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Abstract

A set-system S ⊆ {0, 1}n is cube-ideal if its convex hull can be described by capacity and generalized
set covering inequalities. In this paper, we use combinatorics, convex geometry, and polyhedral theory to
give exponential lower bounds on the size of cube-ideal set-systems, and linear lower bounds on their VC
dimension. We then provide applications to graph theory and combinatorial optimization, specifically to strong
orientations, perfect matchings, dijoins, and ideal clutters.

Keywords. Cube-ideal set-system, VC dimension, centrally symmetric hypercube, mixed graph, strong orien-
tation, perfect matching.

1 Introduction
A set-system S ⊆ {0, 1}n is cube-ideal if its convex hull can be described by capacity inequalities 0 ≤ x ≤ 1
and generalized set covering (GSC) inequalities, which are of the form

∑
i∈I xi+

∑
j∈J(1−xj) ≥ 1 for disjoint

subsets I, J ⊆ [n].
Cube-ideal set-systems form a rich class with examples coming from different corners of mathematics. For

example, if the Hamming graph of {0, 1}n \ S has degree at most 2, then S is cube-ideal [CL18]. A second
example is the cycle space of any graph [BG86], while strongly connected re-orientations of any digraph give a
third class of examples [EG77]. More recent examples have also been found, see [ACL20] for instance.

In propositional logic, a cube-ideal set-system corresponds to the solutions of a Boolean formula in clausal
normal form whose linearization intersected with the unit hypercube forms an integral polytope [Hoo88, Hoo96].
In integer and linear programming, cube-idealness plays a key role in the study of a basic class of objects known
as ideal clutters [CN94, Cor01]. More specifically, several important conjectures about ideal clutters can be
reduced to or equivalently reformulated in terms of cube-ideal set-systems [ACGL20, ACHL21].

In this paper, we give exponential lower bounds on the size of cube-ideal set-systems, and linear lower
bounds on their VC dimension. We then provide applications to strong orientations, perfect matchings, dijoins,
and ideal clutters. To elaborate, we need two definitions.

Let S ⊆ {0, 1}n be a set-system. The connectivity of S, denoted by λ(S), is the minimum number of
variables used in a GSC inequality valid for conv(S); if S = {0, 1}n then λ(S) := +∞.1 Denote by H :
[0, 1

2 ] → [0, 1] the binary entropy function, defined as H(ε) := −ε log2(ε)− (1− ε) log2(1− ε) for ε > 0, and
H(0) := 0. Note that H is a strictly increasing continuous function, H(1/3) ≈ 0.9183, and H(1/2) = 1. We
prove the following lower bound.

Theorem 1.1 (proved in §2). Let S ⊆ {0, 1}n be a cube-ideal set-system with connectivity λ, where λ ≥ 3.
Then |S| ≥ 2(1−H(1/λ))n.

Observe that 1 −H(1/λ) ≥ 1 −H(1/3) ≥ 0.0817, so the theorem gives a lower bound of 20.0817n on the
size of every cube-ideal set-system S ⊆ {0, 1}n with connectivity at least 3. In fact, under certain conditions on

1This notion is closely related to the recently defined notion of notch – more precisely, when connectivity is finite, it is equal to the notch
minus 1 [BFHW18].

1



S, we will show that a particular face of conv(S) also contains exponentially many 0, 1 points. To this end, a
set covering (SC) inequality is an inequality of the form

∑
i∈I xi ≥ 1 for some subset I ⊆ [n]. For an integer

k ≥ 2, a k-SC inequality is an SC inequality with exactly k variables.

Theorem 1.2 (proved in §3). For every integer λ ≥ 3 and constant β ∈ (0, 1], there is a constant θ := θ(λ, β) >
0 such that the following statement holds:

Let S ⊆ {0, 1}n be a cube-ideal set-system with connectivity λ such that every variable appears in a valid
λ-SC inequality. Suppose the minimal face F of conv(S) containing 1

λ1 has dimension at least βn. Then
|S ∩ F | ≥ eθn.

What about cube-ideal set-systems S ⊆ {0, 1}n with connectivity 2? Note that neither Theorem 1.1 nor
Theorem 1.2 include the λ = 2 case. One explanation for this disparity is that, in contrast to the λ ≥ 3 case,
a cube-ideal set-system with connectivity 2 can have size linear in n even if conv(S) is full-dimensional, as we
shall see in Example 5.1 in §5. Nonetheless, for cube-ideal set-systems of connectivity 2, we can still provide a
lower bound on the size of S that is exponential not in n but in the dimension of the minimal face of conv(S)
containing 1

21. To elaborate, for an integer k ≥ 2, a k-GSC inequality is a GSC inequality that involves exactly
k variables.

Definition 1.3. Let S ⊆ {0, 1}n be a set-system with connectivity at least 2. The 2-cover graph of S, denoted
G(S), is the graph on vertex set [n] with an edge {i, j} for every pair i, j of indices such that one of the 2-GSC
inequalities

xi + (1− xj) ≥ 1
(1− xi) + xj ≥ 1

xi + xj ≥ 1
(1− xi) + (1− xj) ≥ 1

is valid for conv(S). The core of S, denoted core(S), is the set of points in S that satisfy every 2-GSC inequality
valid for conv(S) at equality. A GSC inequality

∑
i∈I xi +

∑
j∈J(1− xj) ≥ 1 valid for conv(S) is rainbow if

I ∪ J intersects every connected component of G(S) at most once.

Observe that every rainbow inequality involves at least 3 variables.
When S is a cube-ideal set-system, we shall prove in §4 that G(S) is the comparability graph of a preorder,

and core(S) is also a cube-ideal set-system. We shall also prove the following lower bound on |S|.

Theorem 1.4 (proved in §4). Let S ⊆ {0, 1}n be a cube-ideal set-system with connectivity at least 2, and fix an
inequality description of conv(S) comprised of capacity and GSC inequalities. Let d be the number of connected
components of G(S), and let κ be the minimum number of variables used in a rainbow inequality in the fixed
description for conv(S). Then |core(S)| ≥ 2(1−H(1/κ))d.

Note that κ := +∞ if there is no rainbow inequality in the fixed description. Note further that if S has
connectivity at least 3, then every valid GSC inequality is rainbow, so κ is simply the connectivity λ of S, so
Theorem 1.4 extends Theorem 1.1.

It can be readily checked that in Theorem 1.4, d is simply the dimension of the minimal face F of conv(S)
containing 1

21, and that core(S) = S ∩ F . In this light, we conjecture the following generalization of Theo-
rem 1.2, in which the condition lower bounding the dimension of the face has been dropped, though the lower
bound on the number of 0, 1 points in the face depends instead on this dimension.

