From coordinate subspaces over finite fields to ideal multipartite uniform clutters

Ahmad Abdi ${ }^{1} \quad$ Dabeen Lee ${ }^{2 *}$

June 6, 2023

Abstract

Take a prime power q, an integer $n \geq 2$, and a coordinate subspace $S \subseteq G F(q)^{n}$ over the Galois field $G F(q)$. One can associate with S an n-partite n-uniform clutter \mathcal{C}, where every part has size q and there is a bijection between the vectors in S and the members of \mathcal{C}.

In this paper, we determine when the clutter \mathcal{C} is ideal, a property developed in connection to Packing and Covering problems in the areas of Integer Programming and Combinatorial Optimization. Interestingly, the characterization differs depending on whether q is 2,4 , a higher power of 2 , or otherwise. Each characterization uses crucially that idealness is a minor-closed property: first the list of excluded minors is identified, and only then is the global structure determined. A key insight is that idealness of \mathcal{C} depends solely on the underlying matroid of S.

Our theorems also extend from idealness to the stronger max-flow min-cut property. As a consequence, we prove the Replication and $\tau=2$ Conjectures for this class of clutters.

Keywords. Vector space over finite field, multipartite uniform clutter, ideal clutter, the max-flow min-cut property, minor-closed property, matroid.

1 Introduction

Let V be a finite set of elements, and let \mathcal{C} be a family of subsets of V called members. A cover is defined as a subset of V that intersects every member in \mathcal{C}. Given weights $w \in \mathbb{Z}_{+}^{V}$, a minimum weight cover can be computed by solving the integer program $\min \left\{w^{\top} x: M(\mathcal{C}) x \geq 1, x \in \mathbb{Z}_{+}^{V}\right\}$, where $M(\mathcal{C})$ is the incidence matrix of \mathcal{C} whose columns are labeled by the elements and whose rows are the incidence vectors of the members. The linear programming relaxation of this integer program is the problem of minimizing $w^{\top} x$ over the associated set covering polyhedron given by $Q(\mathcal{C}):=\left\{x \in \mathbb{R}^{V}: M(\mathcal{C}) x \geq \mathbf{1}, x \geq \mathbf{0}\right\}$. For the purpose of finding a minimum

[^0]weight cover, we may assume without loss of generality that no member properly contains another, in which case we call \mathcal{C} a clutter over ground set V [15]. A necessary and sufficient condition for the relaxation to return an integer solution for any $w \in \mathbb{Z}_{+}^{V}$, thereby giving a minimum weight cover, is that every extreme point of $Q(\mathcal{C})$ is an integral vector, in which case we say that \mathcal{C} is ideal [12].

Every clutter whose members are pairwise disjoint is obviously ideal. Many non-trivial examples of ideal clutters can be found in Combinatorial Optimization - let us mention a few here: the clutter of st-paths of a graph [26], (inclusionwise) minimal st-cuts of a graph [14], minimal T-joins of a graph [17], minimal T-cuts of a graph [17], and odd circuits of a signed graph that has no odd- K_{5} minor [18]. Each of these examples has as ground set the edge set of the associated graph. In general, it is co-NP-complete to decide whether a clutter is ideal [13], and understanding the various aspects of the theory of ideal clutters is one of the long-standing open research directions in the area: 11 of the 18 conjectures in the book Combinatorial Optimization. Packing and Covering [10] are directly about general or special instances of ideal clutters.

Multipartite uniform clutters. In this paper we introduce a novel approach to discover and understand ideal clutters, by studying the notion of multipartite uniform clutters defined as follows. A multipartite uniform clutter \mathcal{C} is obtained as a family of hyperedges of an n-partite hypergraph whose vertices are partitioned into n nonempty disjoint subsets V_{1}, \ldots, V_{n} for some $n \geq 1$, and every hyperedge intersects each of the subsets exactly once. Then all members of \mathcal{C} have an equal size n, and therefore, \mathcal{C} is uniform and a clutter. In particular, in a multipartite uniform clutter, the size of a member is equal to the number of partitions. For example, Q_{6}, the clutter of triangles in K_{4} given by $Q_{6}:=\{\{1,3,5\},\{1,4,6\},\{2,3,6\},\{2,4,5\}\}$, is a 3-partite 3-uniform clutter over ground set $\{1, \ldots, 6\}$ partitioned into $\{1,2\} \cup\{3,4\} \cup\{5,6\}$. The class of multipartite uniform clutters looks restricted, but in fact, it is general enough to understand the entire class of ideal clutters. More precisely, it was shown in [4] that if we had a characterization of when a multipartite uniform clutter is ideal, then this would in turn completely characterize ideal clutters. This is because any given clutter can be "locally embedded" in a multipartite uniform clutter [4], and we will discuss related ideas in Section 2. This connection allows us to take a different angle on understanding idealness by studying multipartite uniform clutters.

Vector spaces over $G F(q)$. Thanks to their special structure, one may take advantage of a geometric framework for constructing multipartite uniform clutters. To explain it, take a prime power q and $G F(q)$, the Galois field of order q. For convention, we denote by 0 and 1 the additive and multiplicative identities of $G F(q)$, respectively. When q is a power of a prime number p, we call p the characteristic of $G F(q)$. $G F(q)^{n}$ for some $n \geq 1$ is the set of n-dimensional vectors whose coordinates are in $G F(q)$ and is called a coordinate space. We say that any vector subspace of the coordinate space over $G F(q)$ is a coordinate subspace. Throughout the paper, we refer to a coordinate subspace over $G F(q)$ as a vector space over $G F(q)$ or simply as a coordinate subspace. For any vector space $S \subseteq G F(q)^{n}$ over $G F(q)$, there exists a matrix A whose entries are in $G F(q)$ such that $S=\left\{x \in G F(q)^{n}: A x=\mathbf{0}\right\}$ where $\mathbf{0}$ denotes the vector of all zeros of appropriate dimension and all equalities in the system $A x=\mathbf{0}$ are over $G F(q)$. Given the coordinate subspace S, we construct a multipartite uniform clutter in the following way. Taking n disjoint copies V_{1}, \ldots, V_{n} of $G F(q)$, we can view $G F(q)^{n}$ as $V_{1} \times \cdots \times V_{n}$ so that S is a subset of $V_{1} \times \cdots \times V_{n}$. The multipartite uniform clutter of S is the clutter over ground set $V_{1} \cup \cdots \cup V_{n}$
defined by

$$
\operatorname{mult}(S):=\left\{\left\{x_{1}, \ldots, x_{n}\right\}:\left(x_{1}, \ldots, x_{n}\right) \in S, x_{i} \in V_{i} \text { for } i \in[n]\right\}
$$

Here, the size of a member equals the number of partitions n, and $\operatorname{mult}(S)$ is an n-partite n-uniform clutter. For example, $R_{1,1}:=\{(0,0,0),(0,1,1),(1,0,1),(1,1,0)\}$ is a vector space over $G F(2)$, and $R_{1,1}$ is equivalent to $\{(1,3,5),(1,4,6),(2,3,6),(2,4,5)\} \subseteq\{1,2\} \times\{3,4\} \times\{5,6\}$. So, mult $\left(R_{1,1}\right)$ is isomorphic ${ }^{1}$ to Q_{6}. There is a one-to-one correspondence between the members of mult (S) and the vectors in S. Although we focus on vector spaces over a finite field, we remark that the definition of multipartite uniform clutters extends to any subset of the direct product of finite groups. We discuss this further in Section 2.

Binary spaces. Abdi, Cornuéjols, Guričanová, and Lee [4] considered vector spaces over $G F(2)$, often referred to as binary spaces, and provided a characterization of when their multipartite uniform clutters are ideal. For example, $\operatorname{mult}\left(R_{1,1}\right)=Q_{6}$ is ideal [33]. The characterization is in terms of clutter minors, or simply minors. Given a clutter \mathcal{C} over ground set V and disjoint subsets I, J of V, we define $\mathcal{C} \backslash I / J$ as the clutter over $V-(I \cup J)$ that consists of the minimal sets of $\{C-J: C \in \mathcal{C}, C \cap I=\emptyset\}$, and we say that $\mathcal{C} \backslash I / J$ is the minor of \mathcal{C} obtained after deleting I and contracting J. We call it a proper minor if $I \cup J \neq \emptyset$. It is well-known that if a clutter is ideal, then so is every minor [33]. It was proved in [4] that for a vector space S over $G F(2)$, mult (S) is ideal if and only if mult (S) has none of three special clutters as a minor if and only if the binary matroid corresponding to S has the so-called sums of circuits property.

Our results I. Motivated by the result of [4] mentioned above, given a vector space S over an arbitrary finite field $G F(q)$, when is $\operatorname{mult}(S)$ is ideal? In this paper, we completely answer this question. We divide our analysis into three cases. First, we consider prime powers that are odd, secondly the $q=4$ case, and thirdly powers of 2 greater than 4 . What follows is a summary of our main results for the three cases.

For our first result, we need two more definitions. The support of a vector $x \in G F(q)^{n}$ is defined as $\operatorname{support}(x):=\left\{i \in[n]: x_{i} \neq 0\right\}$. Moreover, denote by Δ_{3} the clutter over ground set $\{1,2,3\}$ whose members are $\{1,2\},\{2,3\},\{3,1\}$. Notice that Δ_{3} is the clutter of edges in a triangle and that Δ_{3} is non-ideal because $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ is a fractional extreme point of the associated set covering polyhedron $Q\left(\Delta_{3}\right)$.

Theorem 1.1 (proved in Section 4). Take an odd prime power q, and let S be a vector space over $G F(q)$. Then the following statements are equivalent:
(i) $\operatorname{mult}(S)$ is ideal,
(ii) S admits a basis with vectors of pairwise disjoint supports,
(iii) mult(S) contains no Δ_{3} as a minor.

The case of $G F(4)$ allows more general structures in the vector space. We say that row vectors v^{1}, \ldots, v^{r} with

[^1]$r \geq 2$ form a sunflower if, after permuting the coordinates, the vectors are of the form
\[

$$
\begin{gathered}
v^{1} \\
v^{2} \\
\vdots \\
v^{r}
\end{gathered}
$$\left[$$
\begin{array}{c|c|c|c|c}
u^{0} & u^{1} & \mathbf{0} & \cdots & \mathbf{0} \\
u^{0} & \mathbf{0} & u^{2} & \cdots & \mathbf{0} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
u^{0} & \mathbf{0} & \mathbf{0} & \cdots & u^{r}
\end{array}
$$\right]
\]

where $u^{0}, u^{1} \ldots, u^{r}$ are some row vectors with nonzero entries and $\mathbf{0}$ denotes a row vector of all zeros of appropriate length.

Theorem 1.2 (proved in Section 7). Let S be a vector space over $G F(4)$. Then the following statements are equivalent:
(i) $\operatorname{mult}(S)$ is ideal,
(ii) $S=S_{1} \times \cdots \times S_{k}$ where each S_{i} has dimension at most 1 or admits a sunflower basis,
(iii) mult (S) contains no Δ_{3} as a minor.

Lastly, for the case when q is a power of 2 greater than 4 , we define another small non-ideal clutter. C_{5}^{2} is the clutter over ground set $\{1, \ldots, 5\}$ whose members are $\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\} . C_{5}^{2}$ is the clutter of edges in a cycle of length 5 , and notice that C_{5}^{2} is non-ideal because $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ is a fractional extreme point of the associated polyhedron $Q\left(C_{5}^{2}\right)$.

Theorem 1.3 (proved in Section 8). Let q be a power of 2 such that $q>4$, and let S be a vector space over $G F(q)$. Then the following statements are equivalent:
(i) $\operatorname{mult}(S)$ is ideal,
(ii) S admits a basis with vectors of pairwise disjoint supports,
(iii) $\operatorname{mult}(S)$ contains no C_{5}^{2} as a minor.

Theorem 1.1, Theorem 1.2, and Theorem 1.3 lead to the conclusion that when q is a prime power other than 2, the class of coordinate subspaces whose multipartite uniform clutter is ideal has restricted structures. Nevertheless, the main takeaway of this paper is that we propose a novel framework to study and generate idealness by multipartite uniform clutters and complete the analysis of the natural class of multipartite uniform clutters obtained from coordinate subspaces. Our analysis is based on sophisticated interplays between clutters and underlying matroids.

Our results II. We take one step further to understand the max-flow min-cut (MFMC) property [33] for the multipartite uniform clutters from coordinate subspaces. While the idealness of a clutter corresponds to the integrality of the associated set covering polyhedron, the MFMC property is the analogue of total dual integrality [16, 19]. To formalize this, given a clutter \mathcal{C} over ground set V with weights $w \in \mathbb{Z}_{+}^{V}$, we consider $\tau(\mathcal{C}, w):=\min \left\{w^{\top} x: M(\mathcal{C}) x \geq \mathbf{1}, x \in \mathbb{Z}_{+}^{V}\right\}$ and $\nu(\mathcal{C}, w):=\max \left\{\mathbf{1}^{\top} y: M(\mathcal{C})^{\top} y \leq w, y \in \mathbb{Z}_{+}^{\mathcal{C}}\right\}$. Note that $\tau(\mathcal{C}, w)$ computes the minimum weight of a cover of \mathcal{C}, whereas $\nu(\mathcal{C}, w)$ computes the maximum size of a packing of members of \mathcal{C} such that each element v appears in at most w_{v} members in the packing. Here, we say that \mathcal{C} has
the MFMC property if $\tau(\mathcal{C}, w)=\nu(\mathcal{C}, w)$ holds for every $w \in \mathbb{Z}_{+}^{V}$. Hence, the MFMC property of \mathcal{C} is equivalent to the total dual integrality of the linear system $M(\mathcal{C}) x \geq \mathbf{1}, x \geq \mathbf{0}$, and therefore it follows that the MFMC property implies idealness. The following result provides a complete characterization of the MFMC property for the multipartite uniform clutters from vector spaces.

Theorem 1.4 (proved in Section 4). Take any prime power q, and let S be a vector space over $G F(q)$. Then the following statements are equivalent:
(i) mult (S) has the max-flow min-cut property,
(ii) S admits a basis with vectors of pairwise disjoint supports,
(iii) $\operatorname{mult}(S)$ has none of Δ_{3}, Q_{6} as a minor.

As a corollary, idealness and the MFMC property coincide when q is an odd prime power or q is a power of 2 greater than 4. In contrast, there is an example of a vector space over $G F(4)$ whose multipartite uniform clutter is ideal but does not have the MFMC property. We demonstrate this example in Section 9. Theorem 1.4 also has a consequence on the Replication Conjecture, proposed by Conforti and Cornuéjols [9]. In particular, the Replication Conjecture is a set covering analogue of the Duplication Lemma for perfect graphs [24].

Corollary 1.5 (proved in Section 9). The Replication Conjecture holds true for the class of multipartite uniform clutters from coordinate subspaces.

Another corollary of Theorem 1.4 is on the $\tau=2$ Conjecture, proposed by Cornuéjols, Guenin, and Margot [11]. They showed that if the $\tau=2$ Conjecture holds, then so does the Replication Conjecture [11], providing a way of tackling the Replication Conjecture.

Corollary 1.6 (proved in Section 9). The $\tau=2$ Conjecture holds true for the class of multipartite uniform clutters from coordinate subspaces.

We will formally state the Replication Conjecture and the $\tau=2$ Conjecture along with the proofs of Corollary 1.5 and Corollary 1.6 in Section 9.

Summary and organizations of the paper. This paper provides a complete characterization of when the multipartite uniform clutter of a coordinate subspace is ideal and when it has the MFMC property. The proofs of our main results are based on applications of the theory of ideal clutters and matroid theory. Tools from ideal clutters and matroid theory are presented in Section 2 and Section 3, respectively.

The first result we prove in this paper is Theorem 1.4 which characterizes the MFMC property of the multipartite uniform clutter of a vector space over $G F(q)$ for any prime power q. In fact, Theorem 1.1 for the idealness under an odd prime power q shares much of the proof with Theorem 1.4. Hence, we prove the two theorems in Section 4.

