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Abstract

A clutter is k-wise intersecting if every k members have a common element, yet no element belongs to

all members. We conjecture that, for some integer k ≥ 4, every k-wise intersecting clutter is non-ideal. As

evidence for our conjecture, we prove it for k = 4 for the class of binary clutters. Two key ingredients for

our proof are Jaeger’s 8-flow theorem for graphs, and Seymour’s characterization of the binary matroids with

the sums of circuits property. As further evidence for our conjecture, we also note that it follows from an

unpublished conjecture of Seymour from 1975. We also discuss connections to the chromatic number of a

clutter, projective geometries over the two-element field, uniform cycle covers in graphs, and quarter-integral

packings of value two in ideal clutters.

1 Introduction

Let V be a finite set of elements, and let C be a family of subsets of V called members. The family C is a clutter

over ground set V , if no member contains another one [15]. A cover of C is a subsetB ⊆ V such thatB∩C 6= ∅
for all C ∈ C. Consider for w ∈ ZV

+ the dual pair of linear programs

(P )

min w>x

s.t.
∑

(xu : u ∈ C) ≥ 1 ∀C ∈ C
x ≥ 0

(D)

max 1>y

s.t.
∑

(yC : u ∈ C ∈ C) ≤ wu ∀u ∈ V
y ≥ 0.

If the dual (D) has an integral optimal solution for every right-hand-side vector w ∈ ZV
+ , then C is said to have

the max-flow min-cut (MFMC) property [10]. By the theory of totally dual integral linear systems, for every

MFMC clutter, the primal (P ) also admits an integral optimal solution for every cost vector w ∈ ZV
+ [16].

This is why the class of MFMC clutters is a natural host to many beautiful min-max theorems in Combinatorial

Optimization [12]. Let us elaborate.
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The packing number of C, denoted ν(C), is the maximum number of pairwise disjoint members. Note that

ν(C) is equal to the maximum value of an integral feasible solution to (D) for w = 1. Furthermore, the covers

correspond precisely to the 0 − 1 feasible solutions to (P ). The covering number of C, denoted τ(C), is the

minimum cardinality of a cover. Notice that τ(C) is equal to the minimum value of an integral feasible solution

to (P ) for w = 1. Also, by Weak LP Duality, τ(C) ≥ ν(C). The clutter C packs if τ(C) = ν(C) [28]. Observe

that if a clutter is MFMC, then it packs.

Definition 1 ([14]). C is an ideal clutter if the primal (P ) has an integral optimal solution for every cost vector

w ∈ ZV
+ .

Ideal clutters form a rich class of objects, one that contains the class of MFMC clutters, as discussed above.

This containment is strict, and in fact, some of the richest examples of ideal clutters are those that are not

MFMC [18, 24].

A clutter is intersecting if every two members intersect yet no element belongs to every member [4]. That

is, a clutter C is intersecting if τ(C) ≥ 2 and ν(C) = 1. In particular, an intersecting clutter does not pack, and

therefore is not MFMC. Intersecting clutters, however, may be ideal. For instance, the clutter

Q6 := {{1, 3, 6}, {1, 4, 5}, {2, 3, 5}, {2, 4, 6}},

whose elements are the edges and whose members are the triangles of K4, is an intersecting clutter that is

ideal [28]. In fact, Q6 is the smallest intersecting clutter which is ideal ([1], Proposition 1.2).

The fact that intersecting clutters may be ideal is counterintuitive, because such clutters are blatantly non-

MFMC. Nonetheless, we expect our intuition to be close to the truth. In this paper, we study a sequence of

stricter versions of the intersecting condition, and conjecture that this sequence of notions eventually leads to

non-idealness.

Definition 2. C is k-wise intersecting if every subset of at most k members have a common element, yet no

element belongs to all members.

Note that for k = 2, this notion coincides with the notion of intersecting clutters. Furthermore, for k ≥ 3, a

k-wise intersecting clutter is also (k − 1)-wise intersecting. The following is our main conjecture.

Conjecture 3. There exists an integer k ≥ 4 such that every k-wise intersecting clutter is non-ideal.

In fact, we conjecture that the above holds for k = 4. We prove this for an important class of clutters. A

clutter is binary if the symmetric difference of any odd number of members contains a member [22]. Many rich

classes of clutters are in fact binary [12]. For example, given a graph G = (V,E) and distinct vertices s and t,

the clutter of st-paths over ground set E is binary. The clutter Q6 is also binary. As evidence for Conjecture 3,

our main result is that it holds for all binary clutters.

Theorem 4. Every 4-wise intersecting binary clutter is non-ideal.

We also show that 4 cannot be replaced by 3 in Conjecture 3, even for binary clutters.
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Proposition 5. There exists an ideal 3-wise intersecting binary clutter.

The example from Proposition 5 comes from the Petersen graph, and also coincides with the clutter T30 from

[26], §79.3e. It has 30 elements and is the smallest such example that we are aware of.

Another strengthening of the intersecting condition. For an integer k ≥ 2, a clutter is k-intersecting if every

pair of members have at least k elements in common, yet no element belongs to all members. One may propose

an analogue of Conjecture 3 for k-intersecting clutters:

(?) For a sufficiently large integer k, every k-intersecting clutter is non-ideal. (?)

This conjecture, however, is false. In fact, k-intersecting clutters are no closer to being non-ideal than intersecting

clutters. Let us elaborate.

Let C be a clutter over ground set V . To duplicate an element u is to introduce a new element ū, and replace

C by the clutter over ground set V ∪{ū}, whose members are {C : C ∈ C, u /∈ C}∪{C∪{ū} : C ∈ C, u ∈ C}.
A duplication of C is a clutter obtained from C by repeatedly duplicating elements. We leave it as an exercise for

the reader to check that a clutter is ideal if and only if some duplication of it is ideal.

Now, if a clutter is k-intersecting, then the clutter obtained from it after duplicating every element once, is

2k-intersecting. As a result, starting from an ideal intersecting clutter, such as Q6, one can construct a sequence

of ideal 2k-intersecting clutters, k = 0, 1, 2, . . ..

1.1 Paper outline

§2
As further evidence for Conjecture 3, we also show that it follows for k = 5 from an unpublished

conjecture by Seymour from 1975 that was documented in [26], §79.3e.

§3
The theory of blocking clutters allows us to give a very attractive reformulation of Conjecture 3 in terms

of the chromatic number of a clutter.

§4
We show that a special class of clutters, called cuboids, sit at the heart of Conjecture 3. Cuboids allow

us to reformulate Conjecture 3 yet again, but this time in terms of set systems.

§5
We prove Theorem 4 and Proposition 5. Besides the theory of cuboids, two other key ingredients of our

proof of Theorem 4 are Jaeger’s 8-flow Theorem [21] for graphs, and Seymour’s characterization of the

binary matroids with the sums of circuits property [31].

§6
We propose a line of attack for tackling Conjecture 3 via a deep connection to projective geometries

over the two-element field, objects that give rise to k-wise intersecting clutters.

§7
We discuss two applications of Theorem 4, one to uniform cycle covers in graphs, another to quarter-

integral packings of value two in ideal binary clutters.