Conjecture 1.5. For every integer λ ≥ 3, there is a constant θ > 0 such that the following statement holds:
Let S ⊆ {0, 1}n be a cube-ideal set-system with connectivity λ such that every variable appears in a valid

λ-SC inequality. Let d be the dimension of the minimal face F of conv(S) containing 1
λ1. Then |S ∩ F | ≥ eθd.
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Figure 1: Graphs of f, g, h (from bottom to top) over the domain [3, 20].

1.1 Lower bounding the VC dimension of cube-ideal set-systems
Theorem 1.1 may be used to lower bound the ‘VC dimension’ of cube-ideal set-systems with connectivity at
least 3. To this end, let S ⊆ {0, 1}n be a set-system, and let I ⊆ [n]. The projection of S onto I is the set-system
{pI : p ∈ S}, where pI ∈ {0, 1}I denotes the restriction of p to the index set I . The Vapnik-Chervonenkis (VC)
dimension of S is the largest integer d such that S has {0, 1}d as a projection; we set d := 0 if S = ∅ [VC71].
We shall use Theorem 1.1 to prove the following lower bound, where H−1 : [0, 1] → [0, 1

2 ] denotes the inverse
of the binary entropy function.

Theorem 1.6 (proved in §2). Let S ⊆ {0, 1}n be a cube-ideal set-system with connectivity λ, where λ ≥ 3.
Then S has VC dimension at least f(λ) · n where f(λ) = H−1(1−H(1/λ)).

The function f : (2,∞) → [0, 1] is increasing (see Figure 1) and f(3) ≥ 0.01013. In particular, every cube-
ideal set-system S ⊆ {0, 1}n with connectivity at least 3 has VC dimension at least 0.01013n. We conjecture
that Theorem 1.6 can be strengthened as follows.

Conjecture 1.7. Let S ⊆ {0, 1}n be a cube-ideal set-system with connectivity λ, where λ ≥ 3. Then S has VC
dimension at least h(λ) · n+ 1 where h(λ) = 1− 2/λ.

An intermediate result would be to prove the above for the function g : (2,∞) → [0, 1] defined as g(λ) :=
1 − H(1/λ). Given that every set-system of VC dimension d has size at least 2d, this result would imply
Theorem 1.1.

Conjecture 1.7 holds for an important class of examples from graphs. Let λ ≥ 3 be an integer, let G = (V,E)
be a λ-edge-connected graph, and let S ⊆ {0, 1}E be the cycle space of G, that is, S consists of the incidence
vector of every edge-subset of G where every vertex has even degree. It is known that S is cube-ideal with
connectivity λ [BG86]. Observe that S is a GF (2)-vector space of GF (2)-rank |E| − |V |+1. This implies that
S has VC dimension |E| − |V |+ 1, and |S| = 2|E|−|V |+1. As G has minimum degree at least λ, it follows that
|E| − |V |+ 1 ≥ (1− 2/λ)|E|+ 1, where the inequality holds at equality if, and only if, G is λ-regular. Thus,
Conjecture 1.7 holds for this example, and the lower bound can be tight. In the next subsection, we see that this
conjecture also holds for another class of examples from graphs.

In §5, we shall use the famous width-length inequality for ideal clutters to prove Conjecture 1.7 for up-
monotone set-systems, in fact, we will show that they have VC dimension at least (1− 1/λ)n.
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1.2 Applications to graph theory and combinatorial optimization
Our results have a number of applications to objects that are of importance in graph theory and combinatorial
optimization, including perfect matchings, strong orientations, dijoins, and ideal clutters. We shall briefly explain
two of these here, and postpone the remaining two to §5 and §6.

Let G = (V,A,E) be a mixed graph with arcs A, which are directed, and edges E, which are not yet
directed. A G-strong orientation is an orientation

−→
E of the edges such that the digraph (V,A ∪

−→
E ) is strongly

connected. A blocking notion is that of a pseudo dicut, which is a cut of the form δG(U) ⊆ A ∪ E, where
U ⊂ V , U ̸= ∅ and δ−A(U) = ∅. Observe that an orientation

−→
E is G-strong if, and only if, in every pseudo dicut

δG(U) at least one edge of E is oriented to enter U .
Suppose every pseudo dicut of G = (V,A,E) contains at least two edges from E. Let

−→
E be an arbitrary

reference orientation of E, and denote by SCR(G;
−→
E ) the set of vectors x ∈ {0, 1}

−→
E such that the re-orientation

of
−→
E obtained after flipping the arcs in {a ∈

−→
E : xa = 1} is G-strong. We shall see that SCR(G;

−→
E ) is a cube-

ideal set-system, and thus use our results to obtain the following consequence.

Theorem 1.8 (proved in §6). Let G = (V,A,E) be a mixed graph where every pseudo dicut contains at least λ
edges from E, where λ ≥ 3. Then the number of G-strong orientations is at least 2(1−H(1/λ))|E|.

This is the first exponential lower bound on the number of G-strong orientations of such a mixed graph, as
far as we know. When A = ∅, the lower bound in Theorem 1.8 is easy to obtain and can in fact be improved
to 2(1−

2
λ )|E|+1 by using the theory of ear decompositions as follows. Every 2-vertex-connected block of G can

be constructed from a cycle by successively adding H-paths to graphs H already constructed; the cycle and the
paths are referred to as ears [[Die25], Chapter 3]. It can be readily checked that the number of the ears is exactly
|E| − |V |+ k, where k is the number of 2-vertex-connected blocks of G. Note that by orienting each ear so that
it becomes a directed cycle or path, one obtains a strong orientation of G. The number of such orientations is
2|E|−|V |+k. As G is λ-edge-connected, every vertex has degree at least λ, so |E| − |V |+ k ≥ (1− 2

λ )|E|+ 1,
implying in turn that the number of strong orientations of G is at least 2(1−

2
λ )|E|+1. In fact, we just proved

a lower bound of |E| − |V | + k ≥ (1 − 2
λ )|E| + 1 on the VC dimension of SCR(G;

−→
E ), thus confirming

Conjecture 1.7 for SCR(G;
−→
E ) when A = ∅.

Let us exhibit another application. A bipartite digraph is a digraph D = (V,A) where every vertex is a
source or a sink. A dicut is a cut of the form δ+(U) ⊆ A where δ−(U) = ∅, U ⊂ V , U ̸= ∅. A blocking notion
is that of a dijoin, which is a subset of A that intersects every dicut at least once. An important open problem
in combinatorial optimization is Woodall’s conjecture, which states that the minimum size of a dicut, say τ , is
equal to the maximum number of arc-disjoint dijoins [Woo78]. It suffices to prove this conjecture for bipartite
digraphs where every sink has degree τ [ACZ23]. We shall prove the following theorem as another consequence
of our results.

