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Abstract. A binary clutter is cycling if its packing and covering linear
program have integral optimal solutions for all eulerian edge capacities.
We prove that the clutter of odd st-walks of a signed graph is cycling
if and only if it does not contain as a minor the clutter of odd circuits
of K5 nor the clutter of lines of the Fano matroid. Corollaries of this
result include, of many, the characterization for weakly bipartite signed
graphs [5], packing two-commodity paths [7, 10], packing T -joins with
small |T |, a new result on covering odd circuits of a signed graph, as
well as a new result on covering odd circuits and odd T -joins of a signed
graft.

1 Introduction

A clutter C is a finite collection of sets, over some finite ground set E(C), with
the property that no set in C is contained in, or is equal to, another set of C.
This terminology was first coined by Edmonds and Fulkerson [2]. A cover B is
a subset of E(C) such that B ∩ C 6= ∅, for all C ∈ C. The blocker b(C) is the
clutter of the minimal covers. It is well known that b(b(C)) = C ([8, 2]). A clutter
is binary if, for any C1, C2, C3 ∈ C, their symmetric difference C1 4 C2 4 C3

contains, or is equal to, a set of C. Equivalently, a clutter is binary if, for every
C ∈ C and B ∈ b(C), |C ∩B| is odd ([8]). It is therefore immediate that a clutter
is binary if and only if its blocker is.

Let C be a clutter and e ∈ E(C). The contraction C/e and deletion C \ e are
clutters on the ground set E(C)−{e} where C/e is the collection of minimal sets
in {C−{e} : C ∈ C} and C \e := {C : e /∈ C ∈ C}. Observe that b(C/e) = b(C)\e
and b(C \ e) = b(C)/e. Contractions and deletions can be performed sequentially
and the result does not depend on the order. A clutter obtained from C by a
sequence of deletions Ed and a sequence of contractions Ec (Ed ∩ Ec = ∅) is
called a minor of C and is denoted C \ Ed/Ec.

Given edge-capacities w ∈ ZE(C)
+ consider the linear program

(P )

min
∑

(wexe : e ∈ E(C))
s.t. x(C) ≥ 1, C ∈ C

xe ≥ 0, e ∈ E(C),



and its dual

(D)

max
∑

(yC : C ∈ C)
s.t.

∑
(yC : e ∈ C ∈ C) ≤ we, e ∈ E(C)

yC ≥ 0, C ∈ C.

A clutter is said to be ideal if, for every edge-capacities w ∈ ZE(C)
+ , (P ) has an

optimal solution that is integral. A beautiful result of Lehman [9] states that a

clutter is ideal if and only if its blocker is. Edge-capacities w ∈ ZE(C)
+ are said to

be eulerian if, for every B and B′ in b(C), w(B) and w(B′) have the same parity.
Seymour [13] calls a binary clutter cycling if, for every eulerian edge-capacities

w ∈ ZE(C)
+ , (P ) and (D) both have optimal solutions that are integral. It can be

readily checked that if a clutter is cycling (or ideal) then so are all its minors ([13,
14]). Therefore, one can characterize the class of cycling clutters by excluding
minor-minimal clutters that are not in this class. In this paper, we will only
focus on binary clutters.
O5 is the clutter of the odd circuits of K5. Let L7 be the clutter of the lines

of the Fano matroid, i.e. E(L7) = {1, 2, 3, 4, 5, 6, 7} and

L7 := {{1, 2, 7}, {3, 4, 7}, {5, 6, 7}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}.

Let P10 be the collection of the postman sets of the Petersen graph, i.e. sets of
edges which induce a subgraph whose odd degree vertices are the (odd degree)
vertices of the Petersen graph. Observe that the four clutters O5, b(O5),L7,P10

are binary, and moreover, it can be readily checked that none of these clutters
is cycling. Hence, if a binary clutter is cycling then it cannot have any of these
clutters as a minor. The following excluded minor characterization is predicted.

Conjecture 1 (Cycling Conjecture) A binary clutter is cycling if, and only
if, it has none of the following minors: O5, b(O5),L7,P10.