2 Dyadic fractional packings in ideal clutters

In this section, we prove that Conjecture 3 for k = 5 follows from a conjecture of Seymour.
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Let C be a clutter over ground set V . A fractional packing of C is a vector y ∈ RC+ such that for all v ∈ V ,
∑

(yC : C ∈ C, v ∈ C) ≤ 1; its value is 1>y. Observe that a fractional packing is nothing but a feasible solution

to (D), below.

(P )

min 1>x

s.t.
∑

(xu : u ∈ C) ≥ 1 ∀C ∈ C
x ≥ 0

(D)

max 1>y

s.t.
∑

(yC : u ∈ C ∈ C) ≤ 1 ∀u ∈ V
y ≥ 0.

As a result, Weak LP Duality implies that every fractional packing has value at most τ(C). Moreover, if C is an

ideal clutter, then Strong LP Duality guarantees the existence of a fractional packing of value τ(C). Seymour

conjectures the following.

Conjecture 6 (Seymour 1975, see [26], §79.3e). Every ideal clutter C has a 1
4 -integral packing of value τ(C).

Here, a vector is 1
4 -integral if every entry is 1

4 -integral.

Let us prove that Conjecture 6 implies Conjecture 3. Let I and J be disjoint subsets of V . The minor C \I/J
obtained after deleting I and contracting J is the clutter over ground set V − (I ∪ J) whose members are the

minimal sets in {C − J : C ∈ C, C ∩ I = ∅}. If J = ∅, then C \ I/J = C \ I is called a deletion minor. If a

clutter is ideal, then so is every minor of it [28].

Proposition 7. If Conjecture 6 is true, then Conjecture 3 is true for k = 5.

Proof. Assume Conjecture 6 is true. Let C be an ideal clutter with τ(C) ≥ 2. We need to exhibit at most five

members without a common element. By Conjecture 6, C has a 1
4 -integral packing y ∈ RC+ of value τ(C) ≥ 2.

Pick a minimal subset C′ ⊆ {C ∈ C : yC > 0} such that
∑

C∈C′ yC > 1. Clearly, |C′| ≤ 5. Moreover, the

members of C′ do not have a common element; for if u was a common element to the members of C′, then

1 <
∑

C∈C′
yC =

∑

u∈C∈C′
yC ≤

∑

u∈C∈C
yC ≤ 1

where the last inequality holds because y is a fractional packing, a contradiction. As a result, C′, and therefore

C, has a subset of at most five members without a common element, as required.

The careful reader will notice that we proved something stronger above: Conjecture 3 holds for k = 5 as

long as there exists a fractional packing of value at least two, where every nonzero fraction assigned is ≥ 1
4 .

Conjecture 6 is notoriously difficult as it is open even for binary clutters. In fact, it remains open for the

clutter of postman sets of a graph ([12], Conjecture 2.15). Proposition 7 is particularly interesting as it suggests

a clue for proving Conjecture 6, by tackling Conjecture 3 first. As we see in §7, Theorem 4 implies Conjecture 6

for ideal binary clutters with covering number two.
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3 The chromatic number of a clutter

In this section, we give a very attractive reformulation of Conjecture 3.

Let C be a clutter over ground set V where every member has cardinality at least two. For an integer k ≥ 2,

a proper k-colouring of C is an assignment of k colours to the elements V such that no monochromatic member

exists, that is, it is a partition of V into k parts none of which contains a member.

Definition 8. The chromatic number of C, denoted χ(C), is the smallest integer k such that a proper k-colouring

exists.

Since every member of C has cardinality at least two, χ(C) is well-defined.

The incidence matrix of C, denoted M(C), is the matrix whose columns are indexed by the elements and

whose rows are the incidence vectors of the members. We say that C is a balanced clutter if M(C) does not have

the adjacency matrix of an odd circuit as a submatrix. Balanced clutters form an important subclass of ideal

clutters. If C is a balanced clutter where every member has cardinality at least two, then χ(C) ≤ 2 (and therefore

= 2). Balancedness, as well as the statements just made, are due to Claude Berge [8].

Given Berge’s result in our context, one may wonder whether a universal upper bound exists for the chromatic

number of an ideal clutter? We conjecture the following extension.

Conjecture 9. There exists an integer k ≥ 4 such that every ideal clutter without a member of cardinality at

most one has chromatic number at most k.

We prove that this conjecture is, in fact, equivalent to Conjecture 3! To show this, we need to introduce an

important clutter notion.

Let C be a clutter over ground set V . The family of minimal covers of C forms another clutter over the ground

set V , called the blocker of C and denoted b(C). It is well-known that b(b(C)) = C [20, 15].

Proposition 10. Let C be a clutter over ground set V where every member has cardinality at least two. Let

k ≥ 2 be an integer. Then C has chromatic number at most k if, and only if, b(C) is not k-wise intersecting.

Proof. (⇒) Let A1, . . . , Ak be a proper k-colouring of C, that is, A1, . . . , Ak form a partition of V such that no

Ai, i ∈ [k] := {1, . . . , k} contains a member of C. Then for each i ∈ [k], V −Ai is a cover of C, so there exists

Bi ∈ b(C) disjoint from Ai. Since A1 ∪ · · · ∪Ak = V , it follows that B1 ∩ · · · ∩Bk = ∅, certifying that b(C) is

not k-wise intersecting.

(⇐) Assume that b(C) is not k-wise intersecting. Since every member of C has cardinality at least two,

τ(b(C)) ≥ 2, so there exist B1, . . . , Bk ∈ b(C) such that B1 ∩ · · · ∩ Bk = ∅. Let A1 := V − B1 and for

i = 2, . . . , k let

Ai := (B1 ∩ · · · ∩Bi−1)−Bi.

By definition, A1, . . . , Ak are pairwise disjoint. As B1 ∩ · · · ∩ Bk = ∅, it follows that A1, . . . , Ak partition

V . As no Ai is a cover of b(C), it follows that A1, . . . , Ak is a proper k-colouring of b(b(C)) = C, so C has

chromatic number at most k.
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A clutter is ideal if, and only if, its blocker is ideal [17, 23, 12]. We are now ready to prove the following.

Proposition 11. Conjecture 3 for k is equivalent to Conjecture 9 for the same k.

Proof. Assume that Conjecture 3 holds for k, that is, every k-wise intersecting clutter is non-ideal. Let C be an

ideal clutter where every member has cardinality at least two. Then b(C) is an ideal clutter, so it is not k-wise

intersecting by our hypothesis, so χ(C) ≤ k by Proposition 10. Thus, Conjecture 9 holds for the same k. The

other direction is similar.

A result that must be noted in the context of Conjecture 9 is the following: For every ideal clutter C where

every member and also every cover has cardinality at least two, either χ(C) ≤ 2 or χ(b(C)) ≤ 2 (or both). This

result was proved recently, and the proof relied on Gauge Duality in Quadratic Programming [3].

As a final note, it is well-known that a clutter is binary if, and only if, the blocker is binary [22]. As a

consequence, Theorem 4 and Proposition 5 (which have not yet been proved) are equivalent, respectively, to the

following statements.

