the former, note that A has rank n, and

since | det(Jn − In)| = n− 1 = pk, the GCD of the subdeterminants of A of order n is a power of p,

so the columns of A form a p-GSS by Theorem 1.3. To see the latter, consider the vector b ∈ {0, 1}n

whose first m entries are equal to 1, and whose last n−m entries are equal to 0. Then Ay = b, y ≥ 0

has a unique solution, namely ȳ defined as ȳi = 0 for 1 ≤ i ≤ n, and ȳi = 1
m−1 for n+1 ≤ i ≤ n+m.

In particular, as m− 1 is not a power of p, b is an integral vector in the conic hull of the columns of A,

but it cannot be expressed as a p-adic conic combination of the columns. Thus, the columns of A do

not form a p-GSC.1

However, we do have the following sort of converse.

Remark 3.4. If {a1, . . . , an} ⊆ Zm is a p-GSS, then {±a1, . . . ,±an} is a p-GSC.

Next we show that p-GSC are closed under taking faces.

Proposition 3.5. Let {a1, . . . , an} ⊆ Zm be a p-adic generating set for a cone, and F a nonempty

face of the cone. Then {ai : ai ∈ F} is a p-adic generating set for the cone F .

Proof. Let b be an integral vector in the face F . Since b ∈ C, we can write b as a p-adic conic

combination of the vectors in {a1, . . . , an}. However, since b is contained in the face F , the conic

combination can only assign nonzero coefficients to the vectors in F , implying in turn that b is a p-adic

conic combination of the vectors in {ai : ai ∈ F}. As this holds for every b, {ai : ai ∈ F} forms a

p-GSC.
1Smaller counterexamples exist; for instance, the vectors (0, 1, 1, 1, 1), (1, 0, 1, 1, 1), (1, 1, 0, 1, 1), (1, 1, 1, 0, 1),

(1, 1, 1, 1, 0), (3, 0, 1, 1, 1) form a DGSS but not a DGSC.
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Proof of Theorem 1.2. (⇒) follows from Proposition 3.5 and Proposition 3.3. (⇐) Let b be an integral

vector in C, and F the minimal face of C containing b. Let B be the matrix whose columns are the

vectors {ai : ai ∈ F}. We need to show that Q := {y : By = b, y ≥ 0}, which is nonempty, contains

a p-adic point. By the Density Lemma (Lemma 2.2), it suffices to show that aff(Q), the affine hull of

Q, contains a p-adic point. Our minimal choice of F implies that Q contains a point ẙ such that ẙ > 0

(meaning all entries are positive), implying in turn that aff(Q) = {y : By = b}. As the columns of B

form a p-GSS, and b is integral, it follows that aff(Q) contains a p-adic point, as required.

Consider the following complexity problem:

(B) Given a set of vectors, does it form a p-GSC?

Theorem 3.6. Problem (B) belongs to co-NP.

Proof. Suppose a set of integral vectors {a1, . . . , an}, whose conic hull is denoted C, is not a p-GSC.

By Theorem 1.2, there exists a face F = C ∩ {x : a>x ≥ 0} such that S := F ∩ {a1, . . . , an} does

not form a p-GSS. The subset S, along with the face provided by its supporting hyperplane a>x ≥ 0,

can be provided as a certificate that {a1, . . . , an} is not a p-GSC. Testing that S is not a p-GSS can be

done in polynomial time by Theorem 3.2, so the result follows.

4 Totally dual p-adic systems

Given integralA, b, recall thatAx ≤ b is totally dual p-adic if for every integralw for which min{b>y :

A>y = w, y ≥ 0} has an optimal solution, it has a p-adic optimum. It can be readily checked that the

rows of A form a p-GSS if, and only if, Ax = 0 is totally dual p-adic; and the rows of A form a p-GSC

if, and only if, Ax ≤ 0 is totally dual p-adic.