The Cycling Conjecture, as stated, can be found in Schrijver [12]. However,
this conjecture was first proposed by Seymour [13] and then modified by A.M.H.
Gerards and B. Guenin. It is worth mentioning that this conjecture contains
the four color theorem [15]. None of our results in this paper have any apparent
bearings on this theorem.

Consider a finite graph G, where parallel edges and loops are allowed. A cycle
of G is the edge set of a subgraph of G where every vertex has even degree. A
circuit of G is a minimal cycle, and a path is a circuit minus an edge. We define
an st-path as follows: if s 6= t then it is a path where s and t are the degree one
vertices of the path; otherwise, when s = t then it is just the singleton vertex
s. Let Σ be a subset of its edges. The pair (G,Σ) is called a signed graph. We
say a subset S of the edges is odd (resp. even) in (G,Σ) if |S ∩Σ| is odd (resp.
even). Let s, t be vertices of G. We call a subset of the edges of (G,Σ) an odd
st-walk if it is either an odd st-path, or it is the union of an even st-path P and
an odd circuit C where P and C share at most one vertex. Observe that when
s = t then an odd st-walk is simply an odd circuit. It is easy to see that clutters



of odd st-walks are closed under taking minors. As is shown in [6] the clutter of
odd st-walks is binary, and it does not have a minor isomorphic to b(O5) or P10.
In this paper, we verify the Cycling Conjecture for this class of binary clutters:

Theorem 2 A clutter of odd st-walks is cycling if, and only if, it has no O5

and no L7 minor.

2 Restating Theorem 2

One can view Theorem 2 as a packing and covering result. We need the following
definition: two edges of a signed graph are parallel if they have the same end-
vertices as well as the same sign. Now let (G = (V,E), Σ) be a signed graph
without any parallel edges, and choose s, t ∈ V . Let C be the clutter of the odd
st-walks, over the ground set E, and choose edge-capacities w ∈ ZE+. An odd
st-walk cover of (G,Σ) is simply a cover for C. When there is no ambiguity, we
refer to an odd st-walk cover as just a cover.

Proposition 3 (Guenin [6]) If a subset of the edges is a minimal cover then
it is either an st-bond (a minimal st-cut) or it is of the form Σ 4 C, where C
is a cut with s and t on the same shore.

The minimal covers of the latter form above are called signatures. Notice that if
Σ′ is a signature, then (G,Σ) and (G,Σ′) have the same clutter of odd st-walks.

Reset (G,Σ) as follows: replace each edge e of (G,Σ) with we parallel edges.
The packing number ν(G,Σ) of (G,Σ) is the maximum number of pairwise
(edge-)disjoint odd st-walks. A dual parameter to the packing number is the
covering number τ(G,Σ), which records the minimum size of a cover of (G,Σ).
Consider a packing of ν(G,Σ) pairwise disjoint odd st-walk and a cover of size
τ(G,Σ). As the cover intersects every odd st-walk in the packing, it follows that
τ(G,Σ) ≥ ν(G,Σ). A natural question arises: when does equality hold? Theorem
2 gives sufficient conditions for a signed graph to satisfy τ(G,Σ) = ν(G,Σ). To
elaborate, observe that τ(G,Σ) is the value of (P ) and ν(G,Σ) is the value of
(D). For w to be eulerian is to say that every two minimal covers of (G,Σ) have
the same parity. Therefore, Proposition 3 implies the following.

Remark 4 Edge-capacities w = 1 are eulerian if, and only if,

(i) s = t and the degree of every vertex is even, or
(ii) s 6= t, deg(s)− |Σ| and the degree of every vertex in V − {s, t} are even.

We call such signed graphs st-eulerian.
Just like how we defined minor operations for clutters, we now define minor

operations for signed graphs. Let e ∈ E. Then the minor operations for C corre-
spond to the following minor operations for (G,Σ): (1) delete e: replace (G,Σ)
by (G \ e,Σ − {e}), (2) contract e: replace (G,Σ) by (G/e,Σ′), where Σ′ is a
signature of (G,Σ) that does not use the edge e. Observe that vertices s and



t move to wherever the edge contractions take them, and if s and t are ever
identified then we say s = t. A signed graph (H,Γ ) is a minor of (G,Σ) if it is
isomorphic to a signed graph obtained from (G,Σ) by a sequence of edge dele-
tions, edge contractions, and possibly deletion of isolated vertices and switching
s and t. Note that if (H,Γ ) is a minor of (G,Σ), then the clutter of odd st-walks
of (H,Γ ) is a minor of the clutter of odd st-walks of (G,Σ).

