The rainbow covering number of clean tangled clutters

Ahmad Abdi Gérard Cornuéjols

May 20, 2025

Abstract

In this brief note, we prove a min-min equality for a clean tangled clutter, that the rainbow covering number is equal to the connectivity of its setcore.

Keywords. Clutter, blocker, rainbow covering number, clean clutter.

1 Introduction

A clutter C over ground set V is *tangled*, or 2-*cover-minimal*, if it has covering number 2, and every element belongs to a minimum cover [ACHL21]. Denote by G(C) the graph over vertex set V whose edges correspond to the minimum covers of C. A cover of C is *rainbow* if it intersects every connected component of G(C) at most once. The *rainbow covering number of* C, denoted $\mu(C)$, is the minimum size of a rainbow cover of C; if there is no rainbow cover, then $\mu(C) := +\infty$.

A clutter is *clean* if it has no minor that is a delta or the blocker of an extended odd hole. Let C be a clean tangled clutter over ground set V. It is known that G(C) is a bipartite graph [AL19]. The *core of* C, denoted core(C), is the set of all members of C that intersect every minimum cover exactly once. It is known that the core of C corresponds uniquely to a set-system in $\{0, 1\}^d$, where d is the number of connected components of G(C) – this is defined in §2. The set-system, denoted by $setcore(C) \subseteq \{0, 1\}^d$, is called a *setcore of* C, and the convex hull of setcore(C) is a full-dimensional polytope containing $\frac{1}{2}\mathbf{1}$ in its interior [ACS22].

Clean tangled clutters have been a subject of recent study. There is an intriguing interplay between the polyhedral geometry and the combinatorics of clean tangled clutters. For example, the convex hull of the setcore is a simplex if, and only if, the setcore is the cocycle space of a projective geometry over GF(2) [ACS22].

The connectivity of a set-system $S \subseteq \{0,1\}^d$, denoted $\lambda(S)$, is the minimum number of variables that appear in a generalized set covering (GSC) inequality valid for $\operatorname{conv}(S)$, i.e., an inequality of the form $\sum_{i \in I} x_i + \sum_{j \in J} (1-x_j) \ge 1$ for some $I, J \subseteq [d], I \cap J = \emptyset$; if $S = \{0,1\}^d$, then $\lambda(S) := +\infty$.

In this brief note, we prove that the two parameters that we defined above are equal, further stressing the synergy between the polyhedral geometry and the combinatorics of clean tangled clutters:

Theorem 1.1. For every clean tangled clutter C, we have $\mu(C) = \lambda(\text{setcore}(C))$.

2 Definitions and preliminaries

Clutters Let V be a finite set of *elements*, and let C be a family of subsets of V called *members* or *sets*. C is a *clutter* over *ground set* V if no member contains another [EF70]. A *cover* is a subset $B \subseteq V$ such that $B \cap C \neq \emptyset$ for all $C \in C$. The *covering number* of C, denoted $\tau(C)$, is the minimum cardinality of a cover. A cover is *minimal* if it does not contain another cover. The *blocker* of C, denoted b(C), is the clutter over ground set V whose members are the minimal covers of C [EF70]. It is well-known that b(b(C)) = C [Isb58, EF70]. Take disjoint $I, J \subseteq V$. The *minor* of C obtained after *deleting I* and *contracting J*, denoted $C \setminus I/J$, is the clutter over

ground set $V - (I \cup J)$ whose members consist of the inclusion-wise minimal sets of $\{C - J : C \in \mathcal{C}, C \cap I = \emptyset\}$. It is well-known that $b(\mathcal{C} \setminus I/J) = b(\mathcal{C})/I \setminus J$ [Sey76].

Clean clutters Two clutters are *isomorphic* if one is obtained from the other by relabeling the ground set. Take an integer $n \ge 3$. Denote by Δ_n the clutter over ground set $[n] := \{1, \ldots, n\}$ whose members are $\{1, 2\}, \{1, 3\}, \ldots, \{1, n\}, \{2, 3, \ldots, n\}$. Any clutter isomorphic to Δ_n is called a *delta of dimension* n. A delta is equal to its blocker. Given an odd integer $n \ge 5$, an *extended odd hole of dimension* n is any clutter whose ground set can be relabeled as [n] so that its minimum cardinality members are precisely $\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}, \{n, 1\}$. Recall that a clutter is clean if it has no minor that is a delta or the blocker of an extended odd hole. Testing cleanness of a clutter belongs to P [ACL20].