Theorem 1.9 (proved in §6). For every integer τ ≥ 3, there is a constant θ > 0 such that the following statement
holds:

Let D = (V,A) be a bipartite digraph where every sink has degree τ , and every dicut has size at least τ .
Then the number of minimal dijoins of D intersecting every minimum dicut exactly once is at least eθ|A|.

2 3-connected cube-ideal set-systems
In this section, we prove Theorem 1.1, which states that if S ⊆ {0, 1}n is a cube-ideal set-system with connec-
tivity λ ≥ 3, then |S| ≥ 2(1−H(1/λ))n. We will then use this result to prove a lower bound on the VC dimension
of such set-systems, namely Theorem 1.6. The following observation is crucial.

Lemma 2.1. Let S ⊆ {0, 1}n be a cube-ideal set-system with connectivity λ, where λ ≥ 3. Then conv(S) ⊇[
1
λ , 1−

1
λ

]n
.
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Proof. As S is cube-ideal, conv(S) is described by capacity and GSC inequalities. As S has connectivity λ,
every GSC inequality in the description must involve at least λ variables. Thus, any point in

[
1
λ , 1−

1
λ

]n
satisfies

the inequality description of conv(S), implying the desired containment.

We will show that the containment above alone implies that |S| must be exponentially large. We need the
following well-known inequality.

Lemma 2.2 (see [MU17], §10.2, also [Gal14], Theorem 3.1). For all integers n ≥ 1 and λ ≥ 2, the number of
subsets of [n] of size at most n/λ is at most 2H(1/λ)n.

Given S ⊆ {0, 1}n and q ∈ {0, 1}n, to twist S by q is to replace S by S△q := {p△q : p ∈ S}, where the
second △ denotes coordinate-wise addition modulo 2. Take a coordinate i ∈ [n]. Denote by ei the ith unit vector
of appropriate dimension. To twist coordinate i of S is to replace S by S△ei.

We are now ready to prove the following.

Theorem 2.3. Take an integer λ ≥ 3. Let S ⊆ {0, 1}n be a set-system such that conv(S) ⊇
[
1
λ , 1−

1
λ

]n
. Then

|S| ≥ 2(1−H(1/λ))n.

Proof. For each w ∈ {−1,+1}n, let x[w] be a point in S which maximizes w⊤x. As conv(S) ⊇
[
1
λ , 1−

1
λ

]n
,

we have the inequality below,

w⊤x[w] = max
{
w⊤x : x ∈ conv(S)

}
≥ λ− 1

λ
|support+(w)| −

1

λ
|support−(w)|,

where support+(w) = {i ∈ [n] : wi = +1} and support−(w) = {i ∈ [n] : wi = −1}. There exists an x⋆ ∈ S
such that ∣∣{w ∈ {−1,+1}n : w⊤x⋆ = w⊤x[w]

}∣∣ ≥ 2n

|S|
.

Let T :=
{
w ∈ {−1,+1}n : w⊤x⋆ = w⊤x[w]

}
. Note that for any w ∈ T , we have

w⊤x⋆ ≥ λ− 1

λ
|support+(w)| −

1

λ
|support−(w)|.

After twisting the coordinates, if necessary, we may assume that x⋆ = 0; observe that twisting coordinate i maps
xi 7→ 1− xi and wi 7→ −wi. This means that for any w ∈ T , we have

0 ≥ λ− 1

λ
|support+(w)| −

1

λ
|support−(w)|,

or equivalently, |support+(w)| ≤ n/λ. This implies in turn that

T ⊆ {w ∈ {−1, 1}n : |support+(w)| ≤ n/λ}.

Subsequently,
|T | ≤

∣∣{y ∈ {0, 1}n : 1⊤y ≤ n/λ
}∣∣ ≤ 2H(1/λ)n

where the rightmost inequality follows from Lemma 2.2. Putting the inequalities together, we get

2H(1/λ)n ≥ |T | ≥ 2n

|S|

implying in turn that |S| ≥ 2(1−H(1/λ))n, as desired.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let S ⊆ {0, 1}n be a cube-ideal set-system with connectivity λ, where λ ≥ 3. By
Lemma 2.1, conv(S) ⊇

[
1
λ , 1−

1
λ

]n
, so |S| ≥ 2(1−H(1/λ))n by Theorem 2.3, as required.
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Next, we use the above to give a lower bound on the VC dimension of cube-ideal set-systems with connec-
tivity at least 3. We shall need the following well-known lemma.

Lemma 2.4 (Sauer-Shelah [Sau72, She72]). Let n ≥ k ≥ 1 be integers, and let S ⊆ {0, 1}n be a set-system of
VC dimension at most k. Then |S| is at most the number of subsets of [n] of size at most k.

We need the following convenient consequence of the lemma.

Corollary 2.5. Let λ ≥ 2 be an integer, and let S ⊆ {0, 1}n be a set-system such that |S| ≥ 2H(1/λ)n. Then S
has VC dimension at least n

λ .

Proof. Let k◦ := n
λ and k := ⌊k◦⌋. We have that |S| ≥ 2H(1/λ)n ≥ 2H(k/n)n as H is a strictly increasing

function. Furthermore, by Lemma 2.2, 2H(k/n)n is greater than or equal to the number of subsets of [n] of size
at most k.

If k◦ = k, i.e., k◦ is an integer, then |S| is strictly larger than the number of subsets of [n] of size at most
k − 1. It therefore follows from (the contrapositive of) Lemma 2.4 that S has VC dimension strictly larger than
k − 1, so S has VC dimension at least k◦.

Otherwise, k◦ > k, so |S| ≥ 2H(1/λ)n > 2H(k/n)n. Subsequently, by Lemma 2.2, |S| is strictly larger than
the number of subsets of [n] of size at most k. It therefore follows from (the contrapositive of) Lemma 2.4 that
S has VC dimension strictly larger than k, so S has VC dimension at least k + 1 > k◦.

We are ready to prove Theorem 1.6.

Proof of Theorem 1.6. Let S ⊆ {0, 1}n be a cube-ideal set-system with connectivity λ, where λ ≥ 3. We know
from Theorem 1.1 that |S| ≥ 2(1−H(1/λ))n. It therefore follows from Corollary 2.5 that S has VC dimension at
least H−1(1−H(1/λ)) · n, as desired.

3 Faces of 3-connected cube-ideal set-systems
In this section, we prove Theorem 1.2 on a certain face of the convex hull of a cube-ideal set-system with
connectivity at least 3. Below, aff(F ) refers to the affine hull of F .