The two special clutters O5 and L7 that appear in Theorem 2 have the
following representations: O5 is the clutter of odd st-walks of K̃5 := (K5, E(K5))
where s = t is one of the five vertices, and L7 is the clutter of odd st-walks of
the signed graph F7 with s 6= t, as shown in Figure 1. Observe that τ(K̃5) =

4 > 2 = ν(K̃5) and τ(F7) = 3 > 1 = ν(F7). We can now restate Theorem 2 as

s t

Fig. 1. Signed graph F7: a representation of L7. Bold edges are odd.

follows, and in fact, we will prove this restatement instead of the original one:

Theorem 5 Let (G,Σ) be a signed graph with s, t ∈ V (G). If (G,Σ) is an st-

eulerian signed graph that does not contain K̃5 or F7 as a minor then τ(G,Σ) =
ν(G,Σ).

3 Extensions of Theorem 2

Let (G = (V,E), Σ) be a signed graph with s, t ∈ V . Suppose (G,Σ) is an st-

eulerian signed graph that does not contain K̃5 or F7 as a minor. If s 6= t let τst
be the size of a minimum st-bond, otherwise let τst := τ(G,Σ). Observe that
τst ≥ τ(G,Σ) as every st-bond is also a cover. Add τst − τ(G,Σ) odd loops to

(G,Σ) to obtain another st-eulerian signed graph (G′, Σ′). Since neither K̃5 nor

F7 contain an odd loop, it follows that (G′, Σ′) also does not contain K̃5 or F7

as a minor. Observe that τ(G′, Σ′) = τ(G,Σ) + (τst − τ(G,Σ)) = τst and so
by Theorem 2, one can find a packing of τst pairwise disjoint odd st-walks in
(G′, Σ′). In (G,Σ) this packing corresponds to a collection of τst pairwise disjoint
elements, τ(G,Σ) of which are odd st-walks and the remaining elements are even
st-paths. Therefore, we get the following equivalent, and sharper, formulation of
Theorem 5.

Theorem 6 Let (G,Σ) be a signed graph with s, t ∈ V (G). Suppose that (G,Σ)

is an st-eulerian signed graph that does not contain K̃5 or F7 as a minor. Then



there exists a collection of τst(G,Σ) pairwise (edge-)disjoint elements, τ(G,Σ)
of which are odd st-walks and the remaining elements are even st-paths.

We can obtain a counterpart to Theorem 6 as follows: let τΣ be the size
of a minimum signature. Observe that τΣ ≥ τ(G,Σ) and that τ(G,Σ) =
min{τst, τΣ}. In contrast to above, this time we add τΣ − τ(G,Σ) even edges
between s and t to (G,Σ) to obtain another st-eulerian signed graph (G′, Σ′).

Notice, however, that we can no longer guarantee that (G′, Σ′) contains no K̃5

or F7 minor. Observe that this is true if, and only if, (G,Σ) does not contain

K̃5, K̃5

0
, K̃5

1
, K̃5

2
, K̃5

3
or F−7 as a minor, where

(i) for i ∈ {0, 1, 2, 3}, K̃5

i
is the signed graph obtained from splitting a vertex,

and its incident edges, of K̃5 into two vertices s, t, where s has degree i
and t has degree 4− i, and

(ii) F−7 is the signed graph obtained from F7 by deleting the edge between s
and t.