Proof of Theorem 1.1. Consider the following pair of dual linear programs, for w later specified.

max{w>x : Ax ≤ b} (P)

min{b>y : A>y = w, y ≥ 0}. (D)
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For every nonempty face F of P , denote by AF̄ the row submatrix of A corresponding to the rows

not in AF . For every vector y, denote by yF , yF̄ the variables corresponding to the rows in AF , AF̄ ,

respectively.

(1) ⇒ (2) Consider a nonempty face F of P . We need to show that the rows of AF form a

p-GSC. Let w be an integral vector in the conic hull of the rows of AF . It suffices to express w

as a p-adic conic combination of the rows of AF . To this end, observe that every point in F is an

optimal solution to (P). As Ax ≤ b is totally dual p-adic, (D) has a p-adic optimal solution, say

ȳ ≥ 0. As Complementary Slackness holds for all pairs (x̄, ȳ), x̄ ∈ F , it follows that ȳF̄ = 0.

Subsequently, we have w = A>ȳ = A>F ȳF , thereby achieving our objective. (2)⇒ (3) follows from

Proposition 3.3. (3) ⇒ (1) Choose an integral w for which (D) has an optimal solution; we need

to show now that it has a p-adic optimal solution. Denote by F the face of the optimal solutions

to the primal linear program (P). By Complementary Slackness, the set of optimal solutions to the

dual (D) is Q := {y : A>y = w, y ≥ 0, yF̄ = 0}. We need to show that Q contains a p-adic

point. In fact, by the Density Lemma, it suffices to find a p-adic point in aff(Q), the affine hull

of Q. By Strict Complementarity, Q contains a point ẙ such that ẙF > 0, implying in turn that

aff(Q) = {y : A>F yF = w, yF̄ = 0}. Since the rows of AF form a p-GSS, and w is integral, we get

that aff(Q) contains a p-adic point, as required.

The careful reader may notice that by applying polarity to Theorem 1.1 with b = 0, we obtain

another proof of Theorem 1.2. Moving on, consider the following complexity problem:

(C) Given a system Ax ≤ b where A, b are integral, is the system totally dual p-adic?

Theorem 4.1. Problem (C) belongs to co-NP.

Proof. Suppose Ax ≤ b is not totally dual p-adic for some integral A, b. Let P := {x : Ax ≤ b}. By

Theorem 1.1, there exists a nonempty face F := P ∩{x : a>x ≤ β} of P such that the rows of AF do

not form a p-GSS. The rows AF , along with the face provided by the supporting hyperplane a>x ≤ β,

can be given as a certificate that Ax ≤ b is not totally dual p-adic. Testing that the rows of AF do not

form a p-GSS can be done in polynomial time by Theorem 3.2, so the result follows.
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5 p-adic polyhedra

A nonempty rational polyhedron is p-adic if every nonempty face contains a p-adic point. In this

section we provide a characterization of p-adic polyhedra.

Remark 5.1. Let A ∈ Zm×n, b ∈ Zm, y ∈ Rm and y′ := y − byc ≥ 0. Then A>y ∈ Zn if and only if

A>y′ ∈ Zn, y is p-adic if and only if y′ is p-adic, and b>y is p-adic if and only if b>y′ is p-adic.

Theorem 5.2. Let A ∈ Zm×n, b ∈ Zm and P := {x : Ax ≤ b}. Then the following are equivalent for

a prime p:

(1) P is a p-adic polyhedron,

(2) for every nonempty face F of P , aff(F ) contains a p-adic point,

(3) for every nonempty face F of P , and z, if A>F z is integral then b>F z is p-adic,

(4) for all w ∈ Rn for which max{w>x : x ∈ P} has an optimum, it has a p-adic optimal solution,

(5) for all w ∈ Zn for which max{w>x : x ∈ P} has an optimum, it has a p-adic optimal value.

There is an intriguing contrast between this characterization and that of integral polyhedra (see

[8], Theorem 4.1), namely the novelty of statements (2) and (3), which are ultimately due to Strict

Complementarity and the Density Lemma.