Lemma 3.1. Let λ ≥ 3 be an integer, and let S ⊆ {0, 1}n be a cube-ideal set-system with connectivity λ such
that if xi, i ∈ [n] appears in a valid λ-GSC inequality, then it appears in a valid λ-SC inequality. Let F be the
minimal face of conv(S) containing 1

λ1. Then
[

1
λ+1 , 1−

1
λ+1

]n ∩ aff(F ) ⊆ F .

Proof. Let V be the set of all pairs (I, J) such that I, J are disjoint subsets of [n], and
∑

i∈I xi+
∑

j∈J(1−xj) ≥
1 is valid for conv(S). Such an inequality is tight at 1

λ1 if, and only if, J = ∅ and |I| = λ; here we used the
inequality 1− 1

λ > 1
λ guaranteed by λ ≥ 3. Thus,

F = conv(S) ∩ {x : x(I) = 1, ∀ (I, ∅) ∈ V s.t. |I| = λ}
aff(F ) = {x : x(I) = 1, ∀ (I, ∅) ∈ V s.t. |I| = λ}.

Let p ∈
[

1
λ+1 , 1−

1
λ+1

]n∩aff(F ). We need to show that p ∈ F . To this end, let (I, J) ∈ V . If |I|+ |J | ≥ λ+1,
then p satisfies the corresponding GSC inequality as p ∈

[
1

λ+1 , 1−
1

λ+1

]n
. If |I| = λ and J = ∅, then p satisfies

the corresponding GSC inequality at equality as p ∈ aff(F ). Otherwise, |I|+ |J | = λ and J ̸= ∅. Let k ∈ J . By
hypothesis, there exists (K, ∅) ∈ V such that |K| = λ and k ∈ K. Given that p satisfies the corresponding GSC
inequality at equality, it follows that 1−pk =

∑
ℓ∈K\k pℓ, where the right-hand side involves |K|−1 = λ−1 ≥ 2

variables. Subsequently, as p ∈
[

1
λ+1 , 1−

1
λ+1

]n
, we have∑

i∈I

pi +
∑
j∈J

(1− pj) =
∑
i∈I

pi +
∑

ℓ∈K\k

pℓ +
∑

j∈J\k

(1− pj) ≥
1

λ+ 1
(|I|+ 2 + |J | − 1) = 1,

so p satisfies the corresponding GSC inequality, as required.
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In what follows, we shall use the inclusion above to lower bound the number of 0, 1 points inside the face F .
To this end, we need the following theorem.

Theorem 3.2 ([Bar13]). For every α, β ≥ 1 there is γ := γ(α, β) > 0 such that the following statement holds:
Suppose that P ⊂ Rd is a polytope containing the set{

x ∈ Rd : −1 ≤ u⊤
i x ≤ 1, ∀i ∈ [m]

}
,

where ∥ui∥2 ≤ 1, ∀i ∈ [m] and m ≤ αd. Suppose further that P lies inside the ball{
x ∈ Rd : ∥x∥2 ≤ β

√
d
}
.

Then P has at least eγd vertices.

Digression. We can apply Theorem 3.2 to get an alternate proof of Theorem 2.3 for sufficiently large n but
with an inexplicit lower bound. More specifically, we let P = 2λ

λ−2 (conv(S) −
1
21). Then P contains [−1, 1]

n

and is contained in a Euclidean ball of radius λ
λ−2

√
n around the origin. Thus, we can set α = 1 and β = λ

λ−2 .
For sufficiently large n, Barvinok [Bar13] gives an explicit formula for γ := γ(α, β), which for our choices of
α, β leads to the following: Choose any ε ∈ (0, 1) and ρ > 0 such that the following inequality holds:

ln

(
1− exp

{
−ρ2

2

})
> −ε2

4
.

Then for all sufficiently large n > n0(α, β, ε, ρ) we can choose γ as follows:

γ =
(λ− 2)2(1− ε)2

2λ2ρ2

(
1− exp

{
−ρ2

2

})
+ ln

(
1− exp

{
−ρ2

2

})
> 0.

In contrast, Theorem 2.3 gives γ := H(1/λ) ln 2 for all n.

Moving on, we are ready to prove the following lemma, which borrows some ideas from [[Bar13], Corol-
lary 1.3].

Lemma 3.3. For every integer λ ≥ 2 and constants α ∈
(

1
λ+1 ,

1
2

]
, β ∈ (0, 1], there is a constant θ > 0 such

that the following statement holds:
Let S ⊆ {0, 1}n be a set-system whose convex hull contains α1 (possibly on its boundary), and let F be

the minimal face of the convex hull containing α1. Suppose that F has dimension at least βn, and
[

1
λ+1 , 1 −

1
λ+1

]n ∩ aff(F ) ⊆ F . Then |S ∩ F | ≥ eθn.

Proof. Let d := dim(F ) ≥ βn, let A be the affine hull of F , and let R := S ∩F ⊆ {0, 1}n ∩A. By hypothesis,
conv(R) ⊇

[
1

λ+1 , 1−
1

λ+1

]n ∩ A. Let us shift conv(R), A so that they both contain the origin. To this end, let
a := α1, P := conv(R)− a, and L := A− a which is a linear subspace of dimension d containing P .

First we show that P contains a large hypercube-like polytope with O(d) facets. To this end, let ε :=
α − 1

λ+1 > 0. We claim that Q := [−ε, ε]n ∩ L ⊆ P . To see this, observe that a + y ∈
[

1
λ+1 , 1 −

1
λ+1

]n
for

each y ∈ [−ε, ε]n, so a+ y ∈ conv(R) for all y ∈ [−ε, ε]n such that a+ y ∈ A, implying in turn that Q ⊆ P .
Observe that

P ⊇ Q =
{
x ∈ L : −ε ≤ u⊤

i x ≤ ε, ∀i ∈ [n]
}
,

where ui ∈ L is the orthogonal projection of the standard unit vector ei ∈ Rn onto L, for i ∈ [n]. In particular,
∥ui∥2 ≤ 1 for all i ∈ [n]. Furthermore, we know that n ≤ 1

βd.

Secondly, we show that P is contained in a Euclidean ball of radius O(
√
d). For every p ∈ S, we have

∥p− a∥2 ≤ ∥p∥2 + ∥a∥2 ≤
√
n+ α

√
n = (1 + α)

√
n ≤ 1 + α√

β

√
d.
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Thus,

P ⊂ B :=

{
x ∈ L : ∥x∥2 ≤ 1 + α√

β

√
d

}
.

Finally, we apply a linear transformation from L ⊂ Rn to Rd. To this end, let ℓ1, . . . , ℓd be an orthonormal
basis for L, and let M ∈ Rn×d be the matrix whose columns are ℓ1, . . . , ℓd. Let f : L → Rd be the linear
transformation that maps ℓi to ei ∈ Rd for i ∈ [d]. Note that f−1(z) = Mz.