Note that if we add an even edge to any of these signed graphs, then a K̃5 or
an F7 appears as a minor. It can be readily checked that if (G,Σ) does not

contain any of these five signed graphs as a minor, then (G′, Σ′) contains no K̃5

or F7 minor. Observe now that τ(G′, Σ′) = τ(G,Σ) + (τΣ − τ(G,Σ)) = τΣ and
so by Theorem 2, one can find a packing of τΣ pairwise disjoint odd st-walks
in (G′, Σ′). In (G,Σ) this packing corresponds to a collection of τΣ pairwise
disjoint elements, τ(G,Σ) of which are odd st-walks and the remaining elements
are odd circuits. Thus, the following counterpart to Theorem 6 is obtained.

Theorem 7 Let (G,Σ) be a signed graph with s, t ∈ V (G). Suppose that (G,Σ)

is an st-eulerian signed graph that does not contain K̃5, K̃5

0
, K̃5

1
, K̃5

2
, K̃5

3
or

F−7 as a minor. Then in (G,Σ) there exists a collection of τΣ(G,Σ) pairwise
(edge-)disjoint elements, τ(G,Σ) of which are odd st-walks and the remaining
elements are odd circuits.

4 Applications of Theorem 2

In this section, we discuss some applications of Theorem 2. Observe that a cycling
clutter is also ideal. As a corollary, we get the following theorem:

Corollary 8 (Guenin [6]) A clutter of odd st-walks is ideal if, and only if, it
has no O5 and no L7 minor.

When s = t an odd st-walk is just an odd circuit. A signed graph is said to
be weakly bipartite if the clutter of its odd circuits is ideal. The clutter of odd
circuits does not contain an L7 minor [6]. Hence, we get the following two results
as corollaries of Theorem 2:



Corollary 9 (Guenin [5]) A signed graph is weakly bipartite if, and only if, it

has no K̃5 minor.

Corollary 10 (Geelen and Guenin [3]) A clutter of odd circuits is cycling
if, and only if, it has no O5 minor.

Observe that 2w is eulerian for any w ∈ ZE(G)
+ . As a result, the following

result follows as a corollary of Theorem 2:

Theorem 11 Suppose that C is a clutter of odd st-walks without an O5 or an

L7 minor. Then, for any edge-capacities w ∈ ZE(G)
+ , the linear program (P ) has

an optimal solution that is integral and its dual (D) has an optimal solution that
is half-integral.

To obtain more applications of Theorem 2, we will turn to its restatement
Theorem 5, and naturally try to find nice classes of signed graphs without a K̃5

or an F7 minor.

4.1 Signed graphs without K̃5 and F7 minor

Let (G,Σ) be a signed graph with s, t ∈ V . Observe that if s = t then (G,Σ)

has no F7 minor, and there are many classes of such signed graphs without a K̃5

minor. For instance, whenever G is planar or |Σ| = 2, (G,Σ) does not contain

a K̃5 minor. Other classes of such signed graphs can be found in [4, 3]. In this
section, we focus only on signed graphs (G,Σ) with distinct s, t ∈ V .

A blocking vertex is a vertex v whose deletion removes all the odd cycles, and
a blocking pair is a pair of vertices {u, v} whose deletion removes all the odd
cycles.

Remark 12 The following classes of signed graphs with s 6= t do not contain
K̃5 or F7 as a minor:

(1) signed graphs with a blocking vertex,
(2) signed graphs where {s, t} is a blocking pair,
(3) plane signed graphs with at most two odd faces,
(4) signed graphs that have an even face embedding on the projective plane, and

s and t are connected with an odd edge,
(5) signed graphs where every odd st-walk is connected, and
(6) plane signed graphs with a blocking pair {u, v} where s, u, t, v appear on a

facial cycle in this cyclic order.

Observe that class (5) contains (2) and (4). We will apply Theorem 5 to the
first three classes, and in the first two cases, we obtain two well-known results.
However, the third class will yield a new and interesting result on packing odd
circuit covers. Notice that one can even apply Theorem 6 to these classes.

Observe further that the signed graphs in (1) and (2) do not contain K̃5

0
, K̃5

1
,

K̃5

2
, K̃5

3
or F−7 as a minor either, so one may even consider applying Theorem

7 to these classes. We leave it to the reader to find out what Theorems 6 and 7
applied to these classes imply.