Proof. (1) ⇒ (2) follows immediately from definition. (2) ⇒ (1) By the Density Lemma, every

nonempty face contains a p-adic point, so P is a p-adic polyhedron. (2) ⇔ (3) follows from the

Theorem of the Alternative. (1)⇒ (4) Suppose max{w>x : x ∈ P} has an optimum. Let F be the set

of optimal solutions. As F is in fact a face of P , and P is p-adic, it follows that F contains a p-adic

point. (4)⇒ (5) If x is a p-adic vector, and w an integral vector, then w>x is a p-adic rational.

(5)⇒ (3) We prove the contrapositive. Suppose (3) does not hold, that is, there exist a nonempty

face F and z such that w := A>F z ∈ Zn and b>F z is not p-adic. By Remark 5.1, we may assume that

z ≥ 0. Consider the following pair of dual linear programs:

max{w>x : Ax ≤ b} (P)

min{b>y : A>y = w, y ≥ 0} (D)
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Denote byAF̄ the row submatrix ofA corresponding to rows not inAF . Denote by yF , yF̄ the variables

of (D) corresponding to rows AF and AF̄ of A, respectively. Define ȳ ≥ 0 where ȳF = z and ȳF̄ = 0.

Then A>ȳ = A>F z = w, so ȳ is feasible for (D). Moreover, Complementary Slackness holds for every

pair (x, ȳ), x ∈ F . Subsequently, ȳ is an optimal solution to (D), and b>ȳ = b>F z is the common

optimal value of the two linear programs. Since w is integral and b>F z is not p-adic, (5) does not hold,

as required.

Corollary 5.3. Let A ∈ Zm×n, b ∈ Zm, and p a prime. If Ax ≤ b is totally dual p-adic, then

{x : Ax ≤ b} is a p-adic polyhedron.

Proof. This follows immediately from Theorem 5.2 (5)⇒ (1) and LP duality.

Proof of Theorem 1.5. By Corollary 5.3, P := {x : Ax ≤ b} is a p- and q-adic polyhedron, that is,

every minimal nonempty face of P contains a p-adic point and a q-adic point. Each minimal nonempty

face of P is an affine subspace, so by Corollary 2.5, it contains an integral point. Thus, every minimal

nonempty face of P contains an integral point, so P is an integral polyhedron.

6 T -joins, circuits, and perfect matchings

Let G = (V,E) be a graph, and T a nonempty subset of even cardinality. A T -cut is a cut of the form

δ(U) where |U ∩ T | is odd. Recall that a T -join is a subset of edges that induces a subgraph whose set

of odd degree vertices is precisely T . It can be readily checked that every T -cut and T -join intersect

(see [11], Chapter 2). The following result was recently proved:

Theorem 6.1 ([3]). Let G = (V,E) be a graph, and T a nonempty subset of even cardinality. Let τ be

the minimum cardinality of a T -cut. Then there exists a dyadic assignment yJ ≥ 0 to every T -join J

such that 1>y = τ and
∑

(yJ : J a T -join containing e) ≤ 1 ∀e ∈ E.

The proof of Theorem 6.1 uses the Density Lemma, the Theorem of the Alternative, and a result of

Lovász on the matching lattice [20].

17



Proof of Theorem 1.8. Let A be the matrix whose columns are labeled by E, and whose rows are the

incidence vectors of the T -joins. We need to show that min{w>x : Ax ≥ 1, x ≥ 0} yields a TDD

system. Choose an integral w such that the dual max{1>y : A>y ≤ w, y ≥ 0} has an optimal

solution, in particular, w ≥ 0. Let G′ be obtained from G after replacing every edge e with we parallel

edges (if we = 0, then e is deleted). Let τw be the minimum cardinality of a T -cut of G′, which is also

the minimum weight of a T -cut of G. By Theorem 6.1, there exists a dyadic assignment ȳJ ≥ 0 to

every T -join of G′ such that 1>ȳ = τw and
∑

(ȳJ : J a T -join of G′ containing e) ≤ 1 ∀e ∈ E(G′).