We now work with f(P ) instead of P . We have

f(P ) ⊇ f(Q) =
{
z ∈ Rd : −ε ≤ w⊤

i z ≤ ε, ∀i ∈ [n]
}
,

where wi = M⊤ui for each i ∈ [n]. Observe that

∥wi∥2 ≤ ∥M⊤∥2∥ui∥2 =
√
λmax(MM⊤) · ∥ui∥2 = ∥ui∥2 ≤ 1,

where ∥M∥2 denotes the spectral norm of M , which is equal to the square root of the largest eigenvalue of
MM⊤; the latter has the same nonzero spectrum as M⊤M = Id, so λmax(MM⊤) = 1.

Next we have

f(P ) ⊂ f(B) :=

{
z ∈ Rd : ∥Mz∥2 ≤ 1 + α√

β

√
d

}
=

{
z ∈ Rd : ∥z∥2 ≤ 1 + α√

β

√
d

}
,

where the second equality follows from ∥Mz∥2 =
√
z⊤M⊤Mz = ∥z∥2.

Subsequently, by applying Theorem 3.2 to ε−1f(P ), we obtain that ε−1f(P ) has at least eγd vertices, for
some constant γ := γ

(
1
β ,

ε−1(1+α)√
β

)
> 0. Observe that ε−1f(P ) has the same number of vertices as f(P ) and

also P , namely |R|. Thus, |S ∩ F | = |R| ≥ eγd ≥ eγβn, so θ := γβ > 0 is the desired constant.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. It follows from Lemma 3.1 that
[

1
λ+1 , 1−

1
λ+1

]n ∩ aff(F ) ⊆ F . We can therefore apply
Lemma 3.3 for α = 1

λ to obtain the result.

4 2-connected cube-ideal set-systems
In this section, we study cube-ideal set-systems with connectivity (at least) 2, and prove Theorem 1.4 on the size
of their core. We will need to study the 2-cover graph and core of such set-systems.

Take a preorder ([n],⪰), i.e., a binary relation ⪰ on [n] that satisfies reflexivity (i ⪰ i, ∀i ∈ [n]) and
transitivity (i ⪰ j, j ⪰ k ⇒ i ⪰ k, ∀i, j, k ∈ [n]). The comparability graph of the preorder is the undirected
graph on vertex set [n] with an edge between every pair of distinct vertices that are comparable in the preorder.

Let S ⊆ {0, 1}n be a set-system with connectivity at least 2. Recall that G(S) denotes the 2-cover graph
of S. Note that G(S) is invariant under twisting S.

Lemma 4.1. Let S ⊆ {0, 1}n be a set-system where 1
21 ∈ conv(S). Then, after possibly twisting S, every

2-GSC inequality valid for conv(S) is of the form xi ≥ xj for distinct i, j ∈ [n]. Furthermore, G(S) is a
comparability graph.

Proof. Let us write 1
21 as a convex combination of the points in S with coefficients λp, p ∈ S where λ ≥ 0 and∑

p∈S λp = 1. After twisting the coordinates of S, if necessary, we may assume that λ0 > 0. Every 2-GSC
inequality valid for conv(S) is satisfied at equality at 1

21, and therefore at 0, so it must be of the form xi ≥ xj

for some distinct indices i, j ∈ [n]. Consider now the binary relation ⪰ on [n] where i ⪰ j if xi ≥ xj is a valid
inequality for conv(S), for i, j ∈ [n]. It can be readily checked that ([n],⪰) is reflexive and transitive, so it is a
preorder, and clearly G(S) is its comparability graph, as required.
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We obtain the following fact about the 2-cover graph of a cube-ideal set-system.

Theorem 4.2. Let S ⊆ {0, 1}n be a cube-ideal set-system with connectivity at least 2. Then G(S) is a compa-
rability graph.

Proof. As S is cube-ideal with connectivity at least 2, it follows that 1
21 ∈ conv(S). Subsequently, G(S) is a

comparability graph by Lemma 4.1.

Recall that core(S) is the set of points in S that satisfy every 2-GSC inequality valid for conv(S) at equality.
We have the following phenomenon.

Theorem 4.3. Let S ⊆ {0, 1}n be a cube-ideal set-system with connectivity at least 2. Then core(S) is also
cube-ideal.

Proof. Observe that an inequality description of conv(core(S)) can be obtained from that of conv(S) by adding,
for each 2-GSC inequality valid for conv(S), the inequality obtained by flipping the direction of the inequality.
For each 2-GSC inequality, however, the reverse inequality is also GSC: for example, xi + xj ≥ 1 reversed is
simply (1− xi) + (1− xj) ≥ 1. Subsequently, core(S) remains a cube-ideal set-system.

We now give a description for the convex hull of the core of a cube-ideal set-system S. Let
∑

i∈I xi +∑
j∈J(1 − xj) ≥ 1 be a GSC inequality valid for conv(S). Recall that the inequality is rainbow if I ∪ J

intersects every connected component of G(S) at most once. As we see below, capacity and rainbow inequalities
are sufficient to describe conv(core(S)).

Lemma 4.4. Let S ⊆ {0, 1}n be a cube-ideal set-system with connectivity at least 2, and fix an inequality
description of conv(S) comprised of capacity and GSC inequalities. Then the following statements hold:

1. after possibly twisting S, we have xi = xj for all x ∈ conv(core(S)) and indices i, j in the same
connected component of G(S),

2. every facet-defining inequality for conv(core(S)) is equivalent to either a capacity or rainbow inequality
in the fixed description of conv(S).

Proof. (1) By Lemma 4.1, we may assume after possibly twisting S that every 2-GSC inequality valid for
conv(S) is of the form xi ≥ xj for distinct i, j ∈ [n]. In particular, xi = xj for all x ∈ conv(core(S)) and any
pair i, j of indices in the same connected component of G(S).