Theorem 12. Every ideal binary clutter without a member of cardinality at most one has chromatic number at

most 4.

Proposition 13. There exists an ideal binary clutter whose chromatic number is equal to 4.

4 Cuboids

In this section, we reformulate Conjecture 3 in terms of cuboids. The concept of cuboids is key for the proof of

Theorem 4.

Let n ≥ 1 be an integer, and let S ⊆ {0, 1}n. The cuboid of S, denoted cuboid(S), is the clutter over ground

set [2n] whose members have incidence vectors (p1, 1− p1, . . . , pn, 1− pn) over all (p1, . . . , pn) ∈ S. We say

that a clutter is a cuboid if, after a relabeling of its ground set, is equal to cuboid(S), for some S.

Observe that for each C ∈ cuboid(S), |C ∩ {2i − 1, 2i}| = 1 for all i ∈ [n]. In particular, every member

of cuboid(S) has size n (hence cuboid(S) is a clutter) and τ(cuboid(S)) ≤ 2. Cuboids were introduced in [6]

and further studied in [1].

We now describe what it means for cuboid(S) to be k-wise intersecting. We say that the points in S agree

on a coordinate if S ⊆ {x : xi = a} for some coordinate i ∈ [n] and some a ∈ {0, 1}.

Remark 14. Let S ⊆ {0, 1}n. Then cuboid(S) is a k-wise intersecting clutter if, and only if, the points in S do

not agree on a coordinate yet every subset of at most k points do.

Proof. (⇒) Assume that cuboid(S) is k-wise intersecting.

If the points in S agree on a coordinate, say S ⊆ {x : xi = a}, then the members of cuboid(S) would have

an element in common, either 2i − 1 (if a = 1) or 2i (if a = 0), which is not possible because the members of

cuboid(S) do not have a common element. Thus, the points in S do not agree on a coordinate.
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If a subset S′ of at most k points in S do agree on a coordinate, say S′ ⊆ {x : xi = a}, then the members

of cuboid(S)
′ ⊆ cuboid(S) would have an element in common, leading to at most k members in cuboid(S)

that have a common element, which again is not possible because cuboid(S) is k-wise intersecting. Thus, every

subset of S of at most k points agree on a coordinate.

(⇐) is similar and left to the reader.

Next, we describe what it means for cuboid(S) to be ideal. Let conv(S) denote the convex hull of S. An

inequality of the form
∑

i∈I xi +
∑

j∈J(1 − xj) ≥ 1, for some disjoint I, J ⊆ [n], is called a generalized set

covering inequality [12]. The set S is cube-ideal if every facet of conv(S) is defined by xi ≥ 0, xi ≤ 1, or a

generalized set covering inequality [1].

Theorem 15 ([1]). Let S ⊆ {0, 1}n. Then cuboid(S) is an ideal clutter if, and only if, S is a cube-ideal set.

As a result, (the contrapositive of) Conjecture 3 for cuboids reduces to the following conjecture.

Conjecture 16. There exists an integer k ≥ 4 such that for every cube-ideal set, either all the points agree on a

coordinate, or there is a subset of at most k points that do not agree on a coordinate.

Surprisingly, we show that Conjecture 16 is equivalent to Conjecture 3! We need the notions of a tangled

clutter and the core of an ideal tangled clutter.

4.1 Tangled clutters

Take an integer k ≥ 2. If every k members of a clutter have a common element, then so do every k members of a

deletion minor. Furthermore, for every element v ∈ V , τ(C) ≥ τ(C \ v) ≥ τ(C)− 1, where τ(C \ v) = τ(C)− 1

if and only if v belongs to some minimum cover of C. Motivated by these observations, we make the following

definition.

Definition 17. C is a tangled clutter if τ(C) = 2 and every element belongs to a minimum cover.

Observe that every cuboid with covering number two is a tangled clutter. Tangled clutters are relevant due to

the following remark.

Remark 18. Let C be a k-wise intersecting clutter. Let C′ be a deletion minor of C that is minimal subject to

τ(C′) ≥ 2. Then C′ is a tangled k-wise intersecting clutter.

Proof. It is clear that C′ is a tangled clutter. As C′ is a deletion minor of C, every member of C′ is also a member

of C, so every subset of at most k members of C′ have a common element, implying in turn that C′ is a k-wise

intersecting clutter.

Thus, it suffices to prove Conjecture 3 for tangled clutters. In the rest of this section, we further reduce the

conjecture to cuboids.
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4.2 Every ideal tangled clutter has an ideal core.

Let C be an ideal tangled clutter over ground set V . Consider the following dual pair of linear programs:

(P )

min 1>x

s.t.
∑

(xu : u ∈ C) ≥ 1 ∀C ∈ C
x ≥ 0

(D)

max 1>y

s.t.
∑

(yC : u ∈ C ∈ C) ≤ 1 ∀u ∈ V
y ≥ 0

As C has covering number two, (P) has optimal value two, and every minimum cover of C yields an optimum to

(P). By Strong LP Duality, the optimal value of (D) is also two; let y? be a fractional packing of value two. By

Complementary Slackness, whenever y?C > 0, then |C ∩{u, v}| = 1 for every minimum cover {u, v} of C. This

observation motivates the following definition.

Definition 19. Let C be an ideal tangled clutter over ground set V . The core of C is the clutter

core(C) := {C ∈ C : |C ∩ {u, v}| = 1 for every minimum cover {u,v}}.

In this subsection, we prove that the core of every ideal tangled clutter is another ideal tangled clutter, one

that arises from a cuboid. We need a few ingredients.

Let C be a clutter over ground set V . Let

Q(C) :=

{
x ∈ RV

+ :
∑

v∈C
xv ≥ 1 C ∈ C

}
.

Observe that the 0 − 1 points in Q(C) are precisely the incidence vectors of the covers of C, while the integral

vertices of Q(C) are precisely the incidence vectors of the minimal covers of C. Basic polyhedral theory tells us

that C is an ideal clutter if, and only if, Q(C) is another integral polyhedron (see [11], Theorem 4.1).

Recall that to duplicate an element u of C is to introduce a new element ū, and replace C by the clutter over

ground set V ∪ {ū}, whose members are {C : C ∈ C, u /∈ C} ∪ {C ∪ {ū} : C ∈ C, u ∈ C}. Recall further that

a duplication of C is a clutter obtained from C by repeatedly duplicating elements. It can be readily checked that

a clutter is k-wise intersecting if and only if some duplication of it is k-wise intersecting.

Proposition 20. Let C be an ideal tangled clutter over ground set V . Let G = (V,E) be the graph whose edges

correspond to the minimum covers of C. Then the following statements hold:

1. core(C) = {C ∈ C : yC > 0 for some fractional packing y of value two},

2. G is a bipartite graph, and

3. if {U,U ′} is the bipartition of a connected component of G, then the elements in U (resp. U ′) are dupli-

cates in core(C), and |{u, u′} ∩ C| = 1 for all u ∈ U, u′ ∈ U ′ and C ∈ core(C).