This naturally gives a dyadic assignment y?J ≥ 0 to every T -join of G such that 1>y? = τw and

A>y? ≤ w. Now let δ(U) be a minimum weight T -cut of G. Then χδ(U) is a feasible solution to the

primal which has value τw. As a result, χδ(U) is optimal for the primal, and y? is optimal for the dual.

Thus, the dual has a dyadic optimal solution, as required.

Given the proof of Theorem 1.7, a natural attempt to prove Theorem 1.8 is to prove that every basic

optimal solution of max{1>y : A>y ≤ w, y ≥ 0} is dyadic. However, this is not necessarily true if

G = (V,E) is a snark, T = V , and w = 1. In fact, as was shown by Palion [21], for the majority of

snarks on up to 40 vertices, an off-the-shelf LP solver finds a basic optimal solution that is not dyadic.

For example, if G is the first Blanuša snark with HoG graph ID 2760 [7], which has 18 vertices, the

linear program has a basic optimal solution that assigns 1
3 to some seven perfect matchings, and 2

3 to

some other perfect matching.

Theorem 1.8 does not extend to the p-adic setting for any prime p ≥ 3. To see this, consider the

graph G with vertices 1, 2, 3, 4, 5 and edges 13, 14, 15, 23, 24, 25, let T := {1, 3, 4, 5} and let w := 1.

Note that the T -joins are {13, 14, 15}, {13, 24, 25}, {14, 23, 25}, and {15, 23, 24}. Then the linear

program max{1>y : A>y ≤ w, y ≥ 0} has a unique optimal solution, which assigns 1
2 to each of the

T -joins. In particular, there is no p-adic optimal solution for any p ≥ 3.

Moving on, let G = (V,E) be a graph such that |V | is even. Let us prove that M(G), which is

equal to the set {χM : M a perfect matching of G}, is a DGSC.

Proof of Theorem 1.10. We may assume that G contains a perfect matching. Let T := V . Note that

every T -join has cardinality at least |V |2 , with equality holding precisely for the perfect matchings.
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By Theorem 1.8, the linear system x(J) ≥ 1 ∀ T -joins J ;x ≥ 0 is TDD. Let P be the corresponding

polyhedron, and F the minimal face containing the point 2
|V | ·1. The tight constraints of F are precisely

x(M) ≥ 1 for perfect matchings M , so by Theorem 1.1 for p = 2, the rows of the corresponding

coefficient matrix form a DGSC, implying in turn that M(G) is a DGSC.

Let P10 be the Petersen graph. Then P10 has six perfect matchings. Let M be the matrix whose

columns are labeled by E(P10), and whose rows are the incidence vectors of the perfect matchings. It

can be checked that the elementary divisors of M are (1, 1, 1, 1, 1, 2). Thus, for any prime p ≥ 3, the

rows of M which are the vectors in M(P10) do not form a p-GSS by Theorem 1.3, and so they do not

form a p-GSC by Proposition 3.3. Thus, Theorem 1.10 does not extend to the p-adic setting for p ≥ 3.

Let G = (V,E) be a graph. Recall that a cycle is a subset C ⊆ E such that every vertex in V

is incident with an even number of edges in C. In particular, ∅ is a cycle. Define C′(G) := {χC :

C a cycle of G}. We shall prove that this set is a DGSC. First, we need to prove the following:

Lemma 6.2. Let G = (V,E) be a graph. Consider edge variables x, z ∈ RE . Then the linear system

x(C) + z(E \ C) ≥ 1 ∀ cycles C;x ≥ 0; z ≥ 0 is TDD.

Proof. Let H be the graph obtained from G by replacing every edge e by a pair of series edges e, ê.