(2) Take a non-capacity facet-defining inequality a⊤x ≥ β for conv(core(S)). A description of the poly-
tope conv(core(S)) is obtained from the fixed inequality description of conv(S) after setting all the 2-GSC
inequalities to equality. Subsequently, a⊤x ≥ β is equivalent to an implicit inequality in the fixed description
for conv(S), say of the form ∑

i∈I

xi +
∑
j∈J

(1− xj) ≥ 1 (1)

for disjoint subsets I, J ⊆ [n]. Denote by K the set of connected components of G(S), and for each K ∈ K,
take a representative index iK ∈ K. By part (1), the inequality

∑
i∈I xi +

∑
j∈J(1 − xj) ≥ 1 can be written

equivalently as the following valid inequality for conv(setcore(S)):∑
K∈K

|I ∩K|xiK +
∑
K∈K

|J ∩K|(1− xiK ) ≥ 1. (2)

Given that 1 ≥ x ≥ 0, and the right-hand side value in (2) is 1, the nonzero coefficients |I ∩ K|, |J ∩ K| on
the left-hand side can be truncated to 1 all the while keeping the inequality valid. Since (2) is facet-defining for
conv(core(S)), and therefore not strictly dominated by another valid inequality, we must have that |I ∩K|, |J ∩
K| ≤ 1 for all K ∈ K. Furthermore, we cannot have |I ∩K| = |J ∩K| = 1 for some K ∈ K, since otherwise
(2) will be dominated by the equality xiK + (1 − xiK ) = 1. Subsequently, |(I ∪ J) ∩K| ≤ 1 for all K ∈ K,
implying in turn that (1) is a rainbow inequality valid for conv(S).
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We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. By Lemma 4.4 part (1), after possibly twisting S, we may assume that xi = xj for all
x ∈ core(S) and indices i, j in the same connected component of G(S). Let setcore(S) ∈ {0, 1}d be the set-
system obtained from S after keeping only one representative from each of the d connected components of G(S),
and dropping the remaining indices. Clearly, each rainbow inequality in the description for conv(S) yields a
valid GSC inequality for conv(setcore(S)) with the same number of variables, and by Lemma 4.4 part (2), these
inequalities together with the capacity inequalities are sufficient to describe conv(setcore(S)). In particular,
S′ is a cube-ideal set-system with connectivity κ ≥ 3. Thus, |core(S)| = |setcore(S) | ≥ 2(1−H(1/κ))d by
Theorem 1.1.

5 Ideal clutters
In this section, we introduce ideal clutters, connect them to cube-ideal set-systems in two ways, and deduce what
our results mean for them; these will be useful in the next section.

Let V be a finite set of elements, and let C be a family of subsets of V called members or sets. C is a clutter
over ground set V if no member contains another [EF70]. C is ideal if the associated set covering polyhedron,
namely Q(C) :=

{
x ∈ RV

+ :
∑

v∈C xv ≥ 1, ∀C ∈ C
}

, has only integral vertices [CN94].
In integer and linear programming, ideal clutters correspond to set covering linear programs that have an

integral optimal solution for any objective vector for which there is a finite optimum. This can be guaranteed
when, for instance, the coefficient matrix of the linear system defining Q(C) is totally unimodular, i.e., every
nonzero sub-determinant is ±1. In graph and matroid theory, they correspond to multi-commodity flow problems
where the cut condition necessary for the existence of a flow is also sufficient [Sey81, Gue01, Gue16].

To every set-system S ⊆ {0, 1}n we can associate a clutter, and through this correspondence we can see
a connection between cube-idealness and idealness. The cuboid of S, denoted cuboid(S), is the clutter over
ground set [2n] whose members are {2i− 1 : pi = 1} ∪ {2j : pj = 0}, ∀p ∈ S. It is known S is cube-ideal if,
and only if, cuboid(S) is an ideal clutter [ACGL20]. We can use this to prove the following statement claimed
in the introduction.

Example 5.1. Let S := {0, e1, e1 + e2, . . . , e1 + e2 + · · ·+ en} ⊆ {0, 1}n. Then S is a cube-ideal set-system
with connectivity 2 such that conv(S) is full-dimensional and |S| = n+ 1.

Proof. It can be readily checked that conv(S) is full-dimensional, |S| = n + 1, and that 1
21 is the midpoint of

the edge of conv(S) connecting 0,1 ∈ S. In particular, S must have connectivity 2. It remains to show that S is
cube-ideal. Observe that the incidence matrix of cuboid(S) has the consecutive 1s property, that is, its columns
can be permuted so that the 1s in each row appear consecutively. This implies that the coefficient matrix of
Q(cuboid(S)) is totally unimodular [FG64], implying in turn that cuboid(S) is ideal, thus S is a cube-ideal
set-system.

Let C be a clutter over ground set V . A cover is a subset B ⊆ V such that B ∩ C ̸= ∅ for all C ∈ C. The
covering number of C, denoted τ(C), is the minimum cardinality of a cover. A cover is minimal if it does not
contain another cover. The blocker of C, denoted b(C), is the clutter over ground set V whose members are the
minimal covers of C [EF70]. It is well-known that b(b(C)) = C [Isb58, EF70]. Observe that if C is ideal, then the
vertices of Q(C) are precisely the indicator vectors of the minimal covers of C. A fascinating feature of idealness
is that it is closed under taking the blocker [Ful71, Leh79]. In fact, C is ideal if, and only if, the width-length
inequality holds for all w, ℓ ∈ RV

≥0, that is, min{w(C) : C ∈ C} ·min{ℓ(B) : B ∈ b(C)} ≤ w⊤ℓ [Leh79].
To every clutter we can associate a set-system, and through this correspondence we get yet another connec-

tion between idealness and cube-idealness. Let S(C) := {1C : C ⊆ V,C contains a set in C} ⊆ {0, 1}V . The
set-system S(C) is up-monotone, that is, if p ≥ q for some p, q ∈ {0, 1}V where q ∈ S(C), then p ∈ S(C). Note
further that the points in S of minimal support are precisely the indicator vectors of the sets in C. It is known
that C is ideal if, and only if, S(C) is a cube-ideal set-system [ACGL20]. We have the following.
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Theorem 5.2. Let S ⊆ {0, 1}n be a cube-ideal set-system with connectivity λ ≥ 1 that is up-monotone. Then S
has VC dimension at least (1− 1/λ)n.

Proof. Observe that S = S(C) for a clutter C over ground set [n]. It can be readily checked that S has VC
dimension exactly n − min{|C| : C ∈ C} and connectivity exactly τ(C) =: λ. As S is cube-ideal, it follows
that C is ideal. Thus, by the width-length inequality, min{|C| : C ∈ C} ≤ n

min{B:B∈b(C)} = n
λ . Subsequently, S

has VC dimension at least (1− 1/λ)n.

Given an integer τ ≥ 1, C is τ -cover-minimal if it has covering number τ , and every element appears in
a minimum cover. A clutter is cover-minimal if it is τ -cover-minimal for some integer τ ≥ 1. The core of
a cover-minimal clutter C, denoted core(C), is the clutter of all sets of C that intersect every minimum cover
exactly once.

Lemma 5.3. Let C be an ideal τ -cover-minimal clutter, for some integer τ ≥ 1. Then S(C) is a cube-ideal
set-system with connectivity τ , where every variable appears in a valid τ -SC inequality. Furthermore, for F the
minimal face of conv(S(C)) containing 1

τ 1, the dimension of F is |V | − r where r is the rank of {1B : B ∈
b(C), |B| = τ}, and S(C) ∩ F = {1C : C ∈ core(C)}.