4.2 Class (1): packing T -joins with |T | = 4

Let H be a graph with vertex set W , and choose an even vertex subset T . A
T -join of H is an edge subset whose odd degree vertices are (all) the vertices in
T . A T -cut of H is an edge subset of the form δ(U) where U ⊆ W and |U ∩ T |
is odd. Observe that the blocker of the clutter of minimal T -joins is the clutter
of minimal T -cuts.

We are now ready to prove the following result as a corollary of Theorem 2.
However, it should be noted that this result (for T of size at most 8, in fact) is
relatively easy to prove from first principles, as is shown in [1].

Corollary 13 (Cohen and Lucchesi [1]) Let H be a graph and choose a ver-
tex subset T of size 4. Suppose that every vertex of H not in T has even degree
and that all the vertices in T have degrees of the same parity. Then the maximum
number of pairwise (edge-) disjoint T -joins is equal to the minimum size of a
T -cut.

Proof. Suppose that T = {s, t, s′, t′}. Identify s′ and t′ to obtain G, and let
Σ = δH(s′). Then the signed graph (G,Σ) contains a blocking vertex s′t′, and
so it belongs to class (i). By Remark 4, (G,Σ) is st-eulerian. Theorem 2 then
implies that τ(G,Σ) = ν(G,Σ). However, observe that an odd st-walk of (G,Σ)
is a T -join of H, and a T -join in H contains an odd st-walk of (G,Σ). Hence,
τ(G,Σ) = ν(G,Σ) implies that the maximum number of pairwise disjoint T -
joins is equal to the minimum size of a T -cut. ut

4.3 Class (2): packing two-commodity paths

Corollary 14 (Hu [7], Rothschild and Whinston [10]) Let H be a graph
and choose two pairs (s1, t1) and (s2, t2) of vertices, where s1 6= t1, s2 6= t2, all
of s1, t1, s2, t2 have the same parity, and all the other vertices have even degree.
Then the maximum number of pairwise (edge-)disjoint paths, that are between si
and ti for some i = 1, 2, is equal to the minimum size of an edge subset whose
deletion removes all s1t1- and s2t2-paths.

Proof. Identify s1 and s2, as well as t1 and t2 to obtain G, and let Σ = δH(s1)4
δH(t2). Let s := s1s2 ∈ V (G) and t := t1t2 ∈ V (G). Then the signed graph
(G,Σ) has {s, t} as a blocking pair, and so it belongs to class (2). Again by
Remark 4 (G,Σ) is st-eulerian. Therefore, by Theorem 2 we get that τ(G,Σ) =
ν(G,Σ). However, observe that an odd st-walk of (G,Σ) is an siti-path of H,
for some i = 1, 2, and such a path in H contains an odd st-walk of (G,Σ). Thus,
τ(G,Σ) = ν(G,Σ) proves the corollary. ut

4.4 Class (3): packing odd circuit covers

Theorem 15 Let (H,Σ) be a plane signed graph with exactly two odd faces
and choose distinct g, h ∈ V (H). Let (G,Σ) be the signed graph obtained from



identifying g and h in H, and suppose that every two odd circuits of (G,Σ) have
the same size parity. Then in (G,Σ) the maximum number of pairwise disjoint
odd circuit covers is equal to the size of a minimum odd circuit.

(Here an odd circuit cover is simply a cover for the clutter of odd circuits.)
As the reader may be wondering, what is the rationale behind the rather strange
construction of (G,Σ) above? Interestingly, the clutter of minimal odd circuit
covers is binary, and so the Cycling Conjecture predicts an excluded minor char-
acterization for when this clutter is cycling. As we did with the clutter of odd
st-walks, one can restate the Cycling Conjecture for the clutter of odd circuit
covers as follows:

(?) for signed graphs (G,Σ) without a K̃5 minor such that every two odd
circuits have the same parity, the maximum number of pairwise disjoint
odd circuit covers is equal to the minimum size of an odd circuit. (?)

The construction in the statement of Theorem 15 yields a signed graph (G,Σ)

that has no K̃5 minor, and Theorem 15 verifies the restatement above for these
classes of signed graphs.