Proof. (1) (⊇) follows from Complementary Slackness while (⊆) follows from Strict Complementarity. (2)

It follows from (1) that core(C) 6= ∅. It can now be readily checked that G is a bipartite graph, as for each

C ∈ core(C), {C, V − C} is a bipartition of G. (3) If {u, v}, {u,w} are minimum covers of C, then v, w are

duplicates in core(C). This observation proves (3).
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We need the following lemma.

Lemma 21 ([6], Lemma 3.1). Let C be a clutter whose ground set can be partitioned into parts {u1, v1}, . . . ,
{ur, vr} such that |{ui, vi}∩C| = 1 for each i ∈ [r] and C ∈ C. Then C is ideal if, and only if, conv

{
χC : C ∈

C
}

= Q
(
b(C)

)
∩
{
x : xui + xvi = 1 ∀i ∈ [r]

}
.

Here, χC denotes the incidence vector of C.

We are now ready to prove the main result of this subsection.

Theorem 22. Let C be an ideal tangled clutter. Then core(C) is a duplication of a cuboid. Moreover, core(C) is

an ideal tangled clutter.

Proof. Denote by V the ground set of C. Let G = (V,E) be the graph whose edges correspond to the minimum

covers of C. By Proposition 20 (2), G is a bipartite graph. Let r be the number of connected components of

G, and for each i ∈ [r], let {Ui, Vi} be the bipartition of the ith connected component. By Proposition 20 (3),

for each i ∈ [r], the elements in Ui are duplicates in core(C), the elements in Vi are duplicates in core(C), and

|{u, v} ∩ C| = 1 for all u ∈ Ui, v ∈ Vi and C ∈ core(C). That is, each C ∈ core(C) is determined by r binary

choices; in each connected component of G, C must contain exactly one of the two parts of the bipartition. This

allows a more concise representation of the core. For each C ∈ core(C), define pC ∈ {0, 1}r such that

(pC)i =





0 if C ∩ (Ui ∪ Vi) = Vi

1 if C ∩ (Ui ∪ Vi) = Ui

Let S := {pC : C ∈ core(C)} ⊆ {0, 1}r. Then core(C) is a duplication of cuboid(S).

Claim 1. core(C) is a tangled clutter.

Proof of Claim. As a subset of C, core(C) has covering number at most two, and every element of it appears in

a cover of cardinality two. Thus, to prove the claim, it suffices to show that core(C) has covering number at least

two. Let y be a fractional packing of C of value two. Then support(y) ⊆ core(C) by Proposition 20 (1), so y is

also a fractional packing of core(C). Subsequently, core(C) has covering number at least two, as required. ♦

It remains to prove that core(C) is an ideal clutter; we use Lemma 21 to prove this. We know that

{χC : C ∈ core(C)} = {χC : C ∈ C} ∩
{
x : xu + xv = 1, {u, v} ∈ E

}
. (?)

Claim 2. conv{χC : C ∈ core(C)} = Q
(
b(core(C))

)
∩
{
x : xu + xv = 1, {u, v} ∈ E

}
.

Proof of Claim. (⊆) follows immediately from (?). (⊇) Pick a point x? in the set on the right-hand side. As

Q
(
b(core(C))

)
⊆ Q

(
b(C)

)
, we have x? ∈ Q

(
b(C)

)
. Since C is ideal, so is b(C), implying that for some λ ∈ RC+

with
∑

C∈C λC = 1, we have that

x? ≥
∑

C∈C
λCχC .

Since for all {u, v} ∈ E, we have that x?u + x?v = 1 and {u, v} ∈ b(C), equality must hold above and by (?), if

λC > 0 then C ∈ core(C). Hence, x? ∈ conv{χC : C ∈ core(C)}, as required. ♦
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For each i ∈ [r], pick ui ∈ Ui and vi ∈ Vi, and let C′ be the clutter over ground set {u1, v1, . . . , ur, vr}
obtained from core(C) after contracting V − {u1, v1, . . . , ur, vr}. Notice that |{ui, vi} ∩ C| = 1 for all i ∈ [r]

and C ∈ C′. (Observe that C′ is nothing but cuboid(S).)

Claim 3. conv{χC : C ∈ C′} = Q
(
b(C′)

)
∩
{
z : zui

+ zvi = 1 i ∈ [r]
}

.

Proof of Claim. We use Claim 2 to prove this equality. Observe that conv{χC : C ∈ C′} is the projection of

conv{χC : C ∈ core(C)} onto the coordinates {ui, vi : i ∈ [r]}. Thus, to finish the proof, it suffices to show that

Q
(
b(C′)

)
∩
{
z : zui

+ zvi = 1, i ∈ [r]
}

is the projection of Q
(
b(core(C))

)
∩
{
x : xu + xv = 1, {u, v} ∈ E

}

onto the same coordinates. We leave this as an easy exercise for the reader. ♦

It therefore follows from Lemma 21 that C′ is an ideal clutter. As core(C) is a duplication of C′, core(C) is

an ideal clutter, too, thereby completing the proof.

4.3 Conjectures 16 and 3 are equivalent.

Theorem 23. Conjecture 16 for k is equivalent to Conjecture 3 for the same k.

Proof. We already showed (⇐). It remains to prove (⇒). Suppose Conjecture 3 is false for some k ≥ 4. That

is, there is an ideal k-wise intersecting clutter C. Let C′ be a deletion minor of C that is minimal subject to

τ(C′) ≥ 2. By Remark 18, C′ is an ideal tangled k-wise intersecting clutter. By Theorem 22, core(C′) is an

ideal tangled clutter that is a duplication of some cuboid, say cuboid(S). As every k members of C′ have a

common element, so do every k members of core(C′), so the latter is k-wise intersecting. As a result, cuboid(S)

is an ideal k-wise intersecting clutter, so by Remark 14 and Theorem 15, S is a cube-ideal set whose points

do not agree on a coordinate yet every subset of ≤ k points do. Therefore, S refutes Conjecture 16 for k, as

required.

5 Graphs, binary matroids, and binary clutters

In this section, we prove Theorem 4 and Proposition 5. More specifically, in §5.1, we explain how every graph

leads to a cube-ideal set and how the 8-Flow Theorem proves Conjecture 16 for such cube-ideal sets; we also

give an example of an ideal 3-wise intersecting binary clutter, thereby proving Proposition 5. After a primer on

binary matroids in §5.2, we introduce the class of binary matroids with the sums of circuits property 5.3. Using

the machinery developed in earlier subsections, we finally prove Theorem 4 in §5.4.

A key notion throughout this section is the following. Let S ⊆ {0, 1}n. For x, y ∈ {0, 1}n, x4y denotes the

coordinate-wise sum of x, y modulo 2. We say that S is a vector space over GF (2), or simply a binary space, if

a4b ∈ S for all a, b ∈ S. Notice that a nonempty binary space necessarily contains 0.

Remark 24. Let S ⊆ {0, 1}n contain 0. Then cuboid(S) is a binary clutter if, and only if, S is a binary space.
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Recall that a clutter is binary if the symmetric difference of any odd number of members contains a member.