For the idealness under the case of powers of 2, we need more techniques. In Section 5, we provide some properties of the underlying matroid of a vector space over $G F\left(2^{k}\right)$ for $k \geq 2$. In Section 6, we develop some tools for understanding vector spaces of a certain structure that appear for the case of powers of 2 . We divide
our analysis of the case of powers of 2 into the $q=4$ case and the case of $q=2^{k}$ for $k \geq 3$. The $q=4$ case, Theorem 1.2, is covered in Section 7. The other case, Theorem 1.3, is presented in Section 8.

We conclude the paper by proving Corollary 1.5 and Corollary 1.6 on the Replication Conjecture and the $\tau=2$ Conjecture, respectively, for the class of multipartite clutters from coordinate subspaces in Section 9.

2 Multipartite uniform clutters

In this section, we develop some useful tools for understanding when the multipartite uniform clutter of a vector space of a finite field is ideal. Let V_{1}, \ldots, V_{n} be n nonempty sets, and take a subset S of $V_{1} \times \cdots \times V_{n}$. We would take $V_{i}=G F(q)$ for $i \in[n]$ for a vector space over $G F(q)$, but we may take arbitrary finite sets that do not necessarily have the same size. Then the multipartite uniform clutter of S, denoted mult (S), is defined as the clutter over ground set $V_{1} \cup \cdots \cup V_{n}$ whose members are $\left\{x_{1}, \ldots, x_{n}\right\}$ for $\left(x_{1}, \ldots, x_{n}\right) \in S$. Here, S need not be a vector space. When each V_{i} has size two, $\operatorname{mult}(S)$ for $S \subseteq V_{1} \times \cdots \times V_{n}$ coincides with the cuboid of S, denoted cuboid (S) [4, 5]. In that case, $V_{1} \times \cdots \times V_{n}$ is isomorphic to $\{0,1\}^{n}$, so cuboids correspond to vertex subsets of the n-dimensional 0,1 hypercube, and this is how the name cuboid is coined. Therefore, for a binary space S, we have that $\operatorname{mult}(S)=\operatorname{cuboid}(S)$.

Remark 2.1. Let \mathcal{C} be a clutter, and let V_{1}, \ldots, V_{n} be n non-empty sets. Then the following statements are equivalent:
(i) \mathcal{C} is isomorphic to $\operatorname{mult}(S)$ for some $S \subseteq V_{1} \times \cdots \times V_{n}$,
(ii) the ground set of \mathcal{C} can be partitioned into V_{1}, \ldots, V_{n} so that for every $C \in \mathcal{C},\left|C \cap V_{i}\right|=1$ for all $i \in[n]$.

Remark 2.1 provides a different yet equivalent definition of multipartite uniform clutters. Now that we have seen Remark 2.1, we know that the incidence matrix of a multipartite uniform clutter can be partitioned. To be more precise, notice that if a multipartite uniform clutter's ground set is partitioned into n non-empty parts V_{1}, \ldots, V_{n}, then the columns of the member-element incidence matrix $M(\mathcal{C})$ of \mathcal{C} can be partitioned into n groups, corresponding to V_{1}, \ldots, V_{n}, so that a row has precisely one nonzero entry in each group. For instance,

$$
\left.M\left(Q_{6}\right)=\begin{array}{c}
(0,0,0) \\
\substack{(1,0,1) \\
(1,1,0)} \\
\\
\\
\\
\\
\\
1
\end{array} \left\lvert\, \begin{array}{cc|cc|cc}
0 & 1 & 0 & 1 & 0 & 1 \\
1 & & 1 & & 1 & \\
& & 1 & & 1 \\
& 1 & 1
\end{array}\right.\right] .
$$

As mentioned in Section 1, one can also view a multipartite uniform clutter with parts V_{1}, \ldots, V_{n} as the clutter of hyperedges of an n-partite n-uniform hypergraph whose vertex set is partitioned into $V_{1} \cup \cdots \cup V_{n}$.

Isomorphism.

Remark 2.2. Take an integer $n \geq 1$ and a prime power q, and let $S \subseteq G F(q)^{n}$ be a vector space over $G F(q)$. Let $f_{i}: G F(q) \rightarrow G F(q)$ be a bijection for $i \in[n]$, and $g: G F(q)^{n} \rightarrow G F(q)^{n}$ be the bijection defined as

$$
g(x):=\left(f_{1}\left(x_{1}\right), \ldots, f_{n}\left(x_{n}\right)\right), \quad x \in G F(q)^{n}
$$

Then $S \cong g(S)$ and $\operatorname{mult}(S) \cong \operatorname{mult}(g(S))$.

Products of set systems and clutters. Take two integers $n_{1}, n_{2} \geq 1$. Let $V_{1}, \ldots, V_{n_{1}}$ be n_{1} nonempty sets, and let S_{1} be a subset of $V_{1} \times \cdots \times V_{n_{1}}$. Let $U_{1}, \ldots, U_{n_{2}}$ be n_{2} nonempty sets, and let S_{2} be a subset of $U_{1} \times \cdots \times U_{n_{2}}$. Recall that the product of S_{1} and S_{2} is defined as $S_{1} \times S_{2}=\left\{\left(x_{1}, x_{2}\right): x_{1} \in S_{1}, x_{2} \in S_{2}\right\}$. We also define products of clutters. Let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be two clutters over disjoint ground sets E_{1}, E_{2}. The product of \mathcal{C}_{1} and \mathcal{C}_{2}, denoted $\mathcal{C}_{1} \times \mathcal{C}_{2}$, is defined as the clutter over ground set $E_{1} \cup E_{2}$ whose members are $\mathcal{C}_{1} \times$ $\mathcal{C}_{2}=\left\{C_{1} \cup C_{2}: C_{1} \in \mathcal{C}_{1}, C_{2} \in \mathcal{C}_{2}\right\}$. Having defined the product of two clutters, we define the product of two multipartite uniform clutters mult $\left(S_{1}\right)$ and $\operatorname{mult}\left(S_{2}\right)$. In fact, we can show the following:

Lemma 2.3. The following statements hold:

1. $\operatorname{mult}\left(S_{1}\right) \times \operatorname{mult}\left(S_{2}\right)=\operatorname{mult}\left(S_{1} \times S_{2}\right)$.
2. Let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be clutters over disjoint ground sets. If $\mathcal{C}_{1}, \mathcal{C}_{2}$ have the idealness (resp. MFMC) property, then so $\operatorname{does} \mathcal{C}_{1} \times \mathcal{C}_{2}$.
3. Take two integers $n_{1}, n_{2} \geq 1$. Let $V_{1}, \ldots, V_{n_{1}}$ be n_{1} nonempty sets, and let S_{1} be a subset of $V_{1} \times \cdots \times V_{n_{1}}$. Let $U_{1}, \ldots, U_{n_{2}}$ be n_{2} nonempty sets, and let S_{2} be a subset of $U_{1} \times \cdots \times U_{n_{2}}$. If mult $\left(S_{1}\right), \operatorname{mult}\left(S_{2}\right)$ are ideal, then so is mult $\left(S_{1} \times S_{2}\right)$.

Proof. (1) Let $C_{1} \in \operatorname{mult}\left(S_{1}\right)$ and $C_{2} \in \operatorname{mult}\left(S_{2}\right)$. Then $C_{1}=\left\{x_{1}, \ldots, x_{n_{1}}\right\}$ for some $x=\left(x_{1}, \ldots, x_{n_{1}}\right) \in S_{1}$ and $C_{2}=\left\{y_{1}, \ldots, y_{n_{2}}\right\}$ for some $y=\left(y_{1}, \ldots, y_{n_{2}}\right) \in S_{2}$. Moreover, $(x, y) \in S_{1} \times S_{2}$ and $C_{1} \cup C_{2} \in$ mult $\left(S_{1} \times S_{2}\right)$. Similarly, we can show that if $C \in \operatorname{mult}\left(S_{1} \times S_{2}\right)$, then $C=C_{1} \cup C_{2}$ for some $C_{1} \in \operatorname{mult}\left(S_{1}\right)$ and $C_{2} \in \operatorname{mult}\left(S_{2}\right)$. Therefore, we obtain $\operatorname{mult}\left(S_{1}\right) \times \operatorname{mult}\left(S_{2}\right)=\operatorname{mult}\left(S_{1} \times S_{2}\right)$. (2) is routine and an argument can be found in ([4], §5). (3) follows from (1) and (2).

So, if a set can be represented as the product of some smaller sets, we can check if its multipartite uniform clutter is ideal by studying the smaller sets and their multipartite uniform clutters. In particular, we will use this proposition to show implication $(\mathbf{i i i}) \rightarrow(\mathbf{i})$ in Theorem 1.1, Theorem 1.2, and Theorem 1.3.

Projection and restriction of set systems. Take an integer $n \geq 1$. Let V_{1}, \ldots, V_{n} be n nonempty sets, and let S be a subset of $V_{1} \times \cdots \times V_{n}$. Given $J \subseteq[n]$ and $x \in S, x / J$ denote the subvector of x that consists of the coordinates not in J. For $J \subseteq[n]$, the set obtained from S after dropping the coordinates in J is $\{x / J: x \in S\}$. We will refer to a set obtained from S after dropping some coordinates as a projection of S. Next, let U_{i} be a nonempty subset of V_{i} for $i \in[n]$. Here, U_{i} need not be a proper subset of V_{i}. Then the set obtained from S after restricting to $U_{1} \times \cdots \times U_{n}$ is what is obtained from $S \cap\left(U_{1} \times \cdots \times U_{n}\right)$ after dropping the coordinates where the points in $S \cap\left(U_{1} \times \cdots \times U_{n}\right)$ agree on. We will refer to a set obtained from S after restricting S to some subset of $V_{1} \times \cdots \times V_{n}$ as a restriction of S.

Lemma 2.4. Let S^{\prime} be a set that is either a projection or a restriction of S. Then mult $\left(S^{\prime}\right)$ is a minor of mult (S).
Proof. Suppose first that S^{\prime} is a projection, say for some $J \subseteq[n], S^{\prime}$ is obtained from S after dropping the
coordinates of J. Then mult $\left(S^{\prime}\right)$ is the minor of $\operatorname{mult}(S)$ obtained after contracting the elements in V_{j} for $j \in J$.
Suppose next that S^{\prime} is a restriction, say for some nonempty subset $U_{1} \times \cdots \times U_{n}$ of $V_{1} \times \cdots \times V_{n}, S^{\prime}$ is obtained after restricting S to $U_{1} \times \cdots \times U_{n}$. Then mult $\left(S^{\prime}\right)$ is the minor of mult (S) obtained after deleting the elements in $\left(V_{i} \backslash U_{i}\right)$ for $i \in[n]$ and contracting the elements in V_{j} for $j \in J$ where J is the set of coordinates where the points in $S \cap\left(U_{1} \times \cdots \times U_{n}\right)$ agree on.

Localizations. We mentioned before that a clutter is ideal if and only if every minor of it is ideal. In this section, we will define and study localizations that appear as a minor of a multipartite uniform clutter.

Definition 2.5. Given a multipartite uniform clutter \mathcal{C} whose ground set is partitioned into non-empty parts V_{1}, \ldots, V_{n}, a localization of \mathcal{C} is any minor obtained from \mathcal{C} after contracting precisely one element from each V_{i}.

Thus, a localization of \mathcal{C} is obtained after contracting v_{1}, \ldots, v_{n} for some $v=\left(v_{1}, \ldots, v_{n}\right) \in V_{1} \times \cdots \times V_{n}$. As $\mathcal{C}=\operatorname{mult}(S)$ for some $S \subseteq V_{1} \times \cdots \times V_{n}$ by Remark 2.1 , the localization is equal to

$$
\begin{aligned}
\operatorname{local}(S, v) & :=\operatorname{mult}(S) /\left\{v_{1}, \ldots, v_{n}\right\} \\
& =\left\{\text { the minimal sets of }\left\{\left\{x_{1}, \ldots, x_{n}\right\}-\left\{v_{1}, \ldots, v_{n}\right\}:\left(x_{1}, \ldots, x_{n}\right) \in S\right\}\right\}
\end{aligned}
$$

We call local (S, v) the localization of mult (S) with respect to v. So, every localization of \mathcal{C} is equal to local (S, v) for some v and that $\operatorname{local}(S, v)=\{\emptyset\}$ if $v \in S$. In [4], localizations of a cuboid are referred to as induced clutters.

It turns out that a multipartite uniform clutter is ideal if and only if all localizations are ideal; let us prove this in the remainder of this section. We say that a clutter is minimally non-ideal if it is non-ideal but every proper minor of it is ideal. We need the following lemma.

Lemma 2.6. Let \mathcal{C} be a minimally non-ideal clutter, and let V denote the ground set of \mathcal{C}. Then there is no subset U of V satisfying $|C \cap U|=1$ for every member C of \mathcal{C}.

Proof. Since \mathcal{C} is non-ideal, $P(\mathcal{C})=\{\mathbf{1} \geq x \geq \mathbf{0}: M(\mathcal{C}) x \geq \mathbf{1}\}$ has a fractional extreme point x^{*}. Let $v \in V$. Notice that $P(\mathcal{C} / v)$ and $P(\mathcal{C} \backslash v)$ are obtained from $P(\mathcal{C}) \cap\left\{x: x_{v}=0\right\}$ and $P(\mathcal{C}) \cap\left\{x: x_{v}=1\right\}$ after projecting out the variable x_{v}. As \mathcal{C} / v and $\mathcal{C} \backslash v$ are ideal, $P(\mathcal{C} / v)$ and $P(\mathcal{C} \backslash v)$ are integral. Then both $P(\mathcal{C}) \cap\left\{x: x_{v}=0\right\}$ and $P(\mathcal{C}) \cap\left\{x: x_{v}=1\right\}$ are integral, implying in turn that x^{*} does not belong to any of these two. So, it follows that $0<x_{v}^{*}<1$ for each $v \in V$. Now, consider a nonsingular row submatrix A of $M(\mathcal{C})$ such that $A x^{*}=\mathbf{1}$. Suppose that V has a subset U such that $|C \cap U|=1$ for every member C of \mathcal{C}. Let χ_{U} denote the characteristic vector of U in $\{0,1\}^{V}$. Since $|C \cap U|=1$ for every member C of \mathcal{C}, we have that $M(\mathcal{C}) \chi_{U}=\mathbf{1}$ and thus $A \chi_{U}=1$. Since A is nonsingular, $A x=1$ has a unique solution, so it follows that $x^{*}=\chi_{U}$, a contradiction. Therefore, there is no such subset U of V, as required.

Theorem 2.7. A multipartite uniform clutter is ideal if and only if all of its localizations are ideal.
Proof. Let \mathcal{C} be a multipartite uniform clutter whose ground set is partitioned into nonempty parts V_{1}, \ldots, V_{n}. (\Rightarrow) If \mathcal{C} is ideal, every minor of \mathcal{C} is ideal, and so are all of its localizations. (\Leftarrow) Assume that \mathcal{C} is non-ideal. Then it has a minimally non-ideal minor $\mathcal{C}^{\prime}:=\mathcal{C} \backslash I / J$ obtained after deleting I and contracting J for some
disjoint subsets $I, J \subseteq V_{1} \cup \cdots \cup V_{n}$. Observe that $\mathcal{C} \backslash I$ is another multipartite uniform clutter whose ground set is partitioned into nonempty parts U_{1}, \ldots, U_{n} where $U_{i}:=V_{i} \backslash I$ for $i \in[n]$. In particular, every member C of $\mathcal{C} \backslash I$ satisfies $\left|C \cap U_{i}\right|=1$ for $i \in[n]$. Suppose that $J \cap U_{i}=\emptyset$ for some $i \in[n]$. Then $\left|(C-J) \cap U_{i}\right|=\left|C \cap U_{i}\right|=1$ for every member C of $\mathcal{C} \backslash I$. As \mathcal{C}^{\prime} is obtained after contracting J from $\mathcal{C} \backslash I$, we have $\left|C^{\prime} \cap U_{i}\right|=1$ for every member C^{\prime} of \mathcal{C}^{\prime}. This contradicts Lemma 2.6 due to our assumption that \mathcal{C}^{\prime} is minimally non-ideal. Therefore, for each $i \in[n], J \cap U_{i} \neq \emptyset$, so we have that $J \cap V_{i} \neq \emptyset$. Then, \mathcal{C}^{\prime} is a minor of a localization. Therefore, one of \mathcal{C} 's localizations is non-ideal, as required.