Proof. Let H∗ be the plane dual of H, and let P be an odd gh-path in (H,Σ). Let
s and t be the two odd faces of (H,Σ). Consider the plane signed graph (H∗, P );
note that this signed graph has precisely two odd faces, namely g and h, and so it
belongs to (3). In particular, (H∗, P ) contains no K̃5 and F7 minor. Since every
two odd circuits of (G,Σ) have the same parity, it follows from Remark 4 that
(H∗, P ) is st-eulerian. So Theorem 2 applies and we have τ(H∗, P ) = ν(H∗, P ).

We claim that an odd cycle of (G,Σ) is an odd st-walk cover of (H∗, P ), and
vice-versa. Let L be an odd cycle of (G,Σ). If L is an odd cycle of (H,Σ) then L
separates the two odd faces s and t, and so it is an st-cut in (H∗, P ). Otherwise,
L is an odd gh-path and so L4 P is an even cycle of (H,Σ). However, an even
cycle in (H,Σ) is a cut in (H∗, P ) having s and t on the same shore. Hence, L is
of the form P4δ(U) where s, t ∈ U ⊆ V (H∗). Therefore, in either cases, L is an
odd st-walk cover of (H∗, P ). Similarly, one can show that an odd st-walk cover
of (H∗, P ) is an odd cycle of (G,Σ). Therefore, since b(b(C)) = C for any clutter
C, it follows that an odd circuit cover of (G,Σ) is an odd st-walk of (H∗, P ),
and vice-versa.

Hence, τ(H∗, P ) is the minimum size of an odd circuit of (G,Σ), and ν(H∗, P )
is the maximum number of pairwise disjoint odd circuit covers of (G,Σ). Since
τ(H∗, P ) = ν(H∗, P ), the result follows. ut

4.5 Clutter of odd circuits and odd T -joins

Here, we provide yet another application of Theorem 2. This result generalizes
Theorem 15. Let (G = (V,E), Σ) be a signed graph, and let T ⊆ V be a subset of
even size. We call the triple (G,Σ, T ) a signed graft. Let C be the clutter over the
ground set E that consists of odd circuits and minimal odd T -joins of (G,Σ, T ).
This minor-closed class of clutters is fairly large. For instance, if T = ∅ then C
is the clutter of odd circuits, and if Σ is a T -cut then C is the clutter of T -joins.



Remark 16 C is a binary clutter.

Proof. Take any three elements C1, C2, C3 of C. If an even number of C1, C2, C3

are odd circuits, then C1 4 C2 4 C3 is an odd T -join and so it contains an
element of C. Otherwise, an odd number of C1, C2, C3 are odd circuits, and so
C1 4 C2 4 C3 is an odd cycle and so it contains an element of C. Since this is
true for all C1, C2, C3 in C, it follows from definition that C is binary. ut

Remark 17 Minimal covers of C are of the form Σ 4 δ(U), where U ⊆ V and
|U ∩ T | is even.

Proof. Let B be a minimal cover of C. Then B intersects every odd circuit of
(G,Σ), and so B 4 Σ = δ(U) for some U ⊆ V . The preceding remark showed
C is binary, and so B intersects every odd T -join in an odd number of edges, so
|U ∩ T | must be even. ut

Fig. 2. Signed graft F̃7, where all edges are odd and filled-in vertices are in T . For this
signed graft, the clutter of odd circuits and minimal odd T -joins isomorphic to L7.

Theorem 18 Let (G,Σ, T ) be a plane signed graft with exactly two odd faces

that has no minor isomorphic to F̃7, depicted in Figure 2. Let C be the clutter
of odd circuits and minimal odd T -joins, and suppose that every two elements
of C have the same size parity. Then the maximum of pairwise disjoint minimal
covers of C is equal to the minimum size of an element of C.

Proof. The proof is similar to the proof of Theorem 15. Let G∗ be the plane dual
of G, and let P be an odd T -join in (G,Σ, T ). Let s and t be the two odd faces

of (G,Σ, T ). Since (G,Σ, T ) has no minor isomorphic to F̃7, it follows that the

signed graph (G∗, P ) contains no F7 minor, and since it is planar, it has no K̃5



minor either. Since every two elements of C have the same parity, it follows that
(G∗, P ) is st-eulerian. Hence, by Theorem 5, τ(G∗, P ) = ν(G∗, P ).