A binary clutter can be characterized as the port of a binary matroid, and also as the clutter of the odd circuits of

a signed binary matroid (see [19]). The above remark shows yet another way to obtain a binary clutter from a

binary matroid.

5.1 The 8-Flow Theorem

Let G = (V,E) be a graph where loops and parallel edges are allowed, where every loop is treated as an edge

not incident to any vertex. A cycle is a subset C ⊆ E such that every vertex is incident with an even number of

edges in C. A bridge of G is an edge e that does not belong to any cycle. The cycle space of G is the set

cycle(G) := {χC : C ⊆ E is a cycle} ⊆ {0, 1}E .

As ∅ is a cycle, and the symmetric difference of any two cycles is also a cycle, it follows that cycle(G) is a binary

space. We require the following two results on cycle spaces of graphs.

Remark 25. Let G = (V,E) be a graph. Then the following statements hold:

1. The points in cycle(G) agree on a coordinate if, and only if, G has a bridge.

2. For all k ∈ N, cycle(G) has a subset of at most k+ 1 points that do not agree on a coordinate if, and only

if, G has at most k cycles the union of which is E.

Proof. (1) (⇒) Since 0 ∈ S, we must have that cycle(G) ⊆ {x : xe = 0} for some edge e ∈ E, so e is not

contained in any cycle of G, implying in turn that e is a bridge. (⇐) is left as an exercise. (2) (⇐) Pick k cycles

C1, . . . , Ck whose union isE. Then the k+1 points 0, χC1
, . . . , χCk

, which all belong to cycle(G), do not agree

on a coordinate. (⇒) Pick k+ 1 points p1, p2, . . . , pk, pk+1 in cycle(G) that do not agree on a coordinate. Then

p14pk+1, p24pk+1, . . . , pk4pk+1,0, all of which belong to cycle(G), do not agree on a coordinate either. Pick

cycles C1, . . . , Ck such that χCi
= pi4pk+1 for i ∈ [k]. It can be readily checked that C1 ∪ . . . ∪ Ck = E,

thereby finishing the proof.

Theorem 26 ([30, 7], see [1]). The cycle space of every graph is a cube-ideal set.

We need the following version of the celebrated 8-Flow Theorem of Jaeger [21]. (The second equivalent

statement follows from Remark 25.)

Theorem 27 ([21]). Let G = (V,E) be a graph. Then either G has a bridge, or there are most 3 cycles the

union of which is E. That is, given cycle(G) ⊆ {0, 1}E , either all the points agree on a coordinate, or there is

a subset of at most 4 points that do not agree on a coordinate.

One may wonder whether the 3, 4 in Theorem 27 may be replaced by 2, 3? The answer is no, due to the

Petersen graph (see Figure 1a):

Remark 28 (see [32]). The edge set of the Petersen graph is not the union of 2 cycles.
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Proof. Suppose for a contradiction that the edge set, E, of the Petersen graph is the union of two cycles C1, C2.

Then J1 := E − C1, J2 := E − C2 are disjoint postman sets, i.e. the odd-degree vertices of Ji coincide with

the odd-degree vertices of the graph. Since J1 ∩ J2 = ∅, and the graph is cubic, J1 and J2 must be perfect

matchings. Clearly, E − (J1 ∪ J2) is another perfect matching, so the Petersen graph is 3-edge-colourable, a

contradiction.

(a) The Petersen graph

0
@

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

1
A

<latexit sha1_base64="2rcpPpMscke7jpDEoOwOcfEeprM=">AAACNHicbVDLSsNAFJ3UV42vqks3waK4KokWH7uiG8FNBfuAppTJ9LYdOpmEmYlYQj/KjR/iRgQXirj1G5yksaj1XIY5c8+9zL3HCxmVyrafjdzc/MLiUn7ZXFldW98obG7VZRAJAjUSsEA0PSyBUQ41RRWDZigA+x6Dhje8SPTGLQhJA36jRiG0fdzntEcJVjrVKVy5HvQpj0MfK0Hvxqazb6fhJOG6ZsK+z+SdacltusC7095OoWiX7BTWLHEyUkQZqp3Co9sNSOQDV4RhKVuOHap2jIWihMHYdCMJISZD3IeWphz7INtxuvTY2tOZrtULhD5cWWn2Z0eMfSlHvqcr9XwD+VdLkv9prUj1Ttsx5WGkgJPJR72IWSqwEgetLhVAFBtpgomgelaLDLDARGmfzdSEswTH05VnSf2w5ByVytflYuU8syOPdtAuOkAOOkEVdImqqIYIukdP6BW9GQ/Gi/FufExKc0bWs41+wfj8AhKTo/8=</latexit>

(b) Representation of the Fano matroid (c) The Wagner graph

Figure 1

As a consequence, an ideal 3-wise intersecting clutter does exist:

Proof of Proposition 5. Let S be the cycle space of the Petersen graph, and let C := cuboid(S). By Remark 24,

C is a binary clutter. By Remark 28, the Petersen is a bridgeless graph that does not have 2 cycles the union

of which is the edge set, so by Remark 25, the points in S do not agree on a coordinate, but every subset of

2 + 1 = 3 points do. Moreover, S is a cube-ideal set by Theorem 26. Therefore, by Remark 14 and Theorem 15,

C is an ideal 3-wise intersecting binary clutter, as required.

The cuboid of the cycle space of the Petersen graph has already shown up in the literature, and is denoted

T30 by Schrijver [26], §79.3e. Consider the graph obtained from Petersen by subdividing every edge once, and

let T be any vertex subset of even cardinality containing all the new vertices. Then the clutter of minimal T -joins

of this graph is precisely T30. (This is left as a nice exercise for the reader.) This construction is due to Seymour

([29], page 440).

5.2 A primer on binary matroids

We follow Oxley [25]. Let E be a finite set, S ⊆ {0, 1}E a binary space, and S⊥ the orthogonal complement

of S, that is, S⊥ = {y ∈ {0, 1}E : y>x ≡ 0 (mod 2) ∀x ∈ S}. Notice that S⊥ is another binary space,

and that (S⊥)⊥ = S. Therefore, there exists a 0 − 1 matrix A whose columns are labeled by E such that

S =
{
x ∈ {0, 1}E : Ax ≡ 0 (mod 2)

}
, and S⊥ is the row space of A generated over GF (2).

Let S := {C ⊆ E : χC ∈ S}. The pair M := (E,S) is a binary matroid, and the matrix A is a

representation of M . We call E the ground set of M , and denote it by EM . The sets in S are the cycles of M ,

12



and S is the cycle space of M , denoted by cycle(M). The minimal nonempty sets in S are the circuits of M ,

and the circuits of cardinality one are loops.

Let S⊥ := {D ⊆ E : χD ∈ S⊥}. The binary matroid M? := (E,S⊥) is the dual of M . Notice that

(M?)? = M . The sets in S⊥ are the cocycles of M , and S⊥ is the cocycle space of M , denoted by cocycle(M).

The minimal nonempty sets in S⊥ are the cocircuits of M , and the cocircuits of cardinality one are coloops of

M .