Core and setcore Let C be a clean tangled clutter over ground set V. Recall that G := G(C) is the graph over vertex set V whose edges correspond to the minimum covers of C. Recall that G is a bipartite graph. Let d be the number of connected components of G(C), and for each $i \in [d]$, denote by $\{U_i, V_i\}$ the bipartition of the i^{th} connected component of G. Recall that the core of C, denoted core(C), is the set of all members of C that intersect every minimum cover exactly once.

Theorem 2.1 ([ACS22], Theorem 2.9). $core(C) = \{C \in C : C \cap (U_i \cup V_i) \in \{U_i, V_i\} \text{ for each } i \in [d] \}.$

The setcore of C with respect to $(U_1, V_1; U_2, V_2; \ldots; U_d, V_d)$ is the set-system $S \subseteq \{0, 1\}^d$ that has a point $p \in S$ for every $C \in \operatorname{core}(C)$ such that $p_i = 0$ if and only if $C \cap (U_i \cup V_i) = U_i$, for all $i \in [d]$. By Theorem 2.1, the set-system S is well-defined. We denote S by $\operatorname{setcore}(C : U_1, V_1; U_2, V_2; \ldots; U_d, V_d)$. As the reader can imagine, we will not use this notation often, and use $\operatorname{setcore}(C)$ as short-hand notation. Note however that $\operatorname{setcore}(C)$ is defined only up to isomorphism.

Theorem 2.2 ([ACS22], Theorem 1.5). $\operatorname{conv}(\operatorname{setcore}(\mathcal{C}))$ is a full-dimensional polytope contained in $[0,1]^d$ and containing $\frac{1}{2}\mathbf{1}$ in its interior. In particular, $\operatorname{setcore}(\mathcal{C})$ does not have duplicated coordinates, $\operatorname{core}(\mathcal{C})$ is nonempty, and has covering number two.

This immediately implies the following.

Corollary 2.3. If $d \leq 2$, then setcore $(\mathcal{C}) = \{0, 1\}^d$.

We also need the following earlier result.

Theorem 2.4 ([ACGT22], Theorem 2.5, and [ACS22], Lemma 2.6). Suppose G is not a connected graph. Let $\{U, U'\}$ be the bipartition of a connected component of G. Then $C \setminus U/U'$ is a clean tangled clutter such that $\operatorname{core}(C \setminus U/U') \subseteq \operatorname{core}(C) \setminus U/U'$.

3 Proof of Theorem 1.1

Let C be a clean tangled clutter over ground set V, let G := G(C), and let d be the number of connected components of G. For each $i \in [d]$, let $\{U_i, V_i\}$ be the bipartition of the ith connected component of G. Let $\mu := \mu(C)$ be the rainbow covering number, and let $\lambda := \lambda(\operatorname{setcore}(C))$ be the connectivity of $\operatorname{setcore}(C)$. We need a key notion.

Definition 3.1. A monochromatic cover of C is a cover that is monochromatic in some proper 2-vertex-coloring of G. A monochromatic cover of C, say of the form $\bigcup_{i \in I} V_i$ for some $I \subseteq [d]$, is irreducible if for each $j \in I$, $(\bigcup_{i \in I, i \neq j} V_i) \cup U_j$ is not a cover.

Observe that every rainbow cover is also monochromatic. We need the following parameters:

- $\mu_1(\mathcal{C})$: the minimum size of a cover of $\operatorname{core}(\mathcal{C})$ that is monochromatic in some proper 2-vertex-coloring of G. It can be readily seen that any such cover that is inclusion-wise minimal intersects every component of G at most once, and $\mu \ge \mu_1(\mathcal{C}) = \lambda$.
- $\mu_2(\mathcal{C})$: the minimum number of components of G intersected by a monochromatic cover of \mathcal{C} .
- $\mu_3(\mathcal{C})$: the minimum number of components of G intersected by an irreducible monochromatic cover of \mathcal{C} .

Let $\mu_i := \mu_i(\mathcal{C})$ for i = 0, 1, 2. To prove Theorem 1.1, it remains to show that $\mu_1 \ge \mu$. The first lemma below is a minor extension of [[ACS22], Lemma 2.8] and the second lemma is related to [[ACS22], Theorem 5.2].

Lemma 3.2. Suppose for some $u, v \in V$, every member of core(C) containing u also contains v. Then u, v belong to the same part of the bipartition of a connected component of G.