In contrast to idealness, even if all localizations have the MFMC property, a multipartite uniform clutter may not have the MFMC property. For example, all localizations of $Q_{6}=\operatorname{mult}\left(R_{1,1}\right)$ are isomorphic to the clutter over ground set $\{1,2,3\}$ whose members are $\{1\},\{2\},\{3\}$. The clutter over 3 elements trivially has the MFMC property, but Q_{6} does not [23, 33].

3 Vector spaces, matroids, and sunflower bases

Take a prime power q, and consider the Galois field $G F(q)$ of order q, with additive and multiplicative identities denoted as 0 and 1 , respectively. Take an integer $n \geq 1$, and let $S \subseteq G F(q)^{n}$ be a vector space over $G F(q)$.

We assume basic knowledge of Matroid Theory throughout this paper (see [27] for reference) though we recall matroid theoretic notions as needed. Let us observe a routine way to associate a $G F(q)$-represented matroid to the vector space S. Let A be a matrix over n columns with entries in $G F(q)$ such that $S=\left\{x \in G F(q)^{n}: A x=\right.$ $\mathbf{0}\}$, where the equality in the linear system $A x=\mathbf{0}$ holds over $G F(q)$. The underlying matroid of S, denoted $\operatorname{Matroid}(S)$, is the matroid represented by A over $G F(q)$. The dimension of vector space S is defined as the maximum number of linearly independent vectors in S over $G F(q)$. Note that

$$
\text { the dimension of } S=n-\operatorname{rank}(A)=n-\operatorname{rank}(\operatorname{Matroid}(S))
$$

where $\operatorname{rank}(A)$ is the matrix rank of A over $G F(q)$ and $\operatorname{rank}(\operatorname{Matroid}(S))$ is the matroid rank of $\operatorname{Matroid}(S)$ over $G F(q)$. Although the representation matrix A is not unique for vector space S, our terminology suggests that $\operatorname{Matroid}(S)$ is. The remark below justifies this.

Remark 3.1. Take a prime power q, and let S be a vector space over $G F(q)$. Then the clutter of circuits of $\operatorname{Matroid}(S)$ is the set of inclusion-wise minimal members of $\{\operatorname{support}(x): x \in S, x \neq \mathbf{0}\}$.

Given vectors $v^{1}, \ldots, v^{r} \in G F(q)^{n}$, let $\left\langle v^{1}, \ldots, v^{r}\right\rangle:=\left\{\sum_{i \in[r]} \lambda_{i} v^{i}: \lambda_{i} \in G F(q)\right.$ for $\left.i \in[r]\right\}$, where addition is done over $G F(q)$. The set $\left\langle v^{1}, \ldots, v^{r}\right\rangle$, which we call the span of the vectors, is a vector space over $G F(q)$. A basis of a vector space S is an inclusion-wise minimal set of vectors whose span is S. In this section, we characterize in terms of the underlying matroid when a vector space is spanned by a set of vectors of disjoint supports, or a set of vectors that form a sunflower.

Matroid minors. We start by arguing that matroid deletions and contractions in $\operatorname{Matroid}(S)$ correspond to restrictions and projections in S. For a matroid \mathcal{M} and disjoint subsets I, J of the ground set of \mathcal{M}, we denote
by $\mathcal{M} \backslash I / J$ the matroid minor of \mathcal{M} obtained after deleting I and contracting J. Let $\mathcal{C}(\mathcal{M})$ denote the clutter of circuits of \mathcal{M}.

Lemma 3.2. Take an integer $n \geq 1$ and a prime power q, and let $S \subseteq G F(q)^{n}$ be a vector space over $G F(q)$. Then $\operatorname{Matroid}(S) \backslash I / J$ for some disjoint $I, J \subseteq[n]$ is precisely Matroid $\left(S^{\prime}\right)$ where $S^{\prime} \subseteq G F(q)^{n-|I|-|J|}$ is the vector space over $G F(q)$ obtained from $S \cap\left\{x \in G F(q)^{n}: x_{i}=0 \forall i \in I\right\}$ after dropping coordinates in $I \cup J$.

Proof. It is clear that S^{\prime} is a vector space over $G F(q)$, so Matroid $\left(S^{\prime}\right)$ is well-defined. To show that Matroid $(S) \backslash$ $I / J=\operatorname{Matroid}\left(S^{\prime}\right)$, we will argue that $\mathcal{C}(\operatorname{Matroid}(S) \backslash I / J)=\mathcal{C}\left(\operatorname{Matroid}\left(S^{\prime}\right)\right)$.

If $\mathcal{C}(\operatorname{Matroid}(S) \backslash I / J)=\emptyset$, then every $C \in \mathcal{C}(\operatorname{Matroid}(S))$ intersects I, which means that support (x) intersects I for every $x \in S-\{\mathbf{0}\}$. This implies that $S^{\prime}=\{\mathbf{0}\}$, in which case $\mathcal{C}\left(\operatorname{Matroid}\left(S^{\prime}\right)\right)=\emptyset$. Thus we may assume that $\mathcal{C}(\operatorname{Matroid}(S) \backslash I / J) \neq \emptyset$.

Let $C_{1} \in \mathcal{C}(\operatorname{Matroid}(S) \backslash I / J)$. Then there exists $C \in \mathcal{C}(\operatorname{Matroid}(S))$ such that $C \cap I=\emptyset$ and $C_{1}=$ $C-J$. Then $C=\operatorname{support}(x)$ for some $x \in S$ by the definition of $\operatorname{Matroid}(S)$ (see also Remark 3.1). As $C \cap I=\emptyset$, it follows that $x_{i}=0$ for $i \in I$, which implies that there exists $x^{\prime} \in S^{\prime}-\{\mathbf{0}\}$ such that support $\left(x^{\prime}\right)=$ $\operatorname{support}(x)-J=C-J$. So, there exists $C_{2} \in \mathcal{C}\left(\operatorname{Matroid}\left(S^{\prime}\right)\right)$ such that $C_{2} \subseteq C_{1}$. Therefore, every member of $\mathcal{C}(\operatorname{Matroid}(S) \backslash I / J)$ contains a member of $\mathcal{C}\left(\operatorname{Matroid}\left(S^{\prime}\right)\right)$.

Let $C_{2} \in \mathcal{C}\left(\operatorname{Matroid}\left(S^{\prime}\right)\right)$. Then $C_{2}=\operatorname{support}\left(x^{\prime}\right)$ for some $x^{\prime} \in S^{\prime}$ by Remark 3.1. This implies that there is some $x \in S$ such that $x_{i}=0$ for $i \in I$ and support $(x)-J=\operatorname{support}\left(x^{\prime}\right)$. Since support (x) contains a circuit of $\operatorname{Matroid}(S)$ and support $(x) \cap I=\emptyset$, it follows that $C_{2}=\operatorname{support}\left(x^{\prime}\right)$ contains a circuit of $\operatorname{Matroid}(S) \backslash I / J$. Therefore, we deduce that $\mathcal{C}(\operatorname{Matroid}(S) \backslash I / J)=\mathcal{C}\left(\operatorname{Matroid}\left(S^{\prime}\right)\right)$, as required.

Direct sum. Consider matroids M_{1}, \ldots, M_{ℓ} over pairwise disjoint ground sets E_{1}, \ldots, E_{ℓ} and independent set families $\mathcal{I}_{1}, \ldots, \mathcal{I}_{\ell}$, respectively. The direct sum of M_{1}, \ldots, M_{ℓ}, denoted $M_{1} \oplus \cdots \oplus M_{\ell}$, is the matroid over ground set $E_{1} \cup \cdots \cup E_{\ell}$ whose independent set family is $\left\{I_{1} \cup \cdots \cup I_{\ell}: I_{i} \in \mathcal{I}_{i}, i \in[\ell]\right\}$. We shall need the following basic remark about the direct sum of matroids. For the remark, we need to recall two notions. First, a block of a graph G is any maximal vertex-induced subgraph of G that is 2 -vertex-connected. Secondly, we denote the cycle matroid of a graph G by $\operatorname{Matroid}(G)$. Finally, we say that a vector space S is the product of vector spaces S_{1} and S_{2} if $S=\left\{(x, y): x \in S_{1}, y \in S_{2}\right\}=: S_{1} \times S_{2}$.

Lemma 3.3. The following statements hold:

1. Let G be a graph, and let G_{1}, \ldots, G_{k} be the blocks of G. Then $\operatorname{Matroid}(G)=\operatorname{Matroid}\left(G_{1}\right) \oplus \cdots \oplus$ $\operatorname{Matroid}\left(G_{k}\right)$.
2. Take a prime power q and two $G F(q)$-representable matroids M_{1}, M_{2} over disjoint ground sets. If A_{1} and A_{2} are $G F(q)$-representations of M_{1} and M_{2}, respectively, then $M_{1} \oplus M_{2}$ can be represented by $\left(\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right)$.
3. Take a prime power q and a vector space S over $G F(q)$. Then $S=S_{1} \times S_{2}$ for some vector spaces S_{1}, S_{2} over $G F(q)$ if and only if $\operatorname{Matroid}(S)=\operatorname{Matroid}\left(S_{1}\right) \oplus \operatorname{Matroid}\left(S_{2}\right)$.

Proof. (1), (2): See Chapters 4.1 and 4.2 of [27]. (3) follows immediately from (2).

Disjoint supports basis.

Lemma 3.4. Take an integer $n \geq 1$ and a prime power q, and let $S \subseteq G F(q)^{n}$ be a vector space over $G F(q)$. Then the following statements are equivalent:
(i) $\operatorname{Matroid}(S)=\operatorname{Matroid}(G)$ where every block of G is either a bridge or a circuit,
(ii) $S=\left\langle v^{1}, \ldots, v^{r}\right\rangle$ where $v^{1}, \ldots, v^{r} \in G F(q)^{n}$ have pairwise disjoint supports,
(iii) $S=S_{1} \times \cdots \times S_{k}$ where each S_{i} has dimension at most 1 .

Proof. It can be readily checked that (ii) and (iii) are equivalent. The equivalence of (i) and (iii) follows from the fact that for a vector space T over $G F(q), T=\{0\}$ if and only if $\operatorname{Matroid}(T)$ is the cycle matroid of a bridge, and T has dimension 1 if and only if $\operatorname{Matroid}(T)$ is the cycle matroid of a circuit.

Sunflower basis. Given an integer $t \geq 3$, denote by A_{t} the graph that consists of two vertices and t parallel edges connecting them.

Lemma 3.5. Take an integer $n \geq 1$ and a prime power q, and let $T \subseteq G F(q)^{n}$ be a vector space over $G F(q)$. Then $\operatorname{Matroid}(T)$ is the cycle matroid of a subdivision of A_{t} for some $t \geq 3$ if and only if T is generated by a sunflower basis.

Proof. (\Rightarrow) : Assume that $\operatorname{Matroid}(T)=\operatorname{Matroid}(G)$ where G is a subdivision of A_{t} for some $t \geq 3$. Notice that G consists of two vertices and t internally vertex-disjoint paths connecting them. Let P_{0}, \ldots, P_{t-1} denote the paths, and let $E\left(P_{0}\right), \ldots, E\left(P_{t-1}\right)$ denote their edge sets. Then it follows from Remark 3.1 that T contains a point whose support is $E\left(P_{0}\right) \cup E\left(P_{i}\right)$. Therefore, T contains $t-1$ points v^{1}, \ldots, v^{t-1} (in row vectors) of the following form:

$$
\begin{gathered}
v^{1} \\
v^{2} \\
\vdots \\
v^{t-1}
\end{gathered}\left[\begin{array}{c|c|c|c|c}
u_{1}^{0} & u^{1} & \mathbf{0} & \cdots & \mathbf{0} \\
u_{2}^{0} & \mathbf{0} & u^{2} & \cdots & \mathbf{0} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
u_{t-1}^{0} & \mathbf{0} & \mathbf{0} & \cdots & u^{t-1}
\end{array}\right]
$$

where $u_{1}^{0}, \ldots, u_{t-1}^{0} \in G F(q)^{\left|E\left(P_{0}\right)\right|}$ and $u^{i} \in G F(q)^{\left|E\left(P_{i}\right)\right|}$ for $i \in[n]$ are vectors of nonzero entries. As T is a vector space in $G F(q)^{n}$, $\operatorname{Matroid}(T)$ is over n edges, and therefore, G has n edges. Since G is a subdivision of A_{t}, a spanning tree of G has $n-(t-1)$ edges, which means that $\operatorname{Matroid}(T)=\operatorname{Matroid}(G)$ has rank $n-(t-1)$. Then the dimension of T is $n-\operatorname{Matroid}(T)=t-1$, so we have $T=\left\langle v^{1}, \ldots, v^{t-1}\right\rangle$. Now, let us argue that we may assume that $u_{1}^{0}=\cdots=u_{t-1}^{0}$ without loss of generality. As $P_{1} \cup P_{2}$ is a circuit of G, Remark 3.1 implies that there is a point $v \in T$ whose support is $E\left(P_{1}\right) \cup E\left(P_{2}\right)$. Then v can be written as $v=\mu_{1} v^{1}+\mu_{2} v^{2}$ for some $\mu_{1}, \mu_{2} \in G F(q)-\{0\}$. As the support of v is $E\left(P_{1}\right) \cup E\left(P_{2}\right)$, we have that $\mu_{1} u_{1}^{0}+\mu_{2} u_{2}^{0}=0$, which implies that $u_{2}^{0}=\lambda_{2} u_{1}^{0}$ for some nonzero λ_{2}. Similarly, we obtain $u_{i}^{0}=\lambda_{i} u_{1}^{0}$ for some nonzero λ_{i} for $i \in[t-1]$, as required. Therefore, after scaling v^{i}, s if necessary, we may assume that $u_{1}^{0}=\cdots=u_{t-1}^{0}$, as required.
(\Leftarrow) : Suppose $T=\left\langle v^{1}, \ldots, v^{t-1}\right\rangle$ where $v^{1}, \ldots, v^{t-1} \in G F(q)^{n}$ are vectors of the following form (in row vectors), after permuting the coordinates, for some $t \geq 3$:

$$
\begin{gathered}
v^{1} \\
v^{2} \\
\vdots \\
v^{t-1}
\end{gathered}\left[\begin{array}{c|c|c|c|c}
u^{0} & u^{1} & \mathbf{0} & \cdots & \mathbf{0} \\
u^{0} & \mathbf{0} & u^{2} & \cdots & \mathbf{0} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
u^{0} & \mathbf{0} & \mathbf{0} & \cdots & u^{t-1}
\end{array}\right]
$$

for some row vectors $u^{0}, u^{1} \ldots, u^{t-1}$ with no zero entries. Let E_{i} be the support of u^{i} for $i=0,1, \ldots, t-1$. Let C be a circuit of $\operatorname{Matroid}(T)$. Then $C=\operatorname{support}(x)$ for some $x \in T$. Let $x=\sum_{i=1}^{t-1} \mu_{i} v^{i}$. Then x is of the form

$$
x\left[\sum_{i=1}^{t-1} \mu_{i} u^{0}\left|\mu_{1} u^{1}\right| \mu_{2} u^{2}|\cdots| \mu_{t-1} u^{t-1}\right]
$$

If $C \cap E_{0} \neq \emptyset$, then it means $\sum_{i=1}^{t-1} \mu_{i} \neq 0$, and therefore, $C \cap E_{0}=E_{0}$. This implies that the elements in E_{0} are in series. If $C \cap E_{i} \neq \emptyset$ for some $1 \leq i \leq t-1$, then $\mu_{i} \neq 0$. This indicates that $C \cap E_{i}=E_{i}$, implying in turn that the elements in E_{i} are in series.