Remark 29. Let M be a binary matroid. Then the following statements hold:

1. The points in cycle(M) agree on a coordinate if, and only if, M has a coloop.

2. For all k ∈ N, cycle(M) has a subset of at most k + 1 points that do not agree on a coordinate if, and

only if, M has at most k cycles the union of which is EM .

Let G = (V,E) be a graph. The binary matroid whose cycle space is cycle(G) is a graphic matroid, and

is denoted M(G). Notice the one-to-one correspondence between the cycles of M(G) and the cycles of G,

between the loops of M(G) and the loops of G, between the cocycles of M(G) and the cuts of G, and between

the coloops of M(G) and the bridges of G. Therefore, Remark 29 is an extension of Remark 25 to all binary

matroids. (The proofs of the two remarks are almost identical.)

Finally, let M be a binary matroid. A pair of distinct elements e, f ∈ EM are parallel if {e, f} is a circuit

of M . Given distinct elements e, f, g ∈ EM , if e, f are parallel and f, g are parallel, then so are e, g. A

parallel class of M is a maximal subset of EM of pairwise parallel elements. The simplification of M , denoted

si(M), is the binary matroid obtained from M after deleting all loops, and for every parallel class, keeping one

representative and deleting all the other elements. By construction, si(M) is a simple binary matroid, i.e. it has

no circuit of cardinality at most two.

5.3 The sums of circuits property

A binary matroid M over ground set E has the sums of circuits property if for each w ∈ RE
+ satisfying

w(D − {f}) ≥ wf for every cocycle D and f ∈ D,

there exists an assignment yC ≥ 0 to every circuit C such that

w =
∑

(yC · χC : C is a circuit) .

This notion was first introduced by Seymour where he proved that graphic matroids have the sums of circuits

property [30]. This matroid theoretic notion is relevant as it coincides with the notion of cube-idealness for

binary spaces.

Theorem 30 ([7, 1]). A binary matroid has the sums of circuits property if, and only if, the corresponding cycle

space is a cube-ideal set.
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Seymour proved a decomposition theorem for binary matroids with the sums of circuits property [31]. It turns

out they can all be produced from graphic matroids and two other matroids, which we now describe. The Fano

matroid F7 is the binary matroid represented by the matrix in Figure 1b. The second matroid is M(V8)?, where

V8 is the graph in Figure 1c. Seymour showed that F7 and M(V8)? both have the sums of circuits property [31].

To generate all binary matroids with the sums of circuits property, we require three composition rules. Let

M1,M2 be binary matroids over ground sets E1, E2, respectively. We denote by M14M2 the binary matroid

over ground set E14E2 whose cycles are all subsets of E14E2 of the form C14C2, where Ci is a cycle of Mi

for i ∈ [2]. Then M14M2 is a 1-sum if E1 ∩E2 = ∅; M14M2 is a 2-sum if E1 ∩E2 = {e}, where e is neither

a loop nor a coloop of M1 or M2; and M14M2 is a Y -sum if E1 ∩E2 is a cocircuit of cardinality 3 in both M1

and M2 and contains no circuit in M1 or M2.

Theorem 31 ([31], (6.4), (6.7), (6.10) and (16.4)). Let M be a binary matroid with the sums of circuits property.

Then M is obtained recursively by means of 1-sums, 2-sums and Y -sums starting from copies of F7,M(V8)?

and graphic matroids.

We are now ready to extend Theorem 27 to all binary matroids with the sums of circuits property, as follows.

(The second equivalent statement follows from Remark 29 and Theorem 30.)

Theorem 32. Every binary matroid without a coloop and with the sums of circuits property has at most 3 cycles

the union of which is the ground set. That is, given a cube-ideal binary space, either all the points agree on a

coordinate, or there is a subset of at most 4 points that do not agree on a coordinate.

Proof. A 3-cycle cover of a binary matroid is 3 (not necessarily distinct) cycles whose union is the ground set.

Claim 1. Both F7 and M(V8)? have 3-cycle covers.

Proof of Claim. Given the matrix representation of F7 in Figure 1a, label the columns 1, . . . , 7 from left to

right. Then ∅, {1, 2, 3, 7}, {4, 5, 6} is a 3-cycle cover of F7. Next, label the vertices of V8 so that the outer

8-cycle is labelled 1, . . . , 8. Then M(V8)? has a 3-cycle cover given by the following cuts of V8: δ({1, 6, 7, 8}),
δ({1, 7}), δ({2, 4}), where δ(X) is the set of edges with exactly one end in X . ♦

Claim 2. Let M,M1,M2 be binary matroids such that M = M14M2 and Mi, i ∈ [2] has a 3-cycle cover.

Then the following statements hold:

1. If M is a 1-sum of M1,M2, then M has a 3-cycle cover.

2. If M is a 2-sum of M1,M2, then M has a 3-cycle cover.

3. If M is a Y -sum of M1,M2, then M has a 3-cycle cover.

Proof of Claim. For i ∈ [2], let Ei be the ground set of Mi and Ci
1, C

i
2, C

i
3 be a 3-cycle cover of Mi. Clearly,

(1) holds. For (2), let E1 ∩ E2 = {e}. We may assume e ∈ Ci
1 for all i ∈ [2]. By replacing Ci

2 by Ci
14Ci

2

if necessary, we may assume e /∈ Ci
2 for all i ∈ [2]. Similarly, we may assume e /∈ Ci

3 for i ∈ [2]. But now
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{C1
j4C2

j : j ∈ [3]} is a 3-cycle cover of M . For (3), suppose E1 ∩ E2 = {e, f, g}. Since {e, f, g} is a

cocircuit of both M1,M2, and since cocircuits and circuits of a binary matroid have an even number of elements

in common, |Ci
j ∩ {e, f, g}| ∈ {0, 2} for all i, j. Therefore, after possibly relabeling e, f, g simultaneously in

M1 and M2, and after possibly relabeling Ci
1, C

i
2, C

i
3 for all i, we may assume that

• Ci
1 ∩ {e, f, g} = {e, f} for all i ∈ [2], and

• Ci
2 ∩ {e, f, g} = {e, g} or {f, g} for all i ∈ [2].

For i ∈ [2], after possibly replacing Ci
2 with Ci

24Ci
1, we may assume Ci

2 ∩ {e, f, g} = {e, g}. For i ∈ [2],

after possibly replacing Ci
3 with Ci

34Ci
1, C

i
34Ci

2 or Ci
34Ci

14Ci
2, we may assume Ci

3∩{e, f, g} = ∅. But now

{C1
j4C2

j : j ∈ [3]} is a 3-cycle cover of M , as required. ♦

We leave the proof of the following claim as an easy exercise for the reader.

Claim 3. Let M,M1,M2 be binary matroids such that M = M14M2, where4 is either a 1-, 2- or Y -sum. If

M has no coloop, then neither do M1,M2.

The proof is completed by combining the above claims with Theorems 27 and 31.

5.4 Proof of Theorem 4

It is well-known that a clutter is binary if, and only if, every member and every minimal cover have an odd

number of elements in common [22]. We use this characterization to prove the following.