Proof. Let S := S(C). As C is ideal, S is a cube-ideal set-system whose convex hull is described by 0 ≤
x ≤ 1, x(B) ≥ 1, ∀B ∈ b(C). In particular, S has connectivity τ(C) = τ , and as C is τ -cover-minimal, every
variable appears in a τ -SC inequality valid for S. Furthermore, the minimal face of conv(S) containing 1

τ 1 is

F = conv(S) ∩ {x : x(B) = 1,∀B ∈ b(C) s.t. |B| = τ},

where all the tight constraints are as described. Subsequently, the dimension of F is |V | − r. It remains to prove
S ∩ F = {1C : C ∈ core(C)}. The inclusion ⊇ is clear. For the reverse inclusion, suppose Ĉ ⊆ V contains a
set C ∈ C, and 1Ĉ ∈ S ∩ F . We claim that Ĉ = C. For if not, pick v ∈ Ĉ \ C, and let B be a minimum cover
of C that contains v, which exists as C is cover-minimal. As B ∩C ̸= ∅ and v ∈ B, it follows that |B ∩ Ĉ| ≥ 2,
a contradiction as |B ∩ Ĉ| = 1.

We may therefore apply Theorem 1.2 to obtain the following inequality.

Theorem 5.4. For every integer τ ≥ 3 and β ∈ (0, 1), there is a constant θ > 0 such that the following
statement holds:

Let C be an ideal τ -cover-minimal clutter over ground set V . Suppose the rank of {1B : B ∈ b(C), |B| = τ}
is at most (1− β)|V |. Then |core(C)| ≥ eθ|V |.

Proof. Let S := S(C). By Lemma 5.3, S is a cube-ideal set-system with connectivity λ := τ , where every
variable appears in a valid λ-SC inequality. Furthermore, for F the minimal face of conv(S) containing 1

λ1,
the dimension of F is at least |V | − (1 − β)|V | = β|V |, and |core(C)| = |S ∩ F |. Thus, by Theorem 1.2,
|core(C)| ≥ eθ|V | for θ = θ(λ, β).

Let C be a 2-cover-minimal clutter over ground set V – these are also known as tangled clutters [ACHL21].
Denote by G(C) the graph over vertex set V whose edges correspond to the minimum covers of C. A cover of
C is rainbow if it intersects every connected component of G(C) at most once. The rainbow covering number of
C, denoted µ(C), is the minimum size of a rainbow cover of C; if there is no rainbow cover, then µ(C) := +∞.
Observe that µ(C) ≥ 3. We prove the following exponential lower bound on the size of the core of such clutters.

Theorem 5.5. Let C be an ideal 2-cover-minimal clutter, let d be the number of connected components of G(C),
and let µ be its rainbow covering number. Then |core(C)| ≥ 2(1−H(1/µ))d.

Proof. Let S := S(C). We know from Lemma 5.3 that S is a cube-ideal set-system with connectivity 2.
Furthermore, every valid 2-GSC inequality is in fact a 2-SC inequality, so G(S) = G(C) and core(S) = {1C :
C ∈ core(C)}. The claimed inequality now follows from Theorem 1.4.
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In a similar fashion, Conjecture 1.5 implies the following (the two conjectures are in fact equivalent).

Conjecture 5.6. For every integer τ ≥ 3, there is a constant θ > 0 such that the following statement holds:
Let C be an ideal τ -cover-minimal clutter over ground set V . Let d be the dimension of the minimal face of

Q(b(C)) containing 1
τ 1. Then |core(C)| ≥ eθd.

6 Applications to combinatorial optimization
In this section, we present three further applications of our results to combinatorial optimization.

6.1 Strong orientations of mixed graphs
Here we prove Theorem 1.8. We first show that strong orientations of a mixed graph correspond to a cube-ideal
set-system. Let us elaborate.

Let F be a family of subsets of a finite set V . F is a crossing family if U ∩W,U ∪W ∈ F for any two sets
U,W ∈ F such that U ∩W ̸= ∅ and U ∪W ̸= V . For a crossing family F , a function f : F → Z is crossing
supermodular if f(U ∩W ) + f(U ∪W ) ≥ f(U) + f(W ) for any two sets U,W ∈ F such that U ∩W ̸= ∅
and U ∪W ̸= V .

Let A ∈ Qm×n and b ∈ Qm. The system Ax ≤ b is totally dual integral (TDI) if for every cost vector
c ∈ Zn for which max{c⊤x : Ax ≤ b} has an optimum solution, its dual min{b⊤y : A⊤y = c, y ≥ 0} has an
integral optimum solution. If the right-hand side b is integral and the system Ax ≤ b is TDI, then the polyhedron
P := {x : Ax ≤ b} is integral [EG77]. A system Ax ≤ b is called box-TDI if for every pair of integral vectors
ℓ ≤ u, the system Ax ≤ b, ℓ ≤ x ≤ u is TDI. In particular, every box-TDI system is also TDI.

Let G = (V,A,E) be a mixed graph where every pseudo dicut contains at least two edges from E. Let
−→
E

be an arbitrary reference orientation of E. Denote by SCR(G;
−→
E ) the set of vectors x ∈ {0, 1}

−→
E such that the

re-orientation of
−→
E obtained after flipping the arcs in {a ∈

−→
E : xa = 1} is G-strong, i.e., turns G into a strongly

connected digraph.

Theorem 6.1. For a mixed graph G = (V,A,E), and a reference orientation
−→
E , the convex hull of SCR(G;

−→
E )

is described by ∑
a∈δ+−→

E
(U)

xa +
∑

b∈δ−−→
E
(U)

(1− xb) ≥ 1 ∀U ⊂ V,U ̸= ∅, δ−A(U) = ∅, (3)

1 ≥ x ≥ 0. (4)

In particular, the set-system SCR(G;
−→
E ) is cube-ideal.

Proof. It can be readily checked that the integral solutions to (3)-(4) are precisely the points in SCR(G;
−→
E ).

Thus, it remains to show that the system is integral. To this end, let F := {U ⊂ V : U ̸= ∅, δ−A(U) = ∅}, which
is a crossing family. Note that (3) can be rewritten as

x(δ+−→
E
(U))− x(δ−−→

E
(U)) ≥ 1− |δ−−→

E
(U)| ∀U ∈ F . (5)

Given that U ∈ F 7→ 1 − |δ−−→
E
(U)| ∈ Z is a crossing supermodular function, we conclude from a well-known

result [EG77] that (5) is box-TDI. In particular, (3)-(4) is TDI, and is therefore integral, as required.