We claim that C is the clutter of odd st-walk covers of (G∗, P ), and vice-
versa. Let C ∈ C. If C is an odd circuit of (G,Σ, T ), then C is an st-cut of G∗.
Otherwise, C is an odd T -join and so C 4 P is an even cycle of (G,Σ). Thus,
C = P 4 δ(U) for some U ⊆ V (G∗)− {s, t}, i.e. C is a signature of (G∗, P ).

Hence, τ(G∗, P ) is the minimum size of an element of C, and ν(G∗, P ) is the
maximum number of pairwise disjoint covers of C. Since τ(G∗, P ) = ν(G∗, P ),
the result follows. ut

Let us explain how this result implies Theorem 15. In the context of The-
orem 15, let T = {g, h}. Observe that (H,Σ, T ) is a plane signed graft with

exactly two odd faces, and it has no minor isomorphic to F̃7 (for |T | = 2).
However, the clutter of odd circuits and minimal odd T -joins of (H,Σ, T ) is
isomorphic to the clutter of odd circuits of (G,Σ). It is now easily seen that
Theorem 18 implies Theorem 15.

5 Overview of the Proof of Theorem 2

A complete proof will appear in the full version. In this section, however, we
provide an overview of our proof of Theorem 5, which is equivalent to Theorem 2.
The proof follows a routine strategy. We start with an st-eulerian signed graph
(G,Σ) that does not pack, i.e. τ(G,Σ) > ν(G,Σ), and we will look for either of

the obstructions K̃5, F7 as a minor.
We say that a signed graph (H,Γ ) is a weighted minor of (G,Σ) if (H,Γ )

minus some parallel edges is a minor of (G,Σ). (Two edges are parallel if they

have the same end vertices as well as the same parity.) Observe that if K̃5 or F7

appears as a weighted minor of (G,Σ), then it is also present as a minor since

neither of K̃5, F7 contain parallel edges.
Among all st-eulerian non-packing weighted minors of (G,Σ), we pick one

(G′, Σ′) with smallest τ(G′, Σ′), smallest |V (G′)| and largest |E(G′)|, in this
order of priority. Such a non-packing weighted minor exists. Indeed, if an edge
has sufficiently many parallel edges, then it may be contracted while keeping
(G′, Σ′) non-packing and τ(G′, Σ′) unchanged. Reset (G,Σ) := (G′, Σ′) and
let τ := τ(G,Σ), ν := ν(G,Σ). By identifying a vertex of each (connected)
component with s, if necessary, we may assume that G is connected. (Notice

that neither of the obstructions K̃5, F7 has a cut-vertex.)

Remark 19 There do not exist τ − 1 pairwise disjoint odd st-walks in (G,Σ).

Proof. Suppose otherwise. Remove some τ − 1 pairwise disjoint odd st-walks in
(G,Σ). Observe that what is left is an odd {s, t}-join because |Σ|, deg(s),deg(t)
and τ all have the same parity and all vertices other than s, t have even degree.
Hence, since every odd {s, t}-join contains an odd st-walk, one can actually find
τ pairwise disjoint odd st-walks in (G,Σ), contradicting the fact that (G,Σ) is
non-packing. ut