Then consider the case where each u^{i} is 1-dimensional, under which we have $E_{i}=\left\{e_{i}\right\}$ is a singleton for $i=0, \ldots, t-1$. Observe that $|\operatorname{support}(x)| \geq 2$ for any $x \in T$. Then none of $\left\{e_{0}\right\},\left\{e_{1}\right\}, \ldots,\left\{e_{t-1}\right\}$ is a circuit. However, we know that $\left\{e_{0}, e_{i}\right\}$ for $i=1, \ldots, t-1$ are circuits of $\operatorname{Matroid}(T)$ because $v^{1}, \ldots, v^{t-1} \in T$, Moreover, $v^{i}+(q-1) v^{j}$ for $i \neq j$ has support $\left\{e_{i}, e_{j}\right\}$, and therefore, $\left\{e_{i}, e_{j}\right\}$ for distinct $i, j \in\{1, \ldots, t-1\}$ are all circuits. Then $\left\{\left\{e_{i}, e_{j}\right\}: i, j \in\{0,1, \ldots, t-1\}, i \neq j\right\}$ is the family of circuits of $\operatorname{Matroid}(T)$ because any subset of the ground set of size at least 3 would contain $\left\{e_{i}, e_{j}\right\}$ for some $i \neq j$. Therefore, $\operatorname{Matroid}(T)$ is $\operatorname{Matroid}\left(A_{t}\right)$.

In general, as the elements of each E_{i} are in series, $\operatorname{Matroid}(T)$ is a series extension of $\operatorname{Matroid}\left(A_{t}\right)$, which is equivalent to the cycle matroid of a subdivision of A_{t}, as required.

Putting it altogether.

Corollary 3.6. Take an integer $n \geq 1$ and a prime power q, and let $S \subseteq G F(q)^{n}$ be a vector space over $G F(q)$. Then the following statements are equivalent:
(i) $\operatorname{Matroid}(S)=\operatorname{Matroid}(G)$ where every block of G is a bridge, a circuit, or a subdivision of A_{t} for some $t \geq 3$,
(ii) $S=S_{1} \times \cdots \times S_{k}$ where each S_{i} has dimension at most 1 , or admits a sunflower basis.

4 The MFMC property and odd prime powers

Let q be a power of a prime number p. Recall that we denote by 0 and 1 the additive and multiplicative identities of $G F(q)$. Then there must exist an integer ℓ such that $a+a+\cdots+a$ (ℓ times) equals 0 for all $a \in G F(q)$, and in fact, the smallest of such integers is p. Here, p is often referred to as the characteristic of $G F(q)$. Throughout this paper, we denote by $-v$ and v^{-1} the additive and multiplicative inverses of v for each $v \in G F(q)-\{0\}$.

In this section, we prove three lemmas that are useful for this section as well as the next three. Then we prove Theorem 1.4 that characterizes when the multipartite uniform clutter of a vector space has the MFMC property. Lastly, we prove Theorem 1.1 for the case when q is an odd prime power.

Lemma 4.1. Take an integer $n \geq 3$ and n non-empty sets V_{1}, \ldots, V_{n}, and let $S \subseteq V_{1} \times \cdots \times V_{n}$. If mult(S) contains no Δ_{3} as a minor, then for any distinct $a, b, c \in S$ and distinct $i, j, k \in[n]$ such that

$$
a_{i}=b_{i} \neq c_{i}, \quad b_{j}=c_{j} \neq a_{j}, \quad c_{k}=a_{k} \neq b_{k}
$$

there exists $d \in S-\{a, b, c\}$ that satisfies the following:
(1) $d_{\ell} \in\left\{a_{\ell}, b_{\ell}, c_{\ell}\right\}$ for all $\ell \in[n]$, and
(2) at least two of $d_{i}=c_{i}, d_{j}=a_{j}$, and $d_{k}=b_{k}$ hold.

Proof. Let V denote the ground set of mult (S). We may assume that there exist three distinct points $a, b, c \in S$ satisfying (\star) for some distinct $i, j, k \in[n]$. Take subsets I, J of $[n]$ as follows:

$$
I=V-\left\{a_{\ell}, b_{\ell}, c_{\ell}: \ell \in[n]\right\} \quad \text { and } \quad J=\left\{a_{\ell}, b_{\ell}, c_{\ell}: \ell \in[n]-\{i, j, k\}\right\}
$$

We will show that if $d \in S-\{a, b, c\}$ satisfying (1) and (2) does not exsit, then mult $(S) \backslash I / J$ contains Δ_{3} as a minor.

Notice that $\operatorname{mult}(S) \backslash I$ is mult $\left(R_{0}\right)$ where $R_{0}=\left\{v \in S: v_{\ell} \in\left\{a_{\ell}, b_{\ell}, c_{\ell}\right\}\right.$ for $\left.\ell \in[n]\right\}$ and that each member of mult $\left(R_{0}\right)$ is $\left\{v_{1}, \ldots, v_{n}\right\}$ for some $v \in S$. Furthermore, each $v \in R_{0}$ satisfies $\left\{v_{1}, \ldots, v_{n}\right\}-J=\left\{v_{i}, v_{j}, v_{k}\right\}$, so $\left\{v_{1}, \ldots, v_{n}\right\}-J$ remains minimal after contracting J from mult $\left(R_{0}\right)$. This in turn implies that mult $\left(R_{0}\right) / J$ is equal to $\operatorname{mult}(R)$ where $R:=\left\{\left(v_{i}, v_{j}, v_{k}\right): v \in S, v_{\ell} \in\left\{a_{\ell}, b_{\ell}, c_{\ell}\right\}\right.$ for $\left.\ell \in[n]\right\}$. So, $\operatorname{mult}(S) \backslash I / J=$ $\operatorname{mult}(R)$. By definition, R contains points $\left(a_{i}, a_{j}, a_{k}\right),\left(b_{i}, b_{j}, b_{k}\right)$, and $\left(c_{i}, c_{j}, c_{k}\right)$ that are obtained from a, b, c. Suppose that there is no $d \in S-\{a, b, c\}$ that satisfies (1) and (2). Let $d \in S$ with $d_{\ell} \in\left\{a_{\ell}, b_{\ell}, c_{\ell}\right\}$ for $\ell \in[n]$. Since d satisfies (1), d does not satisfy (2). Then $\left(d_{i}, d_{j}, d_{k}\right)$ can be $\left(c_{i}, b_{j}, c_{k}\right),\left(a_{i}, a_{j}, c_{k}\right),\left(a_{i}, b_{j}, b_{k}\right)$, or $\left(a_{i}, b_{j}, c_{k}\right)$, implying in turn that

$$
R \subseteq\left\{\left(a_{i}, a_{j}, a_{k}\right),\left(b_{i}, b_{j}, b_{k}\right),\left(c_{i}, c_{j}, c_{k}\right),\left(c_{i}, b_{j}, c_{k}\right),\left(a_{i}, a_{j}, c_{k}\right),\left(a_{i}, b_{j}, b_{k}\right),\left(a_{i}, b_{j}, c_{k}\right)\right\}
$$

To argue that mult (R) contains Δ_{3} as a minor, let us look at the incidence matrix of mult (R) :

$$
\begin{aligned}
& a a_{i} \overbrace{\mathbf{c}_{\mathbf{i}}} \\
& a \overbrace{\mathbf{a}_{\mathbf{j}}} \\
& b\left(\begin{array}{ccccc}
1 & \mathbf{0} & \mathbf{1} & b_{j} & c_{k} \\
c & \overbrace{\mathbf{b}_{\mathbf{k}}} \\
1 & \mathbf{0} & \mathbf{0} & 1 & 0 \\
0 & \mathbf{1} \\
0 & \mathbf{1} & \mathbf{0} & 1 & 1
\end{array}\right. \\
&
\end{aligned}
$$

Observe that a row of $M(\operatorname{mult}(R))$ other than the ones for a, b, c, if any, has at least two ones in the columns for a_{i}, b_{j}, c_{k}. So, after contracting the columns for c_{i}, a_{j}, b_{k} and removing non-minimal rows, the resulting incidence matrix is precisely $M\left(\Delta_{3}\right)$. This implies that we obtain Δ_{3} after contracting c_{i}, a_{j}, b_{k} from mult (R), a contradiction to the assumption that mult (S) has no Δ_{3} minor.

Lemma 4.2. Take an integer $n \geq 1$ and a prime power q, and let $S \subseteq G F(q)^{n}$ be a vector space over $G F(q)$. If S does not admit a basis with vectors of pairwise disjoint supports, then mult (S) contains Δ_{3} or Q_{6} as a minor. Moreover, if q is an odd prime power, then $\operatorname{mult}(S)$ contains Δ_{3} as a minor.

Proof. Assume that S does not admit a basis with vectors of pairwise disjoint supports. We will show that if $\operatorname{mult}(S)$ does not contain Δ_{3} as a minor, then q is a power of 2 and $\operatorname{mult}(S)$ contains Q_{6} as a minor.

Assume that S contains no Δ_{3} as a minor. Let $v^{1}, \ldots, v^{r} \in G F(q)^{n}$ be a basis of S. After elementary arithmetic operations over $G F(q)$, we may assume that for each $i=1, \ldots, r$,

$$
v_{i}^{i}=1 \quad \text { and } \quad v_{j}^{i}=0 \quad \forall j \in[r]-\{i\}
$$

Since there is no basis of S with vectors of pairwise disjoint supports, we may assume that $v_{r+1}^{1}, v_{r+1}^{2} \neq 0$. This in turn implies that $n \geq 3$. Let x and y be the multiplicative inverses of v_{r+1}^{1} and v_{r+1}^{2} in $G F(q)$, respectively. Let $a:=\mathbf{0} \in G F(q)^{n}, b:=x v^{1}$, and $c:=y v^{2}$. Notice that $a, b, c \in S$ and that a, b, c satisfy

$$
\left(a_{1}, a_{2}, a_{r+1}\right)=(0,0,0), \quad\left(b_{1}, b_{2}, b_{r+1}\right)=(x, 0,1), \quad\left(c_{1}, c_{2}, c_{r+1}\right)=(0, y, 1)
$$

Now we consider $R=\left\{d \in S: d_{j} \in\left\{a_{j}, b_{j}, c_{j}\right\}\right.$ for $\left.j \in[n]\right\}$.
Claim 1. $R \subseteq\left\{\lambda_{1} v^{1}+\lambda_{2} v^{2}: \lambda_{1} \in\{0, x\}, \lambda_{2} \in\{0, y\}\right\}$.
Proof of Claim. Let $u \in R$. Then $u=\sum_{j=1}^{r} \lambda_{j} v^{j}$ for some $\lambda_{1}, \ldots, \lambda_{r} \in G F(q)$. Since $a_{j}=b_{j}=c_{j}=0$ for $j=3, \ldots, r$, it follows that $u_{3}=\cdots=u_{r}=0$, which implies that $\lambda_{3}=\cdots=\lambda_{r}=0$ and so $u=\lambda_{1} v^{1}+\lambda_{2} v^{2}$. Notice that $\lambda_{1} \in\{0, x\}$ and $\lambda_{2} \in\{0, y\}$, because $a_{1}, b_{1}, c_{1} \in\{0, x\}$ and $a_{2}, b_{2}, c_{2} \in\{0, y\}$.

Claim 2. q is a power of 2 and $R=\left\{\lambda_{1} v^{1}+\lambda_{2} v^{2}: \lambda_{1} \in\{0, x\}, \lambda_{2} \in\{0, y\}\right\}$.
Proof of Claim. By Lemma 4.1, R contains a $d \notin\{a, b, c\}$ such that $\left(d_{1}, d_{2}, d_{r+1}\right)=(0, y, 0),(x, 0,0),(x, y, 1)$, or ($x, y, 0$). By Claim $1, d \in\left\{\lambda_{1} v^{1}+\lambda_{2} v^{2}: \lambda_{1} \in\{0, x\}, \lambda_{2} \in\{0, y\}\right\}$. As $d \neq a, b, c$, it must be that $x v^{1}+$ $y v^{2}=d$, so $x v^{1}+y v^{2} \in R$. In particular, $R=\left\{\lambda_{1} v^{1}+\lambda_{2} v^{2}: \lambda_{1} \in\{0, x\}, \lambda_{2} \in\{0, y\}\right\}$. Since $d=x v^{1}+y v^{2}$, we obtain $\left(x v^{1}+y v^{2}\right)_{r+1}=1+1=d_{r+1} \in\{0,1\}$. Since $1 \neq 0$, we have $1+1=0$, so q is a power of 2 , as required.

By Claim 2, $R=\left\{\lambda_{1} v^{1}+\lambda_{2} v^{2}: \lambda_{1} \in\{0, x\}, \lambda_{2} \in\{0, y\}\right\}$, so the projection of R onto the space of coordinates $1,2, r+1$ is precisely $R_{1,1}$. Since $\operatorname{mult}\left(R_{1,1}\right)=Q_{6}, \operatorname{mult}(S)$ has Q_{6} as a minor by Lemma 2.4. So, we have shown that if $\operatorname{mult}(S)$ has no Δ_{3} as a minor, then q is a power of 2 and $\operatorname{mult}(S)$ contains Q_{6} as a minor, as required.

Lemma 4.3. Take an integer $n \geq 1$ and a prime power q, and let $S \subseteq G F(q)^{n}$ be a vector space over $G F(q)$. If S has a basis with vectors of pairwise disjoint supports, then mult (S) has the MFMC property, and is therefore ideal.

Proof. Assume that S has a basis of vectors with pairwise disjoint supports. Then we may assume that $S=$ $\left\langle u^{1}\right\rangle \times \cdots \times\left\langle u^{r}\right\rangle \times\{\mathbf{0}\}$ for some vectors u^{1}, \ldots, u^{r} with no zero entries over $G F(q)$, by Lemma 3.4. Subsequently, $\operatorname{mult}(S)=\operatorname{mult}\left(\left\langle u^{1}\right\rangle\right) \times \cdots \times \operatorname{mult}\left(\left\langle u^{r}\right\rangle\right) \times \operatorname{mult}(\{0\})$, and to prove $\operatorname{mult}(S)$ has the MFMC property, it suffices
to argue that $\operatorname{mult}\left(\left\langle u^{i}\right\rangle\right)$ for $i \in[r]$ and $\operatorname{mult}(\{0\})$ have the MFMC property, by Lemma 2.3. First, notice that $\operatorname{mult}(\{\mathbf{0}\})$ has only one member, so it clearly has the MFMC property. In fact, we can argue that each mult $\left(\left\langle u^{i}\right\rangle\right)$ has pairwise disjoint members as well. Notice that for any distinct $x, y \in G F(q), x u^{i}$ and $y u^{i}$ do not have common coordinates, implying in turn that the members of mult $\left(\left\langle u^{i}\right\rangle\right)$ corresponding to $x u^{i}$ and $y u^{i}$ are disjoint. That means that the members of mult $\left(\left\langle u^{i}\right\rangle\right)$ are pairwise disjoint, implying in turn that it has the MFMC property, thereby proving that mult (S) has the MFMC property, as required.

Having proved Lemmas 4.2 and 4.3, we are now ready to show Theorem 1.4. The basic flow of our proof is as follows. Lemma 4.3 shows that if a vector space S has a basis with vectors of pairwise disjoint supports, then mult (S) has the MFMC property. Conversely, Lemma 4.2 argues that if a vector space S does not admit such a basis, then mult (S) has some minors certifying that the clutter does not have the MFMC property. More details are explained in the proof as follows.