Suppose every pseudo dicut of G contains at least two edges from E. The 2-pseudo-dicut graph of G is the
graph H on vertex set E with an edge between distinct e, f for every pseudo dicut of G that contains only e, f
from E. A pseudo dicut of G is rainbow if it contains at most one element of E from every connected component
of the 2-pseudo-dicut graph. In particular, every rainbow pseudo dicut contains at least 3 elements from E. We
are now ready to prove the following theorem. Note that κ := +∞ if there is no rainbow pseudo dicut.
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Theorem 6.2. Let G = (V,A,E) be a mixed graph where every pseudo dicut contains at least 2 edges from E.
Let d be the number of connected components of the 2-pseudo-dicut graph of G, and let κ be the minimum
number of elements from E in a rainbow pseudo dicut. Then the number of G-strong orientations is at least
2(1−H(1/κ))d.

Proof. Let
−→
E be an arbitrary reference orientation of E, and let S := SCR(G;

−→
E ), which is cube-ideal by

Theorem 6.1. Fix the inequality description (3)-(4) for conv(S). It therefore follows from Theorem 1.4 that
|core(S)| ≥ 2(1−H(1/κ′))d′

, where d′ is the number of connected components of G(S), and κ′ is the minimum
number of variables used in a rainbow inequality in (3). Observe that G(S) is precisely the 2-pseudo-dicut graph
of G. Furthermore, the rainbow inequalities in (3) correspond to the rainbow pseudo dicuts of G, and the number
of variables in the inequality is equal to the number of edges from E is the pseudo dicut. Subsequently, d′ = d
and κ′ = κ, so |S| ≥ |core(S)| ≥ 2(1−H(1/κ))d, as required.

We obtain Theorem 1.8 as a consequence of this theorem.

Proof of Theorem 1.8. Let G = (V,A,E) be a mixed graph where every pseudo dicut contains at least λ edges
from E, where λ ≥ 3. Then the 2-pseudo-dicut graph of G has no edge, so it has exactly |E| connected
components, and every pseudo dicut of G is rainbow. Subsequently, the number of G-strong orientations is at
least 2(1−H(1/λ))|E|.

6.2 Dijoins in τ -sink-regular bipartite digraphs
Proof of Theorem 1.9. Let C be the clutter of minimal dijoins of D. It is known that C is an ideal clutter, and that
b(C) consists of the minimal dicuts of D [LY78]. Thus, C is τ -cover-minimal, and core(C) is precisely the clutter
of minimal dijoins of D intersecting every minimum dicut exactly once. We shall therefore apply Theorem 5.4 to
argue that |core(C)| is exponentially large. To this end, let F := {U ⊂ V : U ̸= ∅, |δ+(U)| = τ, δ−(U) = ∅},
and let M be the matrix whose rows correspond to {1δ+(U) : U ∈ F}. We claim that M has row rank at most
(1− β)|A| for β = 1

3 , thus allowing us to apply Theorem 5.4 to finish the proof. Let S, T be the sets of sources
and sinks of D, respectively. Then we have

1δ+(U∩S) − 1δ−(U∩T ) = 1δ+(U) − 1δ−(U) = 1δ+(U) ∀U ∈ F .

Note that 1δ−(v),∀v ∈ T are rows of M . Thus, after applying elementary row operations to the rows of M cor-
responding to 1δ+(U), U ∈ F , U ̸⊇ S, we obtain a matrix N whose rows are 1δ−(v), ∀v ∈ T ; 1δ+(U∩S), ∀U ∈
F , U ̸⊇ S. The first set of rows of N clearly has rank at most |T |, while the second set has rank at most |S|,
implying in turn that N , and therefore M has rank at most |S|+ |T | = |V |. Given that every source has degree
at least τ (as the arcs incident with it form a dicut), it follows that |S| ≤ |T |, so |V | ≤ 2|T | = 2|A|

τ ≤ 2
3 |A|, thus

proving the claim.

6.3 Perfect matchings in r-graphs
Theorem 5.4 has a consequence for the number of perfect matchings in certain graphs. To elaborate, let r ≥ 3
be an integer. An r-graph is an r-regular graph G = (V,E) where |V | is even, and every odd cut has size at
least r, that is, |δ(U)| ≥ r for all U ⊂ V where |U | is odd. It is known that every r-graph is matching-covered,
that is, every edge belongs to a perfect matching [Sey79]. Perfect matchings intersecting every minimum odd
cut exactly once correspond to the core of a certain ideal r-cover-minimal clutter. Through this connection, we
shall prove the following as a consequence of Theorem 5.4.

Theorem 6.3. For every integer r ≥ 3 and β ∈ (0, 1), there is a constant θ > 0 such that the following statement
holds:

Let G = (V,E) be an r-graph where the rank of {1δ(U) : |δ(U)| = r, |U | is odd} is at most (1 − β)|E|.
Then the number of perfect matchings of G that intersect every minimum odd cut exactly once is at least eθ|E|.
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…

Figure 2: A staircase on at least 4 vertices. This graph has exactly 3 perfect matchings that intersect every
minimum odd cut exactly once.

Proof. A postman set is a subset J ⊆ E where every vertex of G is incident to an odd number of edges from J .
Let C be the clutter over ground set E of the minimal postman sets of G. It is known that C is an ideal clutter,
and that b(C) consists of the minimal odd cuts of G [EJ73]. In particular, as G is an r-graph, C is an r-cover-
minimal clutter, and core(C) is precisely the clutter of perfect matchings of G that intersect every minimum odd
cut exactly once. The claim now follows from Theorem 5.4.

The case r = 3 is of particular interest, in which case the corollary implies an existing result that every
essentially 4-edge-connected cubic graph has exponentially many perfect matchings [Bar13]. There exists 3-
graphs with exactly 3 perfect matchings that intersect every minimum odd cut exactly once, namely staircases
as depicted in Figure 2. For such graphs, the rank of {1δ(U) : |δ(U)| = 3, |U | is odd} is |E| − 2. In particular,
the condition on the rank cannot be dropped in Theorem 6.3. That said, the number of perfect matchings in any
3-graph G = (V,E) is at least 2|V |/3656 [EKK+11]. This result implies that for every r ≥ 4, every (r−1)-edge-
connected r-graph has at least 2f(r)·|V | perfect matchings for f(r) = 1

3656

(
1− 1

r

) (
1− 2

r

)
[EKK+11]. It has

been conjectured by Lovász and Plummer that for every r ≥ 3, there exist constants c1(r), c2(r) such that every
r-regular matching-covered graph G = (V,E) contains at least c2(r) · c1(r)|V | perfect matchings; furthermore
that, c1(r) → ∞ as r → ∞ [[LP86], Conjecture 8.1.8].
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