Proof. By Theorem 2.1, it suffices to show that u, v belong to the same connected component of G. Suppose otherwise. In particular, G is not connected. Let $\{U, U'\}$ be the bipartition of the connected component containing u where $u \in U'$. Then $C \setminus U/U'$ is a clean tangled clutter such that $\operatorname{core}(C \setminus U/U') \subseteq \operatorname{core}(C) \setminus U/U'$ by Theorem 2.4. Let w be a neighbor of u in G; so $w \in U$. Then $\{w, u\}$ is a cover of C. As every member of $\operatorname{core}(C) \setminus U/U'$ has a cover, it follows that $\{w, v\}$ is a cover of $\operatorname{core}(C)$, implying in turn that $\operatorname{core}(C) \setminus U/U'$ has $\{v\}$ as a cover. However, $\operatorname{core}(C \setminus U/U') \subseteq \operatorname{core}(C) \setminus U/U'$, so $\operatorname{core}(C \setminus U/U')$ has a cover of $\operatorname{cardinality} 1$, a contradiction to Theorem 2.2.

Lemma 3.3. If $V_1 \cup \cdots \cup V_k$ is an irreducible monochromatic cover for some integer $k \in [r]$, then there exists a monochromatic minimal cover B such that $B \subseteq \bigcup_{i=1}^k V_i$ and $|B \cap V_i| = 1$ for each $i \in [k]$.

Proof. Out of all the monochromatic minimal covers of C contained in $\bigcup_{i=1}^{k} V_i$, pick one of minimum cardinality, call it B. As $\bigcup_{i=1}^{k} V_i$ is an irreducible monochromatic cover, it follows that $B \cap V_i \neq \emptyset$, $i \in [k]$. To finish the proof of the lemma, it suffices to show that $|B \cap V_1| = 1$. Suppose for a contradiction that $|B \cap V_1| \ge 2$. Let $I := B - V_1$, $J := V - (U_1 \cup V_1 \cup I)$, and $C' := C \setminus I/J$, a minor over ground set $U_1 \cup V_1$. Assume in the first case that $\tau(C') \ge 2$. Then C' is clean and tangled, and $G[U_1 \cup V_1] \subseteq G(C')$. Thus G(C') is a connected bipartite graph whose bipartition is inevitably $\{U_1, V_1\}$. It therefore follows from Corollary 2.3 that $U_1, V_1 \in C'$. However, $B \cap V_1 = B - I$ is a cover of C' disjoint from U_1 , a contradiction. Assume in the remaining case that $\tau(C') \le 1$. That is, there is a $D \in b(C)$ such that $D \subseteq U_1 \cup V_1 \cup I$ and $|D - I| \le 1$. As $D \subseteq (V_1 \cup \cdots \cup V_k) \cup U_1$, and $V_1 \cup \cdots \cup V_k$ is an irreducible monochromatic cover, it follows that $D \subseteq \bigcup_{i=1}^k V_i$. But then D is a monochromatic minimal cover of C contained in $\bigcup_{i=1}^k V_i$ and

$$|D| = |D - I| + |D \cap I| \le 1 + |B - (U_1 \cup V_1)| < |B \cap (U_1 \cup V_1)| + |B - (U_1 \cup V_1)| = |B|,$$

a contradiction to our minimal choice of B. As a result, $|B \cap V_1| = 1$, as desired.

Lemma 3.4. The following inequalities hold:

1. $\mu_1 \ge \mu_2$, 2. $\mu_2 \ge \mu_3$, 3. $\mu_3 \ge \mu$.

Proof. (1) If $\mu_1 = \infty$, then the inequality $\mu_2 \le \mu_1$ holds clearly. Otherwise, μ_1 is finite.

We claim that $\mu_1 \ge 3$. For if not, then $\operatorname{core}(\mathcal{C})$ would have a cover $\{u, v\}$ of size 2 that is monochromatic in some proper 2-vertex-coloring of G. Clearly, u, v must be from different connected components of G. Let v' be an element in V such that $\{v, v'\}$ is an edge of G. Then every member of $\operatorname{core}(\mathcal{C})$ containing v' does not contain v so it must contain u. Subsequently, by Lemma 3.2, u and v', and therefore u and v, are from the same connected component of G, a contradiction. We prove by induction on μ_1 that $\mu_2 \leq \mu_1$. If $\mu_2 \leq 3$, then the inequality follows from the inequality $\mu_1 \geq 3$ that we just showed. For the induction step, we assume that $\mu_2 > 3$. Suppose $U_1 \cup \cdots \cup U_{\mu_1}$ is a cover of core(C), and let $C' := C \setminus U_{\mu_1}/V_{\mu_1}$, which is also a clean tangled clutter. As $\mu_2 > 3$, it follows that G(C') has the same connected components as G except for $U_{\mu_1} \cup V_{\mu_1}$.

