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Abstract

In this brief note, we prove a min-min equality for a clean tangled clutter, that the rainbow covering number
is equal to the connectivity of its setcore.
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1 Introduction
A clutter C over ground set V is tangled, or 2-cover-minimal, if it has covering number 2, and every element
belongs to a minimum cover [ACHL21]. Denote by G(C) the graph over vertex set V whose edges correspond
to the minimum covers of C. A cover of C is rainbow if it intersects every connected component of G(C) at most
once. The rainbow covering number of C, denoted µ(C), is the minimum size of a rainbow cover of C; if there is
no rainbow cover, then µ(C) := +∞.

A clutter is clean if it has no minor that is a delta or the blocker of an extended odd hole. Let C be a clean
tangled clutter over ground set V . It is known that G(C) is a bipartite graph [AL19]. The core of C, denoted
core(C), is the set of all members of C that intersect every minimum cover exactly once. It is known that the core
of C corresponds uniquely to a set-system in {0, 1}d, where d is the number of connected components of G(C)
– this is defined in §2. The set-system, denoted by setcore(C) ⊆ {0, 1}d, is called a setcore of C, and the convex
hull of setcore(C) is a full-dimensional polytope containing 1

21 in its interior [ACS22].
Clean tangled clutters have been a subject of recent study. There is an intriguing interplay between the

polyhedral geometry and the combinatorics of clean tangled clutters. For example, the convex hull of the setcore
is a simplex if, and only if, the setcore is the cocycle space of a projective geometry over GF (2) [ACS22].

The connectivity of a set-system S ⊆ {0, 1}d, denoted λ(S), is the minimum number of variables that appear
in a generalized set covering (GSC) inequality valid for conv(S), i.e., an inequality of the form

∑
i∈I xi +∑

j∈J(1− xj) ≥ 1 for some I, J ⊆ [d], I ∩ J = ∅; if S = {0, 1}d, then λ(S) := +∞.
In this brief note, we prove that the two parameters that we defined above are equal, further stressing the

synergy between the polyhedral geometry and the combinatorics of clean tangled clutters:

Theorem 1.1. For every clean tangled clutter C, we have µ(C) = λ(setcore(C)).

2 Definitions and preliminaries
Clutters Let V be a finite set of elements, and let C be a family of subsets of V called members or sets. C
is a clutter over ground set V if no member contains another [EF70]. A cover is a subset B ⊆ V such that
B ∩ C ̸= ∅ for all C ∈ C. The covering number of C, denoted τ(C), is the minimum cardinality of a cover. A
cover is minimal if it does not contain another cover. The blocker of C, denoted b(C), is the clutter over ground set
V whose members are the minimal covers of C [EF70]. It is well-known that b(b(C)) = C [Isb58, EF70]. Take
disjoint I, J ⊆ V . The minor of C obtained after deleting I and contracting J , denoted C\I/J , is the clutter over
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ground set V −(I∪J) whose members consist of the inclusion-wise minimal sets of {C−J : C ∈ C, C∩I = ∅}.
It is well-known that b(C \ I/J) = b(C)/I \ J [Sey76].

Clean clutters Two clutters are isomorphic if one is obtained from the other by relabeling the ground set.
Take an integer n ≥ 3. Denote by ∆n the clutter over ground set [n] := {1, . . . , n} whose members are
{1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n}. Any clutter isomorphic to ∆n is called a delta of dimension n. A delta
is equal to its blocker. Given an odd integer n ≥ 5, an extended odd hole of dimension n is any clutter whose
ground set can be relabeled as [n] so that its minimum cardinality members are precisely {1, 2}, {2, 3}, . . . , {n−
1, n}, {n, 1}. Recall that a clutter is clean if it has no minor that is a delta or the blocker of an extended odd hole.
Testing cleanness of a clutter belongs to P [ACL20].

Core and setcore Let C be a clean tangled clutter over ground set V . Recall that G := G(C) is the graph over
vertex set V whose edges correspond to the minimum covers of C. Recall that G is a bipartite graph. Let d be
the number of connected components of G(C), and for each i ∈ [d], denote by {Ui, Vi} the bipartition of the
ith connected component of G. Recall that the core of C, denoted core(C), is the set of all members of C that
intersect every minimum cover exactly once.

Theorem 2.1 ([ACS22], Theorem 2.9). core(C) = {C ∈ C : C ∩ (Ui ∪ Vi) ∈ {Ui, Vi} for each i ∈ [d]}.