Proof of Theorem 1.4. $(\mathbf{i i i}) \Rightarrow$ (ii) follows from Lemma 4.2. (ii) \Rightarrow (i) follows from Lemma 4.3. (i) \Rightarrow (iii): Assume that $\operatorname{mult}(S)$ has the MFMC property. Δ_{3} is a non-ideal clutter, so it does not have the max-flow min-cut property. Recall that Q_{6} is the clutter of triangles in K_{4}. Notice that the minimum number of edges required to intersect every triangle in K_{4} is two and that the maximum number of disjoint triangles in K_{4} is one. This implies that $\tau\left(Q_{6}, \mathbf{1}\right)=2$ and $\nu\left(Q_{6}, \mathbf{1}\right)=1$, so Q_{6} does not have the max-flow min-cut property. Like idealness, the MFMC property is a minor-closed property [33]. Therefore, a clutter with the MFMC property contains none of Δ_{3}, Q_{6} as a minor, implying in turn that mult (S) has none of Δ_{3}, Q_{6} as a minor.

The proof of Theorem 1.1 works similarly as that of Theorem 1.4. The additional component is that when q is an odd prime power and a vector space S over $G F(q)$ does not admit a basis with vectors of pairwise disjoint supports, then mult (S) has a non-ideal minor due to Lemma 4.2.

Proof of Theorem 1.1. Take an integer $n \geq 1$ and an odd prime power q, and let $S \subseteq G F(q)^{n}$ be a vector space over $G F(q)$. Since Δ_{3} is non-ideal, direction $(\mathbf{i}) \Rightarrow(\mathbf{i i i})$ is clear. Direction $(\mathbf{i i i}) \Rightarrow(\mathbf{i i})$ follows from Lemma 4.2, and Lemma 4.3 shows direction $(\mathbf{i i}) \Rightarrow(\mathbf{i})$. Therefore, (i)-(iii) are equivalent.

5 Fields of characteristic 2: a structure theorem

In this section, we prove Theorem 5.5 which provides an important tool for characterizing the idealness of mult (S) where S is a vector space over $G F\left(2^{k}\right)$ for $k \geq 2$. To be more precise, Theorem 5.5 characterizes the structure of the underlying matroid $\operatorname{Matroid}(S)$ when mult (S) is ideal and thus has no Δ_{3} as a minor.

Lemma 5.1. Let q be a power of 2 , and let $S \subseteq G F(q)^{4}$ be a vector space over $G F(q)$. If $\operatorname{Matroid}(S)$ is isomorphic to $U_{2,4}$, then mult (S) has Δ_{3} as a minor.

Proof. Suppose for a contradiction that $\operatorname{mult}(S)$ has no Δ_{3} as a minor. Since the rank of $U_{2,4}$ is 2 , the dimension of S is $4-2=2$. Let $v^{1}, v^{2} \in G F(q)^{4}$ be two generators of S. By elementary row operations, we may assume that $\left(v_{1}^{1}, v_{2}^{1}\right)=(1,0)$ and $\left(v_{1}^{2}, v_{2}^{2}\right)=(0,1)$. Then

$$
\begin{gathered}
v^{1} \\
v^{2}
\end{gathered}\left[\begin{array}{cc|cc}
1 & 0 & x & y \\
0 & 1 & z & w
\end{array}\right]
$$

where $x, y, z, w \in G F(q)$. Each circuit of $U_{2,4}$ has size 3, so $x, y, z, w \neq 0$. Then $a:=\left(-x^{-1} z\right) v^{1}, b:=v^{2}$, $c:=a+b$ are vectors in S. Observe that

$$
\begin{gathered}
a \\
b \\
c
\end{gathered}\left[\begin{array}{c|c|c|c}
-x^{-1} z & 0 & -z & -x^{-1} y z \\
0 & 1 & z & w \\
-x^{-1} z & 1 & 0 & -x^{-1} y z+w
\end{array}\right]
$$

and that $a_{1}=c_{1} \neq b_{1}, b_{2}=c_{2} \neq a_{2}$. We also have that $a_{3}=b_{3} \neq c_{3}$, because q being a power of 2 implies $z+z=0$ and $z=-z$. By Lemma 4.1, there is a vector $d \in G F(q)^{4}$ that satisfies at least two of $d_{1}=b_{1}=0$, $d_{2}=a_{2}=0, d_{3}=c_{3}=0$ and satisfies $d_{4} \in\left\{-x^{-1} y z, w,-x^{-1} y z+w\right\}$. But then the support of d has size at most 2. Since every circuit of $U_{2,4}$ has size $3, d=\mathbf{0}$, and therefore, $d_{4}=-x^{-1} y z+w=0$. This implies the support of c has size 2 , a contradiction.

Graph minors. We say that a graph H is a graph minor of a graph G if H can be obtained from G after a series of edge deletions, edge contractions, and deletions of isolated vertices. If G is connected, then H is a graph minor of G if and only if for some disjoint subsets E_{1}, E_{2} of $E(G)$, we can obtain H from G by deleting E_{1} and contracting E_{2}. It is well-known that if H is a graph minor of G, then $\operatorname{Matroid}(H)$ is a matroid minor of $\operatorname{Matroid}(G)$ (see Chapter 3.2 in [27]).
K_{4} is the complete graph on 4 vertices, and we denote by K_{4} / e what is obtained from K_{4} after contracting an edge from it (see Figure 1).

1

Figure 1: K_{4} / e
Lemma 5.2. Let $q=2^{k}$ for some $k \geq 2$, and let $S \subseteq G F(q)^{5}$ be a vector space over $G F(q)$. If $\operatorname{Matroid}(S)$ is isomorphic to $\operatorname{Matroid}\left(K_{4} / e\right)$, then mult (S) has Δ_{3} as a minor.

Proof. In Figure 1, we can see that the fundamental circuits of K_{4} / e with respect to spanning tree $\{4,5\}$ are $\{1,4,5\},\{2,4\},\{3,5\}$. Pick vectors $v^{1}, v^{2}, v^{3} \in S$ whose supports are the three circuits. Notice that these vectors are linearly independent. Since the dimension of S is $5-2=3$, vectors v^{1}, v^{2}, v^{3} generate S. After elementary row operations, S is generated by the 3 vectors v^{1}, v^{2}, v^{3} of the following forms:

$$
\begin{gathered}
v^{1} \\
v^{2} \\
v^{3}
\end{gathered}\left[\begin{array}{ccc|cc}
1 & 0 & 0 & x & y \\
0 & 1 & 0 & z & 0 \\
0 & 0 & t & 0 & w
\end{array}\right]
$$

where $t, x, y, z, w \neq 0$. Since $q>2$, we may assume that z and w are distinct nonzero elements in $G F(q)$. Now consider the restriction S^{\prime} of S defined as follows:

$$
S^{\prime}:=S \cap\left\{x \in G F(q)^{5}: x_{1} \in\{0, z, w\}, x_{2} \in\{0, x\}, x_{3} \in\{0, t y\}\right\}
$$

We will show that mult $\left(S^{\prime}\right)$ has Δ_{3} as a minor. Then as S^{\prime} is a restriction of S, it follows from Lemma 2.4 that $\operatorname{mult}(S)$ also has Δ_{3} as a minor. Notice that

$$
S^{\prime}=\left\{\sum_{i=1}^{3} \lambda_{i} v^{i}: \lambda_{1} \in\{0, z, w\}, \lambda_{2} \in\{0, x\}, \lambda_{3} \in\{0, y\}\right\}
$$

Consider three distinct points $a:=z v^{1}, b:=w v^{1}, c:=x v^{2}+y v^{3}$ in S^{\prime} :
a
b
$c$$\left[\begin{array}{ccc|cc}z & 0 & 0 & z x & z y \\ w & 0 & 0 & w x & w y \\ 0 & x & t y & z x & w y\end{array}\right]$

As $z \neq w$, we have that $c_{4}=a_{4} \neq b_{4}$ and $b_{5}=c_{5} \neq a_{5}$. We also have $a_{3}=b_{3} \neq c_{3}$, because $t y \neq 0$. Suppose for a contradiction that mult $\left(S^{\prime}\right)$ has no Δ_{3} as a minor. By Lemma 4.1, there is $d \in S^{\prime}-\{a, b, c\}$ that satisfies
(1) $d_{1} \in\{0, z, w\}, d_{2} \in\{0, x\}, d_{3} \in\{0, t y\}, d_{4} \in\{z x, w x\}, d_{5} \in\{z y, w y\}$, and
(2) at least two of $d_{3}=t y, d_{4}=w x, d_{5}=z y$ hold.

The points of $S^{\prime}-\{a, b, c\}$ are the following:

$$
S^{\prime}-\{a, b, c\}=\left\{\begin{array}{c|c|c}
(0,0,0,0,0) & (0, x, 0, z x, 0) & (0,0, t y, 0, w y) \\
(z, x, 0,0, z y) & (z, 0, t y, z x,(z+w) y) & (w, x, 0,(z+w) x, w y) \\
(w, 0, t y, w x, 0) & (z, x, t y, 0,(z+w) y) & (w, x, t y,(z+w) x, 0)
\end{array}\right\} .
$$

Since $z, w \neq 0$ and $z \neq w,(z+w) x \notin\{z x, w x\}$ and $(z+w) y \notin\{z y, w y\}$. Since $z, w, x, y \neq 0,0 \notin\{z x, w x\}$ and $0 \notin\{z y, w y\}$. This indicates that no point in $S^{\prime}-\{a, b, c\}$ satisfies condition (1), a contradiction. Therefore, $\operatorname{mult}\left(S^{\prime}\right)$ has Δ_{3} as a minor, and so does mult (S), as required.

How does a graph with no K_{4} / e graph minor look like? We have the following result.
Lemma 5.3. Let $G=(V, E)$ be a connected graph. If G contains no K_{4} / e as a graph minor, then each block of G is a bridge, a circuit, or a subdivision of A_{t} for some $t \geq 3$.

Proof. See $\S A$ in the appendix.
We call a graph a series-parallel network if each of its blocks is a series-parallel graph.
Theorem 5.4 ([8]). Let M be a matroid. Then the following statements are equivalent:
(i) M contains none of $U_{2,4}$ and $\operatorname{Matroid}\left(K_{4}\right)$ as a matroid minor,
(ii) M is the cycle matroid of a series-parallel network.

Theorem 5.5. Let $q=2^{k}$ for some $k \geq 2$, and let S be a vector space over $G F(q)$. If mult (S) has no Δ_{3} as a minor, then for some $k \geq 1, \operatorname{Matroid}(S)=M_{1} \oplus \cdots \oplus M_{k}$, where each M_{i} is the cycle matroid of a bridge, a circuit, or a subdivision of A_{t} for some $t \geq 3$.

Proof. Assume that $\operatorname{mult}(S)$ has no Δ_{3} as a minor. Suppose for a contradiction that Matroid (S) contains $U_{2,4}$ or Matroid $\left(K_{4} / e\right)$ as a matroid minor. This in turn implies that there exists S^{\prime} obtained from S after a series of restrictions and projections such that $\operatorname{Matroid}\left(S^{\prime}\right)$ is isomorphic to $U_{2,4}$ or $\operatorname{Matroid}\left(K_{4} / e\right)$ by Lemma 3.2. Here, $\operatorname{mult}\left(S^{\prime}\right)$ contains Δ_{3} as a minor by Lemmas 5.1 and 5.2. As mult $\left(S^{\prime}\right)$ is a minor of mult (S) due to Lemma 2.4, it follows that mult (S) also contains a Δ_{3} as a minor, a contradiction. Hence, Matroid (S) contains none of $U_{2,4}$ and $\operatorname{Matroid}\left(K_{4} / e\right)$ as a matroid minor. As $\operatorname{Matroid}\left(K_{4} / e\right)$ is a matroid minor of $\operatorname{Matroid}\left(K_{4}\right)$, Theorem 5.4 implies that $\operatorname{Matroid}(S)$ is the cycle matroid of a series-parallel network not containing K_{4} / e as a graph minor. Then by Lemma 5.3, each block of the graph is a subdivision of A_{t} for some $t \geq 3$, a bridge, or a circuit. So, the assertion follows from Lemma 3.3, as required.

Suppose S is a vector space over $G F\left(2^{k}\right)$ for some $k \geq 2$. By Theorem 5.5 , if mult (S) has no Δ_{3} as a minor, then the underlying matroid can be decomposed as the direct sum of some structured graphic matroids. Then it follows from Corollary 3.6 that S can be represented as $S=S_{1} \times \cdots \times S_{k}$ where each S_{i} has dimension at most 1, or admits a sunflower basis. Then the idealness of S is determined by S_{1}, \ldots, S_{k} according to Lemma 2.3. In particular, we need to understand the case where S_{i} is a vector space that admits a sunflower basis. In the next section, we provide tools for characterizing when the multipartite uniform clutter of a vector space that admits a sunflower basis is ideal.

6 Fields of characteristic 2: a study of the localizations for A_{t}

Suppose S is a vector space over $G F\left(2^{k}\right)$ for $k \geq 2$. At the end of Section 5, we discussed that understanding vector spaces that admit a sunflower basis is the key to characterizing when mult (S) is ideal. In this section, we consider the case when $\operatorname{Matroid}(S)=\operatorname{Matroid}\left(A_{n}\right)$ for some $n \geq 3$, where A_{n} denotes the graph that consists of two vertices and n parallel edges connecting them. Recall that by Theorem 2.7, $\operatorname{mult}(S)$ is ideal if and only if all its localizations are ideal. In this section, we prove three lemmas on properties of localizations of mult (S).

Lemma 6.1. Take an integer $n \geq 3$ and a prime power q, and let $S \subseteq G F(q)^{n}$ be a vector space over $G F(q)$. Then $\operatorname{Matroid}(S)=\operatorname{Matroid}\left(A_{n}\right)$ if and only if $S \cong\left\{x \in G F(q)^{n}: x_{1}+\cdots+x_{n}=0\right\}$.

Proof. Let $\{1,2,3 \ldots, n\}$ denote the edge set of A_{n}. Then $\{1,2\},\{1,3\}, \ldots,\{1, n\}$ are circuits of Matroid $\left(A_{n}\right)$. (\Leftarrow) : Let \mathcal{S} be the clutter of the minimal supports of the points in $S-\{0\}$. Then $\mathcal{S}=\{\{i, j\}: i \neq j\}$, so $\operatorname{Matroid}(S)=\operatorname{Matroid}\left(A_{n}\right)$ by Remark 3.1. (\Rightarrow) : Since $\operatorname{Matroid}(S)=\operatorname{Matroid}\left(A_{n}\right), S$ contains $n-1$ points u^{1}, \ldots, u^{n-1} whose supports are $\{1,2\},\{1,3\}, \ldots,\{1, n\}$, respectively. Notice that u^{1}, \ldots, u^{n-1} are linearly independent over $G F(q)$, so the dimension of S is at least $n-1$. On the other hand, the dimension is less than n, because $S \neq G F(q)^{n}$. Thus, $S=\left\langle u^{1}, \ldots, u^{n-1}\right\rangle$. After scaling the u^{i} s, if necessary, we may assume that the first coordinate of each u^{i} is 1 . Hence, u^{1}, \ldots, u^{n-1} are of the form displayed below (left), where $\lambda_{1}, \ldots, \lambda_{n-1} \in G F(q)-\{0\}$. Notice that $\left\{x \in G F(q)^{n}: x_{1}+\cdots+x_{n}=0\right\}=\left\langle v^{1}, \ldots, v^{n-1}\right\rangle$ where v^{1}, \ldots, v^{n-1} are displayed below (right):

$$
\begin{gathered}
u^{1} \\
u^{2} \\
\vdots \\
u^{n-1}
\end{gathered}\left[\begin{array}{ccccc}
1 & \lambda_{1} & 0 & \cdots & 0 \\
1 & 0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 0 & 0 & \cdots & \lambda_{n-1}
\end{array}\right] \quad \begin{gathered}
v^{1} \\
v^{2} \\
\vdots \\
v^{n-1}
\end{gathered}\left[\begin{array}{ccccc}
1 & -1 & 0 & \cdots & 0 \\
1 & 0 & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 0 & 0 & \cdots & -1
\end{array}\right]
$$

implying in turn that $\left\{x \in G F(q)^{n}: x_{1}+\cdots+x_{n}=0\right\}=\left\{\left(x_{1},-\lambda_{1}^{-1} x_{2},-\lambda_{2}^{-1} x_{3}, \ldots,-\lambda_{n-1}^{-1} x_{n}\right): x \in S\right\}$. Therefore, $S \cong\left\{x \in G F(q)^{n}: x_{1}+\cdots+x_{n}=0\right\}$, as required.