For a subset S ⊆ E we write Ŝ for {ê : e ∈ S}. Observe that H has edge set E ∪ Ê. Pick

T ⊆ V (H) so that Ê is a T -join of H (i.e. T is the set of odd degree vertices of the subgraph

of H induced by Ê). Define a function f : 2E → 2E∪Ê where f(C) := C ∪ Ê \ C. Then f

induces a bijection between the cycles of G and the T -joins of H . To see this, observe that C is a

cycle of G if and only if C ∪ Ĉ is a cycle in H . Moreover, the symmetric difference Ê4(C ∪ Ĉ)

is a T -join of H if and only if C ∪ Ĉ is a cycle in H . As Ê4(C ∪ Ĉ) = C ∪ Ê \ C the claim

about bijection follows. Subsequently, y(J) ≥ 1 ∀ T -joins J of H; y ≥ 0 is just a relabeling of

x(C) + z(E \ C) ≥ 1 ∀ cycles C of G;x ≥ 0; z ≥ 0. Since the first system is TDD by Theorem 1.8,

the second system is also TDD.

Lemma 6.2 above takes advantage of the fact that the cuboid of the cycle space of a graph is

isomorphic to the clutter of T -joins of another graph [2].
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Lemma 6.3. Let G = (V,E) be a graph. Then C′(G) is a DGSC.

Proof. Let M be the coefficient matrix of the linear system x(C) + z(E \ C) ≥ 1 ∀ cycles C from

Lemma 6.2. Note that M is a 0, 1 matrix with exactly |E| 1s per row. Let A be the column submatrix

corresponding to the x variables; observe that J − A is the column submatrix corresponding to the z

variables, where J denotes the all-ones matrix. By Lemma 6.2, Ax + (J − A)z ≥ 1;x ≥ 0; z ≥ 0

is TDD. Let P be the corresponding polyhedron, and F the minimal face containing the point 1
|E| · 1.

The tight constraints of F are precisely Ax + (J − A)z ≥ 1, so by Theorem 1.1 for p = 2, the rows

of (A | J −A) form a DGSC.

To finish the proof, we need to show that the rows ofA, which are precisely the elements of C′(G),

form a DGSC. To this end, let w be an integral vector in the conic hull of the rows of A. We need to

show that w can be expressed as a dyadic conic combination of the rows of A. There exists a ȳ ≥ 0

such that ȳ>A = w>. Since A has a zero row, we may assume that 1>ȳ is an integer. Subsequently,

ȳ>(A | J − A) = (w> | (1>ȳ) · 1> − w>) is an integral vector, so because the rows of (A | J − A)

form a DGSC, there exists a dyadic y′ ≥ 0 such that ȳ>(A | J −A) = y′>(A | J −A). In particular,

y′>A = w>, so w is a dyadic conic combination of the rows of A, as needed.

Recall that a circuit is a nonempty cycle that does not contain another nonempty cycle. Recall that

C(G) = {χC : C a circuit of G}.

Proof of Theorem 1.9. Observe that every nonempty cycle is the disjoint union of some circuits. Thus,

since C′(G) is a DGSC by Lemma 6.3, we obtain immediately that C(G) is a DGSC.

Let H be the graph on two vertices with three parallel edges. Then 1 ∈ cone(C(H)). In fact, 1

can be written as a unique conic combination of the vectors in C(H), in which every vector is assigned

a coefficient of 1
2 . Consequently, for any prime p ≥ 3, the vectors in C(H) do not form a p-GSC, so

Theorem 1.9 does not extend to the p-adic setting.

Finally, let us contrast Theorem 1.9 with another result. Our result implies that every integral

vector in cone(C(G)) can be expressed as a dyadic conic combination of the vectors in C(G). A very

interesting result of Alspach, Goddyn, and Zhang [4] states that a graph has the so-called circuit cover
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property if, and only if, it has no Petersen minor. What this implies is that if G has no Petersen minor,

then every integral vector in cone(C(G)) can be expressed as a half-integral linear combination of the

vectors in C(G). Thus, in the absence of a Petersen minor, they can drastically improve from dyadic

to half-integral coefficients, though at the expense of dropping their nonnegativity.