Let B be a cover of (G,Σ) of size τ . Choose an edge Ω as follows. If s = t
then let Ω ∈ E−B, and since label s is irrelevant to our problem in this case, we
may as well assume Ω ∈ δ(s). Otherwise, when s 6= t, let Ω ∈ (δ(s) ∪ δ(t))−B.
Indeed, if such an edge does not exist, then δ(s)∪δ(t) is contained in the minimum
cover B, implying that δ(s) ∪ δ(t) = δ(s) = δ(t), but this cannot be the case
as G is connected and non-packing. Again, we may assume that Ω is incident
to s. Let s′ be the other end-vertex of Ω. Add two parallel edges Ω1, Ω2 to Ω
to obtain (K,Γ ); this st-eulerian signed graph must pack since τ(K,Γ ) = τ as
B is also a minimum cover for (K,Γ ), V (K) = V (G) but |E(K)| > |E(G)|.
Hence, (K,Γ ) contains a collection {L1, L2, . . . , Lτ} of pairwise disjoint odd
st-walks. Observe that all of Ω,Ω1 and Ω2 must be used by the odd st-walks
in {L1, L2, . . . , Lτ}, say by L1, L2, L3, since otherwise one finds at least τ − 1
disjoint odd st-walks in (G,Σ), which is not the case by the preceding remark.
As a result, the sequence (L1, L2, L3, . . . , Lτ ) corresponds to an Ω-packing of
odd st-walks in (G,Σ), described as follows:

(i) L1, . . . , Lτ are odd st-walks in (G,Σ),
(ii) Ω ∈ L1 ∩ L2 ∩ L3 and Ω /∈ L4 ∪ · · · ∪ Lτ , and

(iii) (Lj − {Ω} : 1 ≤ j ≤ τ) are pairwise disjoint subsets of edges.

We fix an Ω-packing (L1, L2, L3, . . . , Lτ ) having a minimum number of edges in
their union.

We call T a transversal of a collection of sets if T picks exactly one element
from each of the sets. For an odd st-walk L, we say that a minimal cover B is a
mate of L if |B − L| = τ − 3.

Lemma 20 Let L be an odd st-walk such that (G,Σ) \L contains at least τ − 3
pairwise disjoint odd st-walks collected in L. Then L has a mate B, and B − L
is a transversal of L.

Proof. The signed graph (G,Σ)\L packs as it is st-eulerian and τ((G,Σ)\L) < τ .
Let B′ be one of its minimum covers. By our assumption, τ((G,Σ) \L) ≥ τ − 3.
Since both (G,Σ) and (G,Σ) \ L are st-eulerian, it follows that τ((G,Σ) \ L)
and τ have different parities, and so τ((G,Σ) \ L) is either τ − 3 or τ − 1.
However, observe that the latter is not possible due to Remark 19 and the fact
that (G,Σ) \ L packs. As a result |B′| = τ((G,Σ) \ L) = τ − 3. It is now clear
that B′ ∪ L contains a mate for L, and that B′ is a transversal of L. ut

Observe that if L ⊆ L1 ∪ L2 ∪ L3 or L ∈ {L4, . . . , Lτ}, then (G,Σ) \ L does
contain at least τ − 3 pairwise disjoint odd st-walks. Thus, the preceding lemma
guarantees the existence of a mate for any such odd st-walk. Vaguely speaking,
mates are used as means to build connectivity, with appropriate signing, between
the odd st-walks.

Let us call an odd st-walk L simple if it is an odd st-path P ; otherwise when
L is the union of an odd circuit C and an even st-path P , we call L a non-
simple odd st-walk. By our definition then, when s = t all the odd st-walks are
non-simple. For each 1 ≤ i ≤ τ , either Li is a simple odd st-walk Pi, or it is a



non-simple odd st-walk Ci ∪ Pi, where Ci is an odd circuit and Pi is an even
st-path.

Lemma 21 One of the following holds:

(i) L1, L2 and L3 are simple,
(ii) at least one of L1, L2, L3 is non-simple, and whenever Lk is non-simple for

some 1 ≤ k ≤ 3, then Ω ∈ Ck,
(iii) at least two of L1, L2, L3 are non-simple, and Ω ∈ P1 ∩ P2 ∩ P3.

We analyze each of the three cases separately, and the techniques used to
tackle each case are different. A major difference between our proof and the
ones for Corollaries 8, 9 and 10 (see [6, 5, 11, 3]) is in where an obsruction is
looked for. In any of the aforementioned proofs, only the first three sets of the
Ω-packing assisted in finding an obstruction. For our proof, however, this is no
longer the case; some of the odd st-walks in L4, . . . , Lτ , as well as their mates,
help us in finding either of the obstructions. This concludes our overview of the
proof of Theorem 5.
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