By Lemma 6.1, we may focus on the set

$$
S=\left\{x \in G F(q)^{n}: x_{1}+\cdots+x_{n}=0\right\}
$$

to understand vector spaces whose underlying matroids are $\operatorname{Matroid}\left(A_{n}\right)$. Recall that a localization of mult (S) with respect to $\alpha \in G F(q)^{n}$, denoted $\operatorname{local}(S, \alpha)$, is the minor of mult (S) after contracting the elements corresponding to α (see Section 2). mult (S) is defined over ground set $V_{1} \cup \cdots \cup V_{n}$ where each V_{i} is a copy of $G F(q)$,
and local (S, α) 's ground set is given by $U_{1} \cup \cdots U_{n}$ where $U_{i}=V_{i}-\left\{\alpha_{i}\right\}$. The following lemma provides a characterization of the members of $\operatorname{local}(S, \alpha)$ for any $\alpha \notin S$.

Lemma 6.2. Take an integer $n \geq 3$. Let q be a power of 2 , and let $\alpha \in G F(q)^{n}$ with $\sigma:=\alpha_{1}+\cdots+\alpha_{n} \neq 0$. Let $C \subseteq U_{1} \cup \cdots \cup U_{n}$ where $U_{i}=G F(q)-\left\{\alpha_{i}\right\}$. Then the following statements are equivalent:
(i) C is a member of $\operatorname{local}(S, \alpha)$.
(ii) C contains at most one element in U_{i} for each $i \in[n]$ and $\sum(v: v \in C)=\sigma+\sum\left(\alpha_{i}: C \cap U_{i} \neq \emptyset\right)$.

Proof. (i) \Rightarrow (ii) There exists $x=\left(x_{1}, \ldots, x_{n}\right) \in S$ such that $C=\left\{x_{1}, \ldots, x_{n}\right\}-\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Then $C \cap U_{i}=$ $\left\{x_{i}\right\}-\left\{\alpha_{i}\right\}$, implying that $C \cap U_{i}$ has at most one element. Without loss of generality, we may assume that $x=\left(x_{1}, \ldots, x_{k}, \alpha_{k+1}, \ldots, \alpha_{n}\right)$ and $x_{1} \neq \alpha_{1}, \ldots, x_{k} \neq \alpha_{k}$ for some $1 \leq k \leq n$. Then $C=\left\{x_{1}, \ldots, x_{k}\right\}$. Since $x \in S$, we have

$$
\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{k} x_{i}+\sum_{j=k+1}^{n} \alpha_{j}=0
$$

As the characteristic of $G F(q)$ is $2, \sum_{i=1}^{k} x_{i}=-\sum_{i=1}^{k} x_{i}$, implying in turn that $\sum_{i=1}^{k} x_{i}=\sum_{j=k+1}^{n} \alpha_{j}$. As $\sum_{i=1}^{n} \alpha_{i}=\sigma$, we also get $\sum_{j=k+1}^{n} \alpha_{j}=\sigma+\sum_{i=1}^{k} \alpha_{i}$, and therefore, we obtain $\sum_{i=1}^{k} x_{i}=\sigma+\sum_{i=1}^{k} \alpha_{i}$, as required.
(i) $\Leftarrow\left(\right.$ (ii) Without loss of generality, we may assume that $C=\left\{x_{1}, \ldots, x_{k}\right\}$ where $x_{i} \in U_{i}$ for $i \in[k]$. Then $\left\{x_{1}, \ldots, x_{k}\right\} \cap\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}=\emptyset$. Since $\sum_{i=1}^{k} x_{i}=\sigma+\sum_{i=1}^{k} \alpha_{i}$, we have $\sum_{i=1}^{k} x_{i}+\sum_{j=k+1}^{n} \alpha_{j}=$ $\sigma+\sum_{i=1}^{n} \alpha_{i}=0$, implying in turn that $\left(x_{1}, \ldots, x_{k}, \alpha_{k+1}, \ldots, \alpha_{n}\right) \in S$. As $C=\left\{x_{1}, \ldots, x_{k}, \alpha_{k+1}, \ldots, \alpha_{n}\right\}-$ $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, it follows that C is a member of $\operatorname{local}(S, \alpha)$, as required.

Using Lemma 6.2, we can show the following lemma providing a characterization of the members of size 1 and 2 in $\operatorname{local}(S, \alpha)$ for $\alpha \notin S$.

Lemma 6.3. Take an integer $n \geq 3$. Let q be a power of 2 , and let $\alpha \in G F(q)^{n}$ with $\sigma:=\alpha_{1}+\cdots+\alpha_{n} \neq 0$. Then the following statements hold:
(1) the members of size 1 of $\operatorname{local}(S, \alpha)$ are $\left\{\alpha_{1}+\sigma\right\}, \ldots,\left\{\alpha_{n}+\sigma\right\}$.
(2) the members of size 2 of $\operatorname{local}(S, \alpha)$ form a graph that consists of $\frac{q}{2}-1$ connected components $G_{1}, \ldots, G_{\frac{q}{2}-1}$ satisfying the following: for each $j=1, \ldots, \frac{q}{2}-1$,

- G_{j} 's vertex set is $\left\{\beta_{1}^{j}, \beta_{1}^{j}+\sigma\right\} \cup \cdots \cup\left\{\beta_{n}^{j}, \beta_{n}^{j}+\sigma\right\}$ where $\left\{\beta_{i}^{j}, \beta_{i}^{j}+\sigma\right\} \subseteq U_{i}-\left\{\alpha_{i}+\sigma\right\}=G F(q)-$ $\left\{\alpha_{i}, \alpha_{i}+\sigma\right\}$ for $i \in[n]$,
- G_{j} is a bipartite graph with bipartition $\left\{\beta_{1}^{j}, \ldots, \beta_{n}^{j}\right\} \cup\left\{\beta_{1}^{j}+\sigma, \ldots, \beta_{n}^{j}+\sigma\right\}$,
- $\beta_{i}^{j}=\beta_{1}^{j}+\alpha_{1}+\alpha_{i}$ for $i \in[n]$, and
- G_{j} 's edge set is $\left\{\left\{\beta_{i}^{j}, \beta_{k}^{j}+\sigma\right\}: i \neq k\right\}$, i.e., G_{j} is obtained from a complete bipartite graph after removing the edges of a perfect matching (see Figure 2 for an illustration).

Proof. See \S B of the appendix.

Figure 2: Members of size 1 and 2 of $\operatorname{local}(S, \alpha)$

7 The $q=4$ case

In this section, we prove Theorem 1.2 characterizing when the multipartite uniform clutter of a vector space over $G F(4)$ is ideal. The proof of Theorem 1.2 uses the following two lemmas. We first show Lemma 7.1 which implies that $\operatorname{mult}(T)$ is ideal if T is a vector space over $G F(4)$ such that $\operatorname{Matroid}(T) \cong \operatorname{Matroid}\left(A_{n}\right)$ for some $n \geq 3$. We then prove in Lemma 7.2 that idealness is closed under "series extensions".

Lemma 7.1. Let $T=\left\{x \in G F(4)^{n}: x_{1}+\cdots+x_{n}=0\right\}$ for some $n \geq 3$. Then mult (T) is ideal.
Proof. By Theorem 2.7, it suffices to argue that all localizations of mult (T) are ideal. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \notin T$. We will show that the localization of mult (T) with respect to α, denoted local (T, α), is ideal. Let $\sigma=\alpha_{1}+\cdots+$ $\alpha_{n} \neq 0$. Note that local (T, α) has n members of cardinality $1,\left\{\alpha_{1}+\sigma\right\}, \ldots,\left\{\alpha_{n}+\sigma\right\}$ by Lemma 6.3 (1). By Lemma 6.3 (2), the members of cardinality 2 form a connected bipartite graph G where

- G is bipartite on $\left\{\beta_{1}, \ldots, \beta_{n}\right\} \cup\left\{\beta_{1}+\sigma, \ldots, \beta_{n}+\sigma\right\}$ where $\left\{\beta_{i}, \beta_{i}+\sigma\right\}=G F(4)-\left\{\alpha_{i}, \alpha_{i}+\sigma\right\}$ for $i \in[n]$,
- $\beta_{i}=\beta_{1}+\alpha_{1}+\alpha_{i}$ for $i \in[n]$, and
- the edge set of G is $\left\{\left\{\beta_{i}, \beta_{k}+\sigma\right\}: i \neq k\right\}$.

We will show that there is no member of cardinality at least 3 in $\operatorname{local}(T, \alpha)$. Suppose for a contradiction that $\operatorname{local}(T, \alpha)$ has a member C whose cardinality is at least 3 . As C does not contain any of the members of $\operatorname{local}(T, \alpha)$ that have cardinality 1 or $2, C \subseteq\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ or $C \subseteq\left\{\beta_{1}+\sigma, \ldots, \beta_{n}+\sigma\right\}$. Without loss of generality, we may assume that $C=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ for some $k \geq 3$. Then, by Lemma 6.2 , we have $\sum_{i=1}^{k} \beta_{i}=\sigma+\sum_{i=1}^{k} \alpha_{i}$. Substituting $\beta_{i}=\beta_{1}+\alpha_{1}+\alpha_{i}$ for $i=2, \ldots, k$, we obtain $\sum_{i=1}^{k}\left(\beta_{1}+\alpha_{1}\right)=\sigma$. Since σ is nonzero and $\sum_{i=1}^{k}\left(\beta_{1}+\alpha_{1}\right)$ is either $\beta_{1}+\alpha_{1}$ or 0 , we get $\sum_{i=1}^{k}\left(\beta_{1}+\alpha_{1}\right)=\beta_{1}+\alpha_{1}=\sigma$. However, $\beta_{1}+\alpha_{1}=\sigma$ in turn implies that $\beta_{i}=\beta_{1}+\alpha_{1}+\alpha_{i}=\alpha_{i}+\sigma$, contradicting the assumption that $\beta_{i} \in G F(4)-\left\{\alpha_{i}, \alpha_{i}+\sigma\right\}$. Therefore, $\operatorname{local}(T, \alpha)$ does not have a member of cardinality at least 3 , as required.

Thus the members of $\operatorname{local}(T, \alpha)$ have size either 1 or 2 . Let \mathcal{C} be what is obtained from $\operatorname{local}(T, \alpha)$ after deleting every element that appears in a member of cardinality 1 . As no minimally non-ideal clutter has a member
of cardinality $1, \operatorname{local}(T, \alpha)$ is ideal if and only if \mathcal{C} is ideal. Notice that $M(\mathcal{C})$, the incidence matrix of \mathcal{C}, is the edge - vertex incidence matrix of a bipartite graph. It follows from Kőnig's theorem for bipartite matching that \mathcal{C} is ideal. Therefore, $\operatorname{local}(T, \alpha)$ is ideal, and mult (T) is ideal, as required.

Lemma 7.2. Suppose that S is a vector space over $G F(q)$ such that $\operatorname{Matroid}(S)$ has elements in series. Let S^{\prime} be a projection of S obtained after dropping one of the elements in series. Then mult (S) is ideal if and only if mult $\left(S^{\prime}\right)$ is ideal.

Proof. Without loss of generality, assume that $\operatorname{Matroid}(S)$ has n elements and that elements $n-1, n$ are in series. Let S^{\prime} be defined as the projection of S obtained after dropping the $n^{\text {th }}$ coordinate of the points in S. Then S^{\prime} is a vector space in $G F(q)^{n-1}$, and by Lemma 3.2, $\operatorname{Matroid}(T)=\operatorname{Matroid}(S) /\{n\}$.

Let $x \in S$. Then support (x) is the union of some circuits of $\operatorname{Matroid}(S)$ by Remark 3.1. As $n-1, n$ are series elements, a circuit of $\operatorname{Matroid}(S)$ contains $n-1$ if and only if it contains n, implying in turn that $n-1 \in \operatorname{support}(x)$ if and only if $n \in \operatorname{support}(x)$. Let v^{1}, \ldots, v^{r} give rise to a basis of S. If $n \in \operatorname{support}(x)$ for some $x \in S$, then $n \in \operatorname{support}\left(v^{\ell}\right)$ for some $\ell \in[r]$, and thus, we may assume that $n \in \operatorname{support}\left(v^{1}\right)$ and that $v_{n}^{1} \neq 0$. After scaling the v^{ℓ} s, if necessary, we may assume that $v_{n}^{\ell}=0$ for $\ell \in[r]-\{1\}$. Since $n-1 \in \operatorname{support}(x)$ if and only if $n \in \operatorname{support}(x)$ for $x \in S$, we have that $v_{n-1}^{1} \neq 0$ and $v_{n-1}^{\ell}=0$ for $\ell \in[r]-\{1\}$. Then for some $y, z \in G F(q)-\{0\}$,

$$
\begin{gathered}
v^{1} \\
v^{2} \\
\vdots \\
v^{r}
\end{gathered}\left[\begin{array}{c|cc}
\cdots & y & z \\
\cdots & 0 & 0 \\
\vdots & 0 & 0 \\
\cdots & 0 & 0
\end{array}\right]
$$

Then it follows that $S=\left\{\left(x_{1}, \ldots, x_{n-1}, z y^{-1} x_{n-1}\right):\left(x_{1}, \ldots, x_{n-1}\right) \in S^{\prime}\right\}$, and by Remark 2.2, mult $(S) \cong$ $\operatorname{mult}(T)$ where $T=\left\{\left(x_{1}, \ldots, x_{n-1}, x_{n-1}\right):\left(x_{1}, \ldots, x_{n-1}\right) \in S^{\prime}\right\}$. Let $V_{1} \cup \cdots \cup V_{n}$ be the ground set of $\operatorname{mult}(S)$ where each V_{i} is a copy of $G F(q)$. Then

$$
\operatorname{mult}(T)=\left\{C: C^{\prime} \in \operatorname{mult}\left(S^{\prime}\right), C \cap\left(V_{1} \cup \cdots \cup V_{n-1}\right)=C^{\prime}, C \cap V_{n}=C^{\prime} \cap V_{n-1}\right\}
$$

In words, $\operatorname{mult}(T)$ is obtained from mult $\left(S^{\prime}\right)$ after duplicating the element in V_{n-1} of each member $C^{\prime} \in$ mult $\left(S^{\prime}\right)$. Then the V_{n-1} part and the V_{n} part of the members of mult (T) are identical. Hence, mult (T) is ideal if and only if mult $\left(S^{\prime}\right)$. As mult (S) is isomorphic to mult (T), it follows that mult (S) is ideal if and only if $\operatorname{mult}\left(S^{\prime}\right)$ is ideal.

Now we are ready to prove Theorem 1.2. The proof first reduces to the case when the vector space T admits a sunflower basis. Then the idea is to show that $\operatorname{Matroid}(T)$ is a series extension of $\operatorname{Matroid}\left(T^{\prime}\right)$ where $\operatorname{Matroid}\left(T^{\prime}\right) \cong \operatorname{Matroid}\left(A_{t}\right)$ for some $t \geq 3$. We then use Lemmas 7.1 and 7.2 to show that $\operatorname{mult}(T)$ is ideal.