7 Differing definitions of Hilbert bases

We mentioned that the notion of a DGSC is the dyadic analogue of a Hilbert basis. To elaborate, a set

{a1, . . . , an} ⊆ Zm is an integral generating set for a cone (IGSC), or a Hilbert basis, if every integral

vector in the conic hull can be expressed as an integral conic combination of the vectors.

Our definition of Hilbert basis follows the convention implied in the original paper [16] and ex-

plicitly stated in [23], §22.3. However, some other sources including [17] and [24], §5.18, define it in

a more relaxed way, as follows.

We call {a1, . . . , an} ⊆ Zm a relaxed IGSC if every integral vector in the conic hull can either be

expressed as an integral conic combination of the vectors, or cannot be expressed as an integral linear

combination of the vectors at all. That is, the notion requires that every integral vector that belongs

to the conic hull and the integer hull (i.e. the lattice generated by integral linear combinations of the

vectors) can be expressed as an integral conic combination of the vectors.

While it is clear that every IGSC is also a relaxed IGSC, the converse is not necessarily true.

For example, the set {(1, 1, 0), (1, 0, 1), (0, 1, 1)} of row vectors does not form an IGSC, because

(1, 1, 1) which is in the conic hull cannot be expressed an an integral conic combination of the vectors.

Note, however, that (1, 1, 1) does not belong to the integer lattice at all. Indeed, the set forms a relaxed

IGSC. This can be proved by noticing, for instance, that the three vectors are linearly independent, so

every vector in R3 can be expressed in a unique way as a linear combination of the vectors.

A second example comes from the Petersen graph. It was noted in [17] that the set M(P10) of

incidence vectors of the perfect matchings of the Petersen graph forms a relaxed IGSC. However, as

we noted in §6, M(P10) does not even form a p-GSC for any prime p ≥ 3, let alone an IGSC. (Indeed,

an IGSC is a p-GSC for any prime p ≥ 2.)
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We call {a1, . . . , an} ⊆ Zm an integral generating set for a subspace (IGSS) if every integral

vector in the linear hull can be expressed as an integral linear combination of the vectors. Observe that

if {a1, . . . , an} is an IGSS, then it is a relaxed IGSC if and only if it is an IGSC. In addition, by an

argument similar to Proposition 3.3, it can be shown that an IGSC is necessarily an IGSS. Thus,

Theorem 7.1. {a1, . . . , an} ⊆ Zm is an IGSC if, and only if, it is a relaxed IGSC and an IGSS.

Let A be the matrix whose columns are a1, . . . , an. An argument similar to Theorem 1.3 tells us

that {a1, . . . , an} is an IGSS if, and only if, the elementary divisors of A are equal to 1. Thus, we

understand the IGSS property well. The theorem above then pushes the study of the IGSC property to

the relaxed IGSC property. The observations above seem to be a key reason for the indifference in the

literature between the two notions of Hilbert bases. However, one has to take caution when it comes to

examples. Arguably, IGSC examples are richer and more interesting than relaxed IGSC examples.

Finally, for every prime p, we call {a1, . . . , an} ⊆ Zm a relaxed p-GSC if every integral vector in

the conic hull can either be expressed as a p-adic conic combination of the vectors, or cannot be ex-

pressed as a p-adic linear combination of the vectors at all. We have a p-adic analogue of Theorem 7.1.

Theorem 7.2. Let p be a prime. Then, {a1, . . . , an} ⊆ Zm is a p-GSC if, and only if, it is a relaxed

p-GSC and a p-GSS.
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Gérard Cornuéjols was supported by ONR grant N00014-22-1-2528. Bertrand Guenin was supported

by Discovery Grants from NSERC and ONR grant N00014-18-1-2078. Levent Tunçel was supported
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graphs. Discrete Applied Maathematics, 161(1-2):311–314, 2013.
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