The setcore of C with respect to (U1, V1;U2, V2; . . . ;Ud, Vd) is the set-system S ⊆ {0, 1}d that has a point
p ∈ S for every C ∈ core(C) such that pi = 0 if and only if C ∩ (Ui∪Vi) = Ui, for all i ∈ [d]. By Theorem 2.1,
the set-system S is well-defined. We denote S by setcore(C : U1, V1;U2, V2; . . . ;Ud, Vd). As the reader can
imagine, we will not use this notation often, and use setcore(C) as short-hand notation. Note however that
setcore(C) is defined only up to isomorphism.

Theorem 2.2 ([ACS22], Theorem 1.5). conv(setcore(C)) is a full-dimensional polytope contained in [0, 1]d

and containing 1
21 in its interior. In particular, setcore(C) does not have duplicated coordinates, core(C) is

nonempty, and has covering number two.

This immediately implies the following.

Corollary 2.3. If d ≤ 2, then setcore(C) = {0, 1}d.

We also need the following earlier result.

Theorem 2.4 ([ACGT22], Theorem 2.5, and [ACS22], Lemma 2.6). Suppose G is not a connected graph. Let
{U,U ′} be the bipartition of a connected component of G. Then C \ U/U ′ is a clean tangled clutter such that
core(C \ U/U ′) ⊆ core(C) \ U/U ′.

3 Proof of Theorem 1.1
Let C be a clean tangled clutter over ground set V , let G := G(C), and let d be the number of connected
components of G. For each i ∈ [d], let {Ui, Vi} be the bipartition of the ith connected component of G. Let
µ := µ(C) be the rainbow covering number, and let λ := λ(setcore(C)) be the connectivity of setcore(C). We
need a key notion.

Definition 3.1. A monochromatic cover of C is a cover that is monochromatic in some proper 2-vertex-coloring
of G. A monochromatic cover of C, say of the form

⋃
i∈I Vi for some I ⊆ [d], is irreducible if for each j ∈ I ,(⋃

i∈I,i̸=j Vi

)
∪ Uj is not a cover.

Observe that every rainbow cover is also monochromatic. We need the following parameters:
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µ1(C): the minimum size of a cover of core(C) that is monochromatic in some proper 2-vertex-coloring of G. It
can be readily seen that any such cover that is inclusion-wise minimal intersects every component of G at
most once, and µ ≥ µ1(C) = λ.

µ2(C): the minimum number of components of G intersected by a monochromatic cover of C.

µ3(C): the minimum number of components of G intersected by an irreducible monochromatic cover of C.

Let µi := µi(C) for i = 0, 1, 2. To prove Theorem 1.1, it remains to show that µ1 ≥ µ. The first lemma below
is a minor extension of [[ACS22], Lemma 2.8] and the second lemma is related to [[ACS22], Theorem 5.2].

Lemma 3.2. Suppose for some u, v ∈ V , every member of core(C) containing u also contains v. Then u, v
belong to the same part of the bipartition of a connected component of G.

Proof. By Theorem 2.1, it suffices to show that u, v belong to the same connected component of G. Suppose
otherwise. In particular, G is not connected. Let {U,U ′} be the bipartition of the connected component con-
taining u where u ∈ U ′. Then C \ U/U ′ is a clean tangled clutter such that core(C \ U/U ′) ⊆ core(C) \ U/U ′

by Theorem 2.4. Let w be a neighbor of u in G; so w ∈ U . Then {w, u} is a cover of C. As every mem-
ber of core(C) containing u also contains v, it follows that {w, v} is a cover of core(C), implying in turn that
core(C) \U/U ′ has {v} as a cover. However, core(C \U/U ′) ⊆ core(C) \U/U ′, so core(C \U/U ′) has a cover
of cardinality 1, a contradiction to Theorem 2.2.

Lemma 3.3. If V1 ∪ · · · ∪ Vk is an irreducible monochromatic cover for some integer k ∈ [r], then there exists
a monochromatic minimal cover B such that B ⊆

⋃k
i=1 Vi and |B ∩ Vi| = 1 for each i ∈ [k].