Proof of Theorem 1.2. Take an integer $n \geq 1$, and let $S \subseteq G F(4)^{n}$ be a vector space over $G F(4)$. First of all, $(\mathbf{i}) \Rightarrow$ (iii) is straightforward as Δ_{3} is non-ideal. In what follows, we will show directions (iii) \Rightarrow (ii) and $(\mathbf{i i}) \Rightarrow$ (i).
(iii) \Rightarrow (ii): By Theorem 5.5, $\operatorname{Matroid}(S)=M_{1} \oplus \cdots \oplus M_{k}$ for some $k \geq 1$ where for each $i \in[k], M_{i}$ is the cycle matroid of a bridge, a circuit, or a subdivision A_{t} for some $t \geq 3$. Then it follows from Corollary 3.6 that S satisfies (ii).
$(\mathbf{i i}) \Rightarrow(\mathbf{i})$: It suffices to show that $\operatorname{mult}\left(S_{i}\right)$ is ideal for every $i \in[k]$ due to Lemma 2.3. To this end, take an $i \in[k]$. If S_{i} has dimension at most 1 , then $S_{i}=\{\mathbf{0}\}$ or $S_{i}=\langle v\rangle$ for some nonzero vector v, in which case it follows from Lemma 4.3 that S_{i} is ideal. Thus we may assume that $S_{i}=\left\langle v^{1}, \ldots, v^{r}\right\rangle$ where $r \geq 2$ and v^{1}, \ldots, v^{r} give rise to a sunflower basis of S_{i}. Let $T^{\prime}=\left\langle w^{1}, \ldots, w^{r}\right\rangle$ where

$$
\begin{gathered}
w^{1} \\
w^{2} \\
\vdots \\
w^{r}
\end{gathered}\left[\begin{array}{c|c|c|c|c}
1 & 1 & 0 & \cdots & 0 \\
1 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

Then $T^{\prime}=\left\{x \in G F(4)^{r+1}: x_{1}+\cdots+x_{r+1}=0\right\}$, so by Lemma 7.1, mult $\left(T^{\prime}\right)$ is ideal. Suppose that v^{i} is of the form $\left(u^{0}, u^{i}\right)$ for $i \in[r]$, and let d_{ℓ} denote the number of entries in u^{ℓ} for $\ell=0,1, \ldots, r$. Then we define T as

$$
T:=\{(\underbrace{x_{1}, \ldots, x_{1}}_{d_{0}}, \underbrace{x_{2}, \ldots, x_{2}}_{d_{1}}, \ldots, \underbrace{x_{r+1}, \ldots, x_{r+1}}_{d_{r}}):\left(x_{1}, x_{2}, \ldots, x_{r+1}\right) \in T^{\prime}\} .
$$

Then T is generated by y^{1}, \ldots, y^{r} where

$$
\begin{gathered}
y^{1} \\
y^{2} \\
\vdots \\
y^{r}
\end{gathered}\left[\begin{array}{c|c|c|c|c}
\overbrace{\mathbf{1}}^{\mathbf{1}_{0}} & \overbrace{\mathbf{1}}^{d_{1}} & \overbrace{\mathbf{0}}^{d_{2}} & \ldots & \overbrace{\mathbf{0}}^{d_{r}} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{1}
\end{array}\right]
$$

Note that T^{\prime} is a projection of T obtained after dropping the coordinates that correspond to some series elements of $\operatorname{Matroid}(T)$. As mult $\left(T^{\prime}\right)$ is ideal, it follows from Lemma 7.2 that mult (T) is ideal. Moreover, S_{i} can be obtained from T by taking coordinate-wise bijections. Hence, Remark 2.2 implies that mult $\left(S_{i}\right) \cong \operatorname{mult}(T)$, thereby showing that $\operatorname{mult}\left(S_{i}\right)$ is ideal, as required.

8 Powers of 2 greater than 4

In this section, we prove Theorem 1.3 which characterizes when the multipartite uniform clutter of a vector space S over $G F\left(2^{k}\right)$ with $k>2$ is ideal. We start by proving Lemmas 8.1 and 8.2 which imply that if mult (S) is ideal, then the underlying matroid $\operatorname{Matroid}(S)$ does not contain two distinct circuits that intersect. The proofs of the lemmas rely on the tools from Section 6.

For the first lemma, recall that C_{5}^{2} is the clutter of edges in a cycle of length 5 , and that C_{5}^{2} is non-ideal.
Lemma 8.1. Let q be a power of 2 greater than 4, and let $S \subseteq G F(q)^{3}$ be a vector space over $G F(q)$ such that $\operatorname{Matroid}(S)$ is isomorphic to $\operatorname{Matroid}\left(A_{3}\right)$. Then mult (S) has C_{5}^{2} as a minor.

Proof. By Lemma 6.1, we may assume that $S=\left\{x \in G F(q)^{3}: x_{1}+x_{2}+x_{3}=0\right\}$. Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \notin S$. We will show that $\operatorname{local}(S, \alpha)$ has C_{5}^{2} as a minor. Let $\sigma=\alpha_{1}+\alpha_{2}+\alpha_{3}$, and we choose $a, b \in G F(q)$ such that $a \in G F(q)-\left\{\alpha_{1}, \alpha_{1}+\sigma\right\}$ and $b \in G F(q)-\left\{\alpha_{1}, \alpha_{1}+\sigma, a, a+\sigma\right\}$.

Claim 1. $a+b+\alpha_{1} \in G F(q)-\left\{\alpha_{1}, \alpha_{1}+\sigma, a, a+\sigma, b, b+\sigma\right\}$.

Proof of Claim. If $a+b+\alpha_{1}=\alpha_{1}$ or $\alpha_{1}+\sigma$, then $b=a$ or $b=a+\sigma$, contradicting the choice of b. If $a+b+\alpha_{1}=a$ or $a+\sigma$, then $b=\alpha_{1}$ or $b=\alpha_{1}+\sigma$, contradicting the choice of b. If $a+b+\alpha_{1}=b$ or $b+\sigma$, then $a=\alpha_{1}$ or $a=\alpha_{1}+\sigma$, a contradiction as $a \notin\left\{\alpha_{1}, \alpha_{1}+\sigma\right\}$. Therefore, $a+b+\alpha_{1} \notin\left\{\alpha_{1}, \alpha_{1}+\sigma, a, a+\sigma, b, b+\sigma\right\}$, as required.

By Lemma 6.3 (2), the members of cardinality 2 in $\operatorname{local}(S, \alpha)$ form a graph with $\frac{q}{2}-1$ connected components $G_{1}, \ldots, G_{\frac{q}{2}-1}$ where the vertex set of G_{j} is

$$
\left\{\beta_{1}^{j}, \beta_{1}^{j}+\sigma\right\} \cup\left\{\beta_{2}^{j}, \beta_{2}^{j}+\sigma\right\} \cup\left\{\beta_{3}^{j}, \beta_{3}^{j}+\sigma\right\}
$$

where $\beta_{i}^{j}, \beta_{i}^{j}+\sigma \in U_{i}-\left\{\alpha_{i}+\sigma\right\}$ and $U_{i}=G F(q)-\left\{\alpha_{i}\right\}$ for $i \in[3]$. Furthermore, $G_{1}, \ldots, G_{\frac{q}{2}-1}$ are 6-cycles by Lemma 6.3 (2) (see Figure 3 for an illustration). As $\frac{q}{2}-1 \geq 3$, without loss of generality, we may assume that $\beta_{1}^{1}=a, \beta_{1}^{2}=b$, and $\beta_{1}^{3}=a+b+\alpha_{1}$, i.e., G_{1}, G_{2}, G_{3} contain $a, b, a+b+\alpha_{1} \in U_{1}-\left\{\alpha_{1}+\sigma\right\}$, respectively.

Claim 2. The following statements hold:
(1) $\beta_{1}^{1}+\sigma=a+\sigma, \beta_{2}^{1}+\sigma=a+\alpha_{1}+\alpha_{2}+\sigma$, and $\beta_{3}^{1}=a+\alpha_{1}+\alpha_{3}$,
(2) $\beta_{2}^{2}=b+\alpha_{1}+\alpha_{2}$ and $\beta_{2}^{2}+\sigma=b+\alpha_{1}+\alpha_{2}+\sigma$, and
(3) $\beta_{3}^{3}+\sigma=a+b+\alpha_{3}+\sigma$.

Proof of Claim. The claim follows from Lemma 6.3 (2).
Now keep elements $\beta_{1}^{1}, \beta_{1}^{1}+\sigma, \beta_{2}^{1}+\sigma, \beta_{3}^{1}$ in $G_{1}, \beta_{2}^{2}, \beta_{2}^{2}+\sigma$ in G_{2}, and $\beta_{3}^{3}+\sigma$ in G_{3} and delete the other elements from $\operatorname{local}(S, \alpha)$. (see Figure 3 for an illustration; we keep only the circled elements). Let \mathcal{C} denote the

Figure 3: The subgraph of $H_{n, \alpha}$ after deleting the vertices
resulting minor of $\operatorname{local}(S, \alpha)$.
As $\alpha_{i}+\sigma$ for $i \in[n]$ are deleted, we know from Lemma 6.3 (1) that \mathcal{C} contains no member of size 1 . By Lemma 6.3 (2), \mathcal{C} has 3 members of size 2: $\left\{\beta_{1}^{1}, \beta_{2}^{1}+\sigma\right\},\left\{\beta_{3}^{1}, \beta_{1}^{1}+\sigma\right\},\left\{\beta_{3}^{1}, \beta_{2}^{1}+\sigma\right\}$, and these are the only ones. (see Figure 3 for an illustration; the 3 thick edges represent the 3 members of size 2 in \mathcal{C}).

Claim 3. $\left\{\beta_{1}^{1}, \beta_{2}^{2}, \beta_{3}^{3}+\sigma\right\}$ and $\left\{\beta_{1}^{1}+\sigma, \beta_{2}^{2}+\sigma, \beta_{3}^{3}+\sigma\right\}$ are the only members of size greater than 2 in \mathcal{C}.

Proof of Claim. \mathcal{C} contains at most one element in U_{i} for $i \in[3]$ by Lemma 6.2, so \mathcal{C} has no member of size greater than 3. Moreover, a member of size 3 contains one element from each U_{1}, U_{2}, U_{3}. The subsets of size 3 that do not contain a member of size 2 but one element from each of U_{1}, U_{2}, U_{3} are the following:

$$
\begin{aligned}
&\left\{\beta_{1}^{1}, \beta_{2}^{2}, \beta_{3}^{1}\right\},\left\{\beta_{1}^{1}, \beta_{2}^{2}+\sigma, \beta_{3}^{1}\right\},\left\{\beta_{1}^{1}, \beta_{2}^{2}, \beta_{3}^{3}+\sigma\right\},\left\{\beta_{1}^{1}, \beta_{2}^{2}+\sigma, \beta_{3}^{3}+\sigma\right\} \\
&\left\{\beta_{1}^{1}+\sigma, \beta_{2}^{1}+\sigma, \beta_{3}^{3}+\sigma\right\},\left\{\beta_{1}^{1}+\sigma, \beta_{2}^{2}, \beta_{3}^{3}+\sigma\right\},\left\{\beta_{1}^{1}+\sigma, \beta_{2}^{2}+\sigma, \beta_{3}^{3}+\sigma\right\}
\end{aligned}
$$

By Lemma 6.2, a subset $\left\{x_{1}, x_{2}, x_{3}\right\}$ where $x_{i} \in U_{i}$ for $i=1,2,3$ is a member if and only if $x_{1}+x_{2}+x_{3}=\sigma+$ $\alpha_{1}+\alpha_{2}+\alpha_{3}$. Notice that $\beta_{1}^{1}+\beta_{2}^{2}+\beta_{3}^{1}=b+\alpha_{2}+\alpha_{3}$ cannot be $\sigma+\alpha_{1}+\alpha_{2}+\alpha_{3}$, because b is not $\alpha_{1}+\sigma$ by our choice of b. This implies that $\left\{\beta_{1}^{1}, \beta_{2}^{2}, \beta_{3}^{1}\right\}$ is not a member. Similarly, $\left\{\beta_{1}^{1}, \beta_{2}^{2}+\sigma, \beta_{3}^{1}\right\}$ is not a member, because $b \neq \alpha_{1}$. Notice also that $\left\{\beta_{1}^{1}+\sigma, \beta_{2}^{1}+\sigma, \beta_{3}^{3}+\sigma\right\}$ is not a member, because $\beta_{1}^{1}+\sigma+\beta_{2}^{1}+\sigma+\beta_{3}^{3}+\sigma=a+b+\alpha_{1}+\alpha_{2}+\alpha_{3}+\sigma$ cannot be $\sigma+\alpha_{1}+\alpha_{2}+\alpha_{3}$ by our assumption that $a \neq b$. Observe that $\beta_{1}^{1}+\beta_{2}^{2}+\beta_{3}^{3}+\sigma=\sigma+\alpha_{1}+\alpha_{2}+\alpha_{3}$, implying in turn that $\left\{\beta_{1}^{1}, \beta_{2}^{2}, \beta_{3}^{3}+\sigma\right\}$ and $\left\{\beta_{1}^{1}+\sigma, \beta_{2}^{2}+\sigma, \beta_{3}^{3}+\sigma\right\}$ are members, whereas $\left\{\beta_{1}^{1}, \beta_{2}^{2}+\sigma, \beta_{3}^{3}+\sigma\right\}$ and $\left\{\beta_{1}^{1}+\sigma, \beta_{2}^{2}, \beta_{3}^{3}+\sigma\right\}$ are not. Therefore, $\left\{\beta_{1}^{1}, \beta_{2}^{2}, \beta_{3}^{3}+\sigma\right\}$ and $\left\{\beta_{1}^{1}+\sigma, \beta_{2}^{2}+\sigma, \beta_{3}^{3}+\sigma\right\}$ are the only members of size at least 3 in \mathcal{C}, as required.

Now that we have characterized all members of \mathcal{C}, we know that the incidence matrix of the corresponding minor \mathcal{C} is the following 0,1 matrix:

Contracting the elements corresponding to $\beta_{2}^{2}, \beta_{2}^{2}+\sigma$ from \mathcal{C}, we obtain a C_{5}^{2} minor. Since \mathcal{C} is a minor of $\operatorname{local}(S, \alpha)$, we deduce that $\operatorname{local}(S, \alpha)$ also has C_{5}^{2} as a minor, as required.

Lemma 8.2. Up to isomorphism, $\operatorname{Matroid}\left(A_{3}\right)$ is the unique minor-minimal matroid with distinct circuits that have a nonempty intersection. Consequently, if two distinct circuits of a matroid intersect, then the matroid has $\operatorname{Matroid}\left(A_{3}\right)$ as a minor.

Proof. Let M be a minor-minimal matroid over ground set E with distinct circuits that intersect.
Let C_{1}, C_{2} be any pair of distinct circuits that intersect. Observe that $C_{1} \cup C_{2}=E$, for if not, $M \backslash \overline{C_{1} \cup C_{2}}$ would a proper matroid minor with distinct circuits, namely C_{1}, C_{2}, that intersect, which cannot be the case. Observe further that $I:=C_{1} \cap C_{2}$, which by assumption is nonempty, has size one. For if not, for any $e \in I$, $M /(I-\{e\})$ would be a proper matroid minor with distinct circuits, namely $C_{1}-(I-\{e\}), C_{2}-(I-\{e\})$, that intersect, which cannot be the case.

In summary, every two circuits that intersect, have E as their union and an intersection of size one. Since M is a matroid, there is a circuit $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-\{e\}$. Clearly, C_{3} intersects both C_{1}, C_{2}. Thus, $\left|C_{1} \cap C_{3}\right|=$ $\left|C_{2} \cap C_{3}\right|=1$ and $C_{1} \cup C_{3}=C_{2} \cup C_{3}=E$. It can be readily checked that $\left|C_{1}\right|=\left|C_{2}\right|=2$, implying in turn that $M \cong \operatorname{Matroid}\left(A_{3}\right)$, as required.

Now we are ready to prove Theorem 1.3. The crux of the proof is outlined as follows. If mult (S) is ideal where S is a vector space over $G F\left(2^{k}\right)$ for some $k>2$, then $\operatorname{mult}(S)$ has no C_{5}^{2} as a minor. Then Matroid (S) has no two distinct circuits that intersect, by Lemmas 8.1 and 8.2. Then we use Lemma 3.4 to argue that S has a basis with vectors of pairwise disjoint supports.