Proposition 33. Let C be a binary tangled clutter. Then C is a duplication of a cuboid.

Proof. If {e, f} is a minimum cover, then for each C ∈ C, |C ∩ {e, f}| must be odd and therefore 1, since C is

a binary clutter. As a result, if {e, f}, {e, g} are both minimum covers, then f, g must be duplicates. Moreover,

if every element is contained in exactly one minimum cover, then C must be a cuboid. These two observations,

along with the fact that C is a tangled clutter, imply that C is a duplication of a cuboid.

Every minor of a binary clutter is also a binary clutter [27]. We are now equipped to prove the main result of

this paper, stating that every 4-wise intersecting binary clutter is non-ideal.

Proof of Theorem 4. We prove the contrapositive statement. Let C be an ideal binary clutter such that τ(C) ≥ 2.

We need to exhibit ≤ 4 members without a common element. Let C′ be a deletion minor of C that is minimal

subject to τ(C′) ≥ 2. It suffices to exhibit≤ 4 members of C′ without a common element. Notice that C′ is ideal,

and as a minor of a binary clutter, it is also binary. Moreover, by our minimality assumption, C′ is a tangled

clutter. Thus, by Proposition 33, C′ is a duplication of a cuboid, say cuboid(S) where we may choose S so that

0 ∈ S. It suffices to exhibit ≤ 4 members of cuboid(S) without a common element.

Note that cuboid(S) is an ideal binary cuboid with τ(cuboid(S)) ≥ 2. So, by Theorem 15 and Remark 24,

S is a cube-ideal binary space whose points do not agree on a coordinate. By Theorem 32, S has ≤ 4 points
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1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1




Figure 2: Representations of PG(0, 2), PG(1, 2), PG(2, 2), from left to right.

that do not agree on a coordinate, thereby yielding ≤ 4 members of cuboid(S) without a common element, as

required.

6 Projective geometries over the two-element field

In this section, we give an important example of k-wise intersecting clutters, coming from projective geometries

over the two-element field. We also propose a strengthening of Conjecture 3. Using Theorem 4, we prove our

stronger conjecture for the class of binary clutters.

Conjecture 3 predicts that for some k ≥ 4, every ideal clutter with covering number at least two has k

members without a common element. By moving to a deletion minor, if necessary, we may assume that our

ideal clutter is tangled. Roughly speaking, our stronger conjecture predicts that the tangled deletion minor must

actually have 2k−1 members that come from a projective geometry, and of these members, k many will not have

a common element.

Take an integer ` ≥ 1. Let A be the `× (2`−1) matrix whose columns are all the nonzero vectors in {0, 1}`.
The binary matroid represented by A is called a projective geometry over GF (2), and is denoted PG(`− 1, 2).

See Figure 2 for representations of the first three projective geometries. Note that PG(1, 2) is the graphic matroid

of a triangle, while PG(2, 2) is the Fano matroid F7.

Projective geometries are relevant as they give rise to an important class of `-wise intersecting clutters, as we

see below. Given integers n,m ≥ 1 and some points a1, . . . , am ∈ {0, 1}n, denote by 〈a1, . . . , am〉 the vector

space over GF (2) generated by the points a1, . . . , am.

Proposition 34. Take an integer ` ≥ 1. Then the following statements hold:

1. PG(`− 1, 2) has rank `.

2. PG(`− 1, 2) has exactly 2` cocycles.

3. PG(`− 1, 2) has a unique representation, up to permuting rows and columns.

4. Every nonempty cocycle of PG(`− 1, 2) has cardinality 2`−1.

Moreover, for S := cocycle(PG(`− 1, 2)), the following statements hold:

5. cuboid(S) has `+ 1 members without a common element.
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6. cuboid(S) is an `-wise intersecting clutter.

Proof. LetA be the representation of PG(`−1, 2), i.e. the `×(2`−1) matrix whose columns are all the nonzero

vectors in {0, 1}`. (1) and (2) follow from the facts that the rows of A are linearly dependent over GF (2), and

that cocycle(PG(`− 1, 2)) is the row space of A generated over GF (2). (3) follows from (1) and the fact that

PG(`−1, 2) has 2`−1 elements, has no loop, and has no parallel elements. (4) Every nonempty cocycle can be

viewed as the first row of A, the unique representation of PG(`− 1, 2), and since the rows of A have precisely

2`−1 ones, (4) follows. (5) Note that the ` points in S corresponding to the rows of A agree on precisely one

coordinate, which is set to 1. These ` points, together with the zero point 0, yield `+ 1 points that do not agree

on a coordinate. (6) Let a1, . . . , a` be some points in S. Let r be the rank of 〈a1, . . . , a`〉. Clearly, 0 ≤ r ≤ `.

If r = `, then by (3), the ` points may be viewed as the ` rows of A, so they agree on precisely one coordinate,

which is set to 1. Otherwise, r < `. We may assume that {a1, . . . , ar} form a basis for 〈a1, . . . , a`〉. Then, by

(3), {a1, . . . , ar} may be viewed as r distinct rows of A, implying that they agree on 2`−r − 1 coordinates set to

0, implying in turn that all the points in {a1, . . . , a`} agree on 2`−r−1 ≥ 1 coordinates set to 0, as required.

Observe that cocycle(PG(0, 2)) = {0, 1} and cocycle(PG(1, 2)) = {000, 011, 101, 110}. In particular,

cuboid(cocycle(PG(0, 2))) = {{1}, {2}}

cuboid(cocycle(PG(1, 2))) = {{2, 4, 6}, {2, 3, 5}, {1, 4, 5}, {1, 3, 6}} = Q6.

6.1 Embedding projective geometries

A clutter C embeds PG(k − 2, 2) if some subset of C is a duplication of the cuboid of cocycle(PG(k − 2, 2)).

Remark 35. Let C be a clutter over ground set V . The following statements hold:

1. C embeds PG(0, 2) if, and only if, C has two members that partition V ,

2. C embeds PG(1, 2) if, and only if, C has four members of the form I2 ∪ I4 ∪ I6, I2 ∪ I3 ∪ I5, I1 ∪ I4 ∪
I5, I1 ∪ I3 ∪ I6, where I1, . . . , I6 are nonempty sets that partition V

Cornuéjols, Guenin and Margot refer to the equivalent condition in Remark 35 (2) as the Q6 property [13].

In that paper, they prove that a subclass of ideal tangled clutters, namely, ideal minimally non-packing clutters

with covering number two, enjoys the Q6 property. We propose the following conjecture extending their result

to all ideal tangled clutters.

Conjecture 36. There exists an integer ` ≥ 3 such that every ideal tangled clutter embeds one of PG(0, 2), . . . ,

PG(`− 1, 2).

Let us prove that this conjecture is a strengthening of our main conjecture.

Proposition 37. If Conjecture 36 holds for `, then Conjecture 3 holds for k = `+ 1.
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Proof. Assume Conjecture 36 holds for `. Let C be an ideal clutter with τ(C) ≥ 2. We need to exhibit ≤ `+ 1

members without a common element. Let C′ be a deletion minor of C that is minimal subject to τ(C′) ≥ 2.