By the induction hypothesis, $\mu_2(\mathcal{C}') \leq \mu_1(\mathcal{C}')$. On the one hand, $\mu_1(\mathcal{C}') \leq \mu_1 - 1$ as $U_1 \cup \cdots \cup U_{\mu_1-1}$ is a cover of $\operatorname{core}(\mathcal{C}')$; this is because $\operatorname{core}(\mathcal{C}') \subseteq \operatorname{core}(\mathcal{C}) \setminus U_{\mu_1}/V_{\mu_1}$ by Theorem 2.4 and $U_1 \cup \cdots \cup U_{\mu_1-1}$ is clearly a cover of the latter. On the other hand, $\mu_2(\mathcal{C}') \geq \mu_2 - 1$ as any monochromatic cover U of \mathcal{C}' yields a monochromatic cover of \mathcal{C} , namely $U \cup U_{\mu_1}$, intersecting only 1 more component of G. Thus, $\mu_1 - 1 \geq \mu_1(\mathcal{C}') \geq \mu_2(\mathcal{C}') \geq \mu_2 - 1$, implying in turn that $\mu_1 \geq \mu_2$, thereby completing the induction step.

(2) If $\mu_2 = \infty$, then we are done. Otherwise, suppose $U_1 \cup \cdots \cup U_{\mu_2}$ is a monochromatic cover of C. Suppose for a contradiction that $U_1 \cup \cdots \cup U_{\mu_2-1} \cup U_{\mu_2}$ is not irreducible, say $U_1 \cup \cdots \cup U_{\mu_2-1} \cup V_{\mu_2}$ is also a cover of C. Then $U_1 \cup \cdots \cup U_{\mu_2-1}$ must be a cover of core(C), implying in turn that $\mu_2 - 1 \ge \mu_1$, thus contradicting (1).

(3) If $\mu_3 = \infty$, we are done. Otherwise, the inequality follows from Lemma 3.3.

We are ready to prove the promised relation, that $\mu = \lambda$.

Proof of Theorem 1.1. By Lemma 3.4, $\mu_1 \ge \mu_2 \ge \mu_3 \ge \mu$. We also know that $\mu \ge \mu_1 = \lambda$, thus $\mu = \lambda$, as required.

Acknowledgements

This work is supported by ONR grant 14-22-1-2528 and EPSRC grant EP/X030989/1. We would like to thank an anonymous referee for a very helpful report on a precursor of this manuscript and suggesting the definitions of $\mu_1(\mathcal{C}), \mu_2(\mathcal{C})$, and the proof of Lemma 3.4 part (1).

Data Availability Statement. No data are associated with this article. Data sharing is not applicable to this article.

References

- [ACGT22] Ahmad Abdi, Gérard Cornuéjols, Bertrand Guenin, and Levent Tunçel. Clean clutters and dyadic fractional packings. SIAM Journal on Discrete Mathematics, 36(2):1012–1037, 2022.
- [ACHL21] Ahmad Abdi, Gérard Cornuéjols, Tony Huynh, and Dabeen Lee. Idealness of *k*-wise intersecting families. *Math. Programming, Series B*, 192:29–50, 2021.
- [ACL20] Ahmad Abdi, Gérard Cornuéjols, and Dabeen Lee. Intersecting restrictions in clutters. Combinatorica, 40:605– 623, 2020.
- [ACS22] Ahmad Abdi, Gérard Cornuéjols, and Matt Superdock. Clean tangled clutters, simplices, and projective geometries. *Journal of Combinatorial Theory, Series B*, 154:60–92, 2022.
- [AL19] Ahmad Abdi and Dabeen Lee. Deltas, extended odd holes and their blockers. *Journal of Combinatorial Theory, Series B*, 136:193 – 203, 2019.
- [EF70] Jack Edmonds and D. R. Fulkerson. Bottleneck extrema. J. Combinatorial Theory, 8:299-306, 1970.
- [Isb58] John R. Isbell. A class of simple games. Duke Math. J., 25:423–439, 1958.
- [Sey76] Paul D. Seymour. The forbidden minors of binary clutters. J. London Math. Soc. (2), 12(3):356-360, 1976.