Proof of Theorem 1.3. Take an integer $n \geq 1$. Let q be a power of 2 larger than 4, and let $S \subseteq G F(q)^{n}$ be a vector space over $G F(q)$. (iii) \Rightarrow (ii): Since $\operatorname{mult}(S)$ contains no C_{5}^{2} as a minor, $\operatorname{Matroid}(S)$ has no $\operatorname{Matroid}\left(A_{3}\right)$ as a matroid minor, by Lemma 8.1. Thus, every two distinct circuits of Matroid (S) must be disjoint, by Lemma 8.2. This implies that $\operatorname{Matroid}(S)$ is the cycle matroid of a graph whose blocks are bridges and circuits, so (ii) follows from Lemma 3.4. (i) \Rightarrow (iii) follows immediately from the fact that C_{5}^{2} is non-ideal. (ii) \Rightarrow (i) follows immediately from Lemma 4.3.

9 The Replication and $\tau=2$ Conjectures

Let \mathcal{C} be a clutter over ground set V. Given the weights of the elements $w \in \mathbb{Z}_{+}^{V}$, the minimum weight of a cover of \mathcal{C} can be computed by the following integer linear program:

$$
\tau(\mathcal{C}, w)=\min \left\{w^{\top} x: M(\mathcal{C}) x \geq \mathbf{1}, x \in \mathbb{Z}_{+}^{V}\right\}
$$

A dual of this integer program is given by the following:

$$
\nu(\mathcal{C}, w)=\max \left\{\mathbf{1}^{\top} y: M(\mathcal{C})^{\top} y \leq w, y \in \mathbb{Z}_{+}^{\mathcal{C}}\right\}
$$

and this computes the maximum size of a packing of members of \mathcal{C} such that each element v appears in at most w_{v} members in the packing. The linear programming relaxations of these two integer programs are the following primal-dual pair:

By linear programming duality, we have that

$$
\tau(\mathcal{C}, w) \geq \tau^{*}(\mathcal{C}, w)=\nu^{*}(\mathcal{C}, w) \geq \nu(\mathcal{C}, w)
$$

Although $\tau^{*}(\mathcal{C}, w)=\nu^{*}(\mathcal{C}, w)$ always holds, it is not always the case that $\tau(\mathcal{C}, w)=\nu(\mathcal{C}, w)$. If $\tau(\mathcal{C}, w)=$ $\nu(\mathcal{C}, w)$ holds for every $w \in \mathbb{Z}_{+}^{V}$, we say that \mathcal{C} has the max-flow min-cut property. In fact, the max-flow min-cut property is equivalent to the total dual integrality for the integer program computing $\tau(\mathcal{C}, w)$. Namely, \mathcal{C} has the max-flow min-cut property if and only if the linear system $M(\mathcal{C}) x \geq \mathbf{1}, x \geq \mathbf{0}$ is totally dual integral. This implies that if \mathcal{C} has the max-flow min-cut property, then $Q(\mathcal{C})$ is integral $[16,19]$ and thus \mathcal{C} is ideal.

As the max-flow min-cut property is a special case of idealness, a natural question is as to when a clutter has the max-flow min-cut property. In this section, we characterize when the multipartite uniform clutter of a vector space over a finite field has the max-flow min-cut property.

The readers may have already noticed that Theorem 1.4 is similar to Theorem 1.1 and Theorem 1.3. As a direct corollary of these theorems, we obtain the following:

Theorem 9.1. Take a prime power q other than 2,4 , and let S be a vector space over $G F(q)$. Then mult (S) is ideal if and only if mult (S) has the max-flow min-cut property.

Unlike the case when $q \notin\{2,4\}$, there is a vector space over $G F(4)$ whose multipartite uniform clutter is ideal but does not have the max-flow min-cut property. The element set of $G F(4)$ can be represented as $\{0,1, a, b\}$ where a and b are the numbers satisfying the following addition and multiplication tables:

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

\times	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

Example. Consider $S=\langle(1,1,0),(1,0,1)\rangle \subseteq G F(4)^{3}$. Then

$$
S=\left\{\begin{array}{l}
(0,0,0),(1,1,0),(a, a, 0),(b, b, 0),(1,0,1),(0,1,1),(b, a, 1),(a, b, 1) \\
(a, 0, a),(b, 1, a),(0, a, a),(1, b, a),(b, 0, b),(a, 1, b),(1, a, b),(0, b, b)
\end{array}\right\}
$$

One can check by using PORTA [28] that $\left\{x \in \mathbb{R}_{+}^{12}: M(\operatorname{mult}(S)) x \geq \mathbf{1}\right\}$ is an integral polyhedron, so mult (S) is ideal. Notice further that mult (S) does not have the max-flow min-cut property, since S contains

$$
\{(0,0,0),(1,1,0),(1,0,1),(0,1,1)\} \cong R_{1,1}
$$

as a restriction and so mult (S) has Q_{6} as a minor by Lemma 2.4.
We say that clutter \mathcal{C} packs if $\tau(\mathcal{C}, \mathbf{1})=\nu(\mathcal{C}, \mathbf{1})$. We say that \mathcal{C} has the packing property if every minor of \mathcal{C} packs. It was observed in [11] that minimally non-ideal clutters do not pack due to Lehman's theorem [22] and that if a clutter has the packing property, then it is ideal. Moreover, notice that the packing property is a relaxed notion of the max-flow min-cut property. Here, the Replication Conjecture predicts that the packing property implies the max-flow min-cut property. We answer the conjecture in the affirmative for the class of multipartite uniform clutters from coordinate subspaces.

Proof of Corollary 1.5. Take a prime power q, and let S be a vector space over $G F(q)$. Suppose that mult (S) has the packing property. Then every minor of $\operatorname{mult}(S)$ packs and is ideal. Note that Δ_{3} is non-ideal. Moreover, it is easy to check that $\tau\left(Q_{6}, \mathbf{1}\right)=2$ and $\nu\left(Q_{6}, \mathbf{1}\right)=1$, which means that Q_{6} does not pack. Therefore, mult (S) has none of Δ_{3} and Q_{6} as a minor. Then it follows from Theorem 1.4 that $\operatorname{mult}(S)$ has the max-flow min-cut property.

Next we consider the $\tau=2$ Conjecture [11] which predicts that a stronger statement than the Replication Conjecture holds true. We call a clutter minimally non-packing if it does not have the packing property but every proper minor of it does. It is known that a minimally non-packing clutter is either ideal or minimally non-ideal [11]. Here, the $\tau=2$ Conjecture is that if a clutter \mathcal{C} is ideal and minimally non-packing, then its covering number, defined as $\tau(\mathcal{C}, \mathbf{1})$, is two. We show that if the multipartite uniform clutter of a coordinate subspace is ideal and minimally non-packing, then its covering number is two.

Proof of Corollary 1.6. Take a prime power q, and let S be a vector space over $G F(q)$. Suppose that mult (S) is ideal and minimally non-packing. As mult (S) does not pack, it does not have the max-flow min-cut property. Then by Theorem 1.4, mult (S) has Δ_{3} or Q_{6} as a minor. Note that as Δ_{3} is non-ideal but mult (S) is ideal, mult (S) has no Δ_{3} as a minor. Then it follows that $\operatorname{mult}(S)$ has Q_{6} as a minor. Since Q_{6} itself does not pack and every proper minor of mult (S) packs, mult (S) is isomorphic to Q_{6}. In fact, Q_{6} is ideal and minimally non-packing, and it has covering number two, as required.

Acknowledgements and Funding

We would like to thank Gérard Cornuéjols for helpful discussions. This research is supported, in part, by KAIST Starting Fund (KAIST-G04220016), FOUR Brain Korea 21 Program (NRF-5199990113928), and National Research Foundation of Korea (NRF-2022M3J6A1063021).

References

[1] Abdi, A. and Cornuéjols, G.: The max-flow min-cut property and ± 1-resistant sets. Discrete Applied Mathematics, 289, 455-476 (2020)
[2] Abdi, A. and Cornuéjols, G.: Idealness and 2-resistant sets. Operations Research Letters, 47(5), 358-362 (2019)
[3] Abdi, A., Cornuéjols, G., Lee, D.: Resistant sets in the unit hypercube. Math. Oper. Res. 46(1), 82-114 (2020)
[4] Abdi, A., Cornuéjols, G., Guričanová, N., Lee, D.: Cuboids, a class of clutters. J. Combin. Theory Ser. B 142, 144-209 (2020)
[5] Abdi, A., Cornuéjols, G., Pashkovich, K.: Ideal clutters that do not pack. Math. Oper. Res. 43(2), 533-553 (2018)
[6] Berge, C.: Balanced matrices. Math. Program. 2(1), 19-31 (1972)
[7] Bondy, J.A. and Murty, U.S.R.: Graph Theory. Springer (2008)
[8] Brylawski, T.H.: A combinatorial model for series-parallel networks. Trans. Amer. Math. Soc. 154, 1-22 (1971)
[9] Conforti, M. and Cornuéjols, G.: Clutters that pack and the max-flow min-cut property: a conjecture. (Available online at http://www.dtic.mil/dtic/tr/fulltext/u2/a277340.pdf) The Fourth Bellairs Workshop on Combinatorial Optimization (1993)
[10] Cornuéjols, G.: Combinatorial Optimization, Packing and Covering. SIAM, Philadelphia (2001)
[11] Cornuéjols, G., Guenin, B., Margot, F.: The packing property. Math. Program. 89(1), 113-126 (2000)
[12] Cornuéjols, G. and Novick, B.: Ideal 0,1 matrices. J. Combin. Theory Ser. B 60, 145-157 (1994)
[13] Ding, G., Feng, L., Zang, W.: The complexity of recognizing linear systems with certain integrality properties. Math. Program. 114, 321-334 (2008)
[14] Duffin, R.J.: The extremal length of a network. J. Math. Analysis and Appl. 5(2), 200-215 (1962)
[15] Edmonds, J. and Fulkerson, D.R.: Bottleneck extrema. J. Combin. Theory Ser. B 8, 299-306 (1970)
[16] Edmonds, J. and Giles, R.: A min-max relation for submodular functions on graphs. Ann. Discrete Math. 1, 185-204 (1977)
[17] Edmonds, J. and Johnson, E.L.: Matchings, Euler tours and the Chinese postman problem. Math. Program. 5, 88-124 (1973)
[18] Guenin, B.: A characterization of weakly bipartite graphs. J. Combin. Theory Ser. B 83, 112-168 (2001)
[19] Hoffman, A.J.: A generalization of max flow-min cut. Math. Program. 6(1), 352-359 (1974)
[20] Hoffman, A.J. and Kruskal J.B.: Integral boundary points of convex polyhedra. In Linear inequalities and related systems (eds. Kuhn H.W. and Tucker A.W.). Ann. Math. Studies 38, 223-246 (1956)
[21] Lehman, A.: On the width-length inequality. Math. Program. 17(1), 403-417 (1979)
[22] Lehman, A.: The width-length inequality and degenerate projective planes. DIMACS Vol. 1, 101-105 (1990)
[23] Lovász, L.: Minimax theorems for hypergraphs. Lecture Notes in Mathematics. 411, Springer-Verlag 111126 (1972)
[24] Lovász, L.: Normal Hypergraphs and the Perfect Graph Conjecture. Discrete Math. 2, 253-267 (1972)
[25] Lucchesi, C.L. and Younger, D.H.: A minimax relation for directed graphs. J. London Math. Soc. 17 (2), 369-374 (1978)
[26] Menger, K.: Zur allgemeinen Kurventheorie. Fundamenta Mathematicae 10, 96-115 (1927)
[27] Oxley, J.: Matroid Theory, second edition. Oxford University Press, New York (2011)
[28] Christof, T. and Löbel, A.: PORTA - A Polyhedron Representation and Transformation Algorithm, http://porta.zib.de/.
[29] Seymour, P.D.: A forbidden minor characterization of matroid ports. Quart. J. Math. 27(4), 407-413 (1976)
[30] Seymour, P.D.: The forbidden minors of binary clutters. J. London Math. Society 2(12), 356-360 (1976)
[31] Seymour, P.D.: Matroids and multicommodity flows. Europ. J. Combinatorics 2, 257-290 (1981)
[32] Seymour, P.D.: Sums of circuits. Graph Theory and Related Topics (Bondy, J.A. and Murty, U.S.R., eds), Academic Press, New York, 342-355 (1979)
[33] Seymour, P.D.: The matroids with the max-flow min-cut property. J. Combin. Theory Ser. B 23, 189-222 (1977)

A Proof of Lemma 5.3

We will prove Lemma 5.3 that characterizes graphs with no K_{4} / e as a graph minor. Given a graph $G=(V, E)$ and its block decomposition, we may associate G with a bipartite graph $\mathcal{B}(G)$ where

- a part of the bipartition of $\mathcal{B}(G)$ consists of the cut-vertices of G,
- the other part consists of the blocks of G, and
- a cut-vertex u and a block B are adjacent in $\mathcal{B}(G)$ if u is a vertex in B.

It is well-known that $\mathcal{B}(G)$ is a tree all of whose leaves are blocks of G (see [7]). We call a vertex of G that is not a cut vertex an internal vertex.

Proof of Lemma 5.3. Assume that G contains no K_{4} / e as a graph minor. We will prove by induction on the number of edges that each block of G is a bridge, a circuit, or a subdivision of A_{t} for some $t \geq 3$. The base case is trivial. For the induction step, we may assume that G has at least 3 edges. If G has more than one block, a block of G has less edges than G does, so we may apply the induction hypothesis to each block of G. Thus we may assume that G is 2-vertex-connected, in which case, G has no loop.

Let e be an edge of G. By the induction hypothesis, each block of $G-\{e\}$ is a bridge, a circuit, or a subdivision of A_{t} for some $t \geq 3$. Moreover, since G has no loop, $G-\{e\}$ has no loop either. We first prove the following claim:

Claim 1. Either $\mathcal{B}(G-\{e\})$ is a single vertex, i.e., $G-\{e\}$ is 2-vertex-connected, or $\mathcal{B}(G-\{e\})$ is a path whose two ends are blocks of G and e is incident to internal vertices of the two end blocks of the path.

Proof of Claim. We may assume that $G-\{e\}$ has at least two blocks. Since G is 2-vertex-connected, e connects two distinct blocks B_{1}, B_{2} of $G-\{e\}$. Recall that $\mathcal{B}(G-\{e\})$ is a tree, so there is a unique path between B_{1} and B_{2} in $\mathcal{B}(G-\{e\})$. Then, after putting e back, the blocks of $G-\{e\}$ on the path between B_{1} and B_{2} become a single block in G. In fact, since G is 2-vertex-connected, G has no other block. This implies that $G-\{e\}$ has no block other than the ones on C. So, $\mathcal{B}(G-\{e\})$ contains no vertex outside C, and therefore, $\mathcal{B}(G-\{e\})$ is a path where B_{1}, B_{2} are its two ends. If e is not incident to an internal vertex of B_{1}, then e is incident to the cut-vertex of B_{1}, implying that B_{1} is separated from B_{2} in G, a contradiction. Thus e is incident to an internal vertex of B_{1}. Similarly, e is incident to an internal vertex of B_{2}, as required.

Next, we claim the following:
Claim 2. All but at most one block of $G-\{e\}$ are bridges.
Proof of Claim. We may assume that $G-\{e\}$ has at least two blocks. Then, by Claim $1, \mathcal{B}(G-\{e\})$ is a path $B_{1}, u_{1}, B_{2}, \ldots, u_{k-1}, B_{k}$ for some $k \geq 2$, where B_{1}, \ldots, B_{k} are the blocks of $G-\{e\}$ and u_{ℓ} is the cut-vertex separating B_{ℓ} and $B_{\ell+1}$ for $\ell \in[k-1]$. Moreover, by