Then C′ is an ideal tangled clutter. Thus, C′ embeds PG(n − 1, 2) for some n ∈ [`]. That is, a duplication

of cuboid(PG(n− 1, 2)) is a subset of C′. By Proposition 34 (5), cuboid(PG(n− 1, 2)) has n + 1 members

without a common element, so the duplication, and therefore C′, must have n + 1 members without a common

element. Thus, C has n+ 1 ≤ `+ 1 members without a common element, as required.

6.2 Conjecture 36 is true for binary clutters.

Proposition 38. Let M be a simple binary matroid where every two elements appear together in a triangle.

Then M is a projective geometry.

Proof. We may assume that EM = [r] for some integer r ≥ 1. Let A be a 0− 1 matrix with column labels [r]

and whose rows are linearly independent over GF (2), where

cycle(M) = {x : Ax ≡ 0 (mod 2)}.

After elementary row operations over GF (2) and reordering the columns, if necessary, we may assume that

A = (I | A′) where I is the identity matrix of appropriate dimension. As M is simple, it follows that every

column of A′ has at least two 1s, and no two columns of it are equal. Since every two elements of M appear

together in a triangle, it follows that if a, b are distinct columns of A, then a+ b (mod 2) is another column. It

can now be readily checked that A′ consists of all 0− 1 vectors with at least two 1s, implying in turn that M is

a projective geometry, as required.

Given an integer n ≥ 2 and a set S ⊆ {0, 1}n, two distinct coordinates i, j ∈ [n] are duplicates in S if

S ⊆ {x : xi = xj} or S ⊆ {x : xi + xj = 1}. Observe that S has duplicated coordinates if, and only if,

cuboid(S) has duplicated elements. We say that S is a duplication of S′ if S′ is obtained from S after projecting

away some duplicated coordinates.

Proposition 39. Take an integer n ≥ 1 and let S ⊆ {0, 1}n be a binary space whose points do not agree on a

coordinate. Then there exists a subset S′ ⊆ S, whose points do not agree on a coordinate, that is a duplication

of the cocycle space of a projective geometry. As a consequence, if S hasGF (2)-rank r, then cuboid(S) embeds

one of PG(0, 2), . . . , PG(r − 1, 2).

Proof. Let A be a 0 − 1 matrix whose rows a1, . . . , am are linearly independent over GF (2) such that S =

{x ∈ {0, 1}n : Ax ≡ 0 (mod 2)}. Clearly 〈a1, . . . , am〉 is the orthogonal complement of S over GF (2).

As the points in S do not agree on a coordinate, 〈a1, . . . , am〉 does not contain the unit vectors e1, . . . , en (see

Remark 29 (1)). Extend {a1, . . . , am} to a set {a1, . . . , am, . . . , ak} of 0− 1 vectors such that

(i) a1, . . . , ak are linearly independent over GF (2),

(ii) 〈a1, . . . , ak〉 does not contain e1, . . . , en,
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(iii) {a1, . . . , ak} is maximal subject to (i)-(ii).

Let M be the binary matroid over ground set [n] whose cycle space is 〈a1, . . . , ak〉. It follows from (ii) that M

has no loop.

Claim 1. For every pair of distinct elements f, g, there is a cycle of M of cardinality at most three containing

f, g.

Proof of Claim. Let a := χ{f,g} ∈ {0, 1}n. If a ∈ 〈a1, . . . , ak〉, then {f, g} is a cycle of M . Otherwise,

a1, . . . , ak, a are linearly independent over GF (2), so by (iii), 〈a1, . . . , ak, a〉 must contain one of e1, . . . , en.

Neither f nor g is a loop of M , so 〈a1, . . . , ak〉 must contain a vector b with three 1s such that bf = bg = 1.

That is, M has a triangle containing f, g, as required. ♦

Let M ′ := si(M), the simplification of M . Then cocycle(M) is a duplication of cocycle(M ′). Claim 1

implies that every two elements of M ′ appear together in a triangle, so M ′ is a projective geometry by Propo-

sition 38. Thus, cocycle(M) is a duplication of the cocycle space of a projective geometry. Notice however

that cocycle(M) = {x ∈ {0, 1}n : Bx ≡ 0 (mod 2)} where B is the matrix whose rows are a1, . . . , ak.

Subsequently, S′ := cocycle(M) ⊆ S. As M has no loop, the points in S′ do not agree on a coordinate, so S′

is the desired set.

As an application of Proposition 39, Conjecture 36 can be rephrased as, There exists an integer ` ≥ 3

such that every ideal tangled clutter “embeds a binary matroid” of rank at most `. As a second application of

Proposition 39, we prove Conjecture 36 for ` = 3 for the class of binary clutters.

Theorem 40. Every ideal binary tangled clutter embeds PG(0, 2), PG(1, 2), or PG(2, 2).

Proof. Let C be a binary tangled clutter. By Proposition 33, C is a duplication of a cuboid, say cuboid(S) for

some S containing 0. It suffices to show that cuboid(S) embeds one of the three projective geometries. Note

that cuboid(S) is an ideal binary cuboid with τ(cuboid(S)) ≥ 2. By Theorem 15 and Remark 24, S is a cube-

ideal binary space whose points do not agree on a coordinate. By Theorem 32, S has a subset of at most 3 points

that do not agree on a coordinate. Let S′ be the binary space generated by these points. Note that S′ ⊆ S, the

points in S′ do not agree on a coordinate, and S′ has GF (2)-rank at most 3. By Proposition 39, cuboid(S′), and

therefore cuboid(S), embeds one of PG(0, 2), PG(1, 2), PG(2, 2), as desired.

7 Two applications

In this final section, we discuss two applications of Theorem 40. The first application is a result in Graph Theory,

that every bridgeless graph has a so-called 7-cycle 4-cover.

Theorem 41 ([9], Proposition 6). Every bridgeless graph has 7 cycles such that every edge is used in exactly 4

of the cycles.
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Proof. Let G be a bridgeless graph. Applying Theorem 40 to cuboid(cycle(G)), we see that G has 8 cycles

where every edge is used in exactly 4 of the cycles (some of the cycles may be repeated). Since one of the 8

cycles may be assumed to be ∅, G has 7 cycles such that each edge is in exactly 4 of the cycles.

For the next application, we prove that Conjecture 6 holds for ideal binary clutters with covering number

two. We need the following ingredient.

Proposition 42 ([5]). For every k ∈ Z≥0, cuboid(cocycle(PG(k, 2))) has a 1
2k

-integral packing of value two.

We are now ready for the second application.

Theorem 43. Every ideal binary clutter C with τ(C) ≥ 2 has a 1
4 -integral packing of value two.

Proof. Let C′ be a deletion minor of C that is minimal subject to τ(C′) ≥ 2. Then C′ is an ideal binary tangled

clutter, so by Theorem 40, C′ embeds one of PG(0, 2), PG(1, 2), PG(2, 2). By Proposition 42, C′, and therefore

C, has a 1
4 -integral packing of value 2, as required.
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