Proof. Out of all the monochromatic minimal covers of C contained in
⋃k

i=1 Vi, pick one of minimum cardinal-
ity, call it B. As

⋃k
i=1 Vi is an irreducible monochromatic cover, it follows that B ∩ Vi ̸= ∅, i ∈ [k]. To finish

the proof of the lemma, it suffices to show that |B ∩ V1| = 1. Suppose for a contradiction that |B ∩ V1| ≥ 2.
Let I := B − V1, J := V − (U1 ∪ V1 ∪ I), and C′ := C \ I/J , a minor over ground set U1 ∪ V1. Assume
in the first case that τ(C′) ≥ 2. Then C′ is clean and tangled, and G[U1 ∪ V1] ⊆ G(C′). Thus G(C′) is a
connected bipartite graph whose bipartition is inevitably {U1, V1}. It therefore follows from Corollary 2.3 that
U1, V1 ∈ C′. However, B ∩ V1 = B − I is a cover of C′ disjoint from U1, a contradiction. Assume in the
remaining case that τ(C′) ≤ 1. That is, there is a D ∈ b(C) such that D ⊆ U1 ∪ V1 ∪ I and |D − I| ≤ 1. As
D ⊆ (V1∪· · ·∪Vk)∪U1, and V1∪· · ·∪Vk is an irreducible monochromatic cover, it follows that D ⊆

⋃k
i=1 Vi.

But then D is a monochromatic minimal cover of C contained in
⋃k

i=1 Vi and

|D| = |D − I|+ |D ∩ I| ≤ 1 + |B − (U1 ∪ V1)| < |B ∩ (U1 ∪ V1)|+ |B − (U1 ∪ V1)| = |B|,

a contradiction to our minimal choice of B. As a result, |B ∩ V1| = 1, as desired.

Lemma 3.4. The following inequalities hold:

1. µ1 ≥ µ2,

2. µ2 ≥ µ3,

3. µ3 ≥ µ.

Proof. (1) If µ1 = ∞, then the inequality µ2 ≤ µ1 holds clearly. Otherwise, µ1 is finite.
We claim that µ1 ≥ 3. For if not, then core(C) would have a cover {u, v} of size 2 that is monochromatic

in some proper 2-vertex-coloring of G. Clearly, u, v must be from different connected components of G. Let
v′ be an element in V such that {v, v′} is an edge of G. Then every member of core(C) containing v′ does not
contain v so it must contain u. Subsequently, by Lemma 3.2, u and v′, and therefore u and v, are from the same
connected component of G, a contradiction.
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We prove by induction on µ1 that µ2 ≤ µ1. If µ2 ≤ 3, then the inequality follows from the inequality
µ1 ≥ 3 that we just showed. For the induction step, we assume that µ2 > 3. Suppose U1 ∪ · · · ∪ Uµ1

is a cover
of core(C), and let C′ := C \ Uµ1

/Vµ1
, which is also a clean tangled clutter. As µ2 > 3, it follows that G(C′)

has the same connected components as G except for Uµ1
∪ Vµ1

.
By the induction hypothesis, µ2(C′) ≤ µ1(C′). On the one hand, µ1(C′) ≤ µ1 − 1 as U1 ∪ · · · ∪ Uµ1−1 is

a cover of core(C′); this is because core(C′) ⊆ core(C) \ Uµ1/Vµ1 by Theorem 2.4 and U1 ∪ · · · ∪ Uµ1−1 is
clearly a cover of the latter. On the other hand, µ2(C′) ≥ µ2 − 1 as any monochromatic cover U of C′ yields
a monochromatic cover of C, namely U ∪ Uµ1

, intersecting only 1 more component of G. Thus, µ1 − 1 ≥
µ1(C′) ≥ µ2(C′) ≥ µ2 − 1, implying in turn that µ1 ≥ µ2, thereby completing the induction step.

(2) If µ2 = ∞, then we are done. Otherwise, suppose U1∪· · ·∪Uµ2 is a monochromatic cover of C. Suppose
for a contradiction that U1 ∪ · · · ∪Uµ2−1 ∪Uµ2 is not irreducible, say U1 ∪ · · · ∪Uµ2−1 ∪ Vµ2 is also a cover of
C. Then U1 ∪ · · · ∪Uµ2−1 must be a cover of core(C), implying in turn that µ2 − 1 ≥ µ1, thus contradicting (1).

(3) If µ3 = ∞, we are done. Otherwise, the inequality follows from Lemma 3.3.

We are ready to prove the promised relation, that µ = λ.

Proof of Theorem 1.1. By Lemma 3.4, µ1 ≥ µ2 ≥ µ3 ≥ µ. We also know that µ ≥ µ1 = λ, thus µ = λ, as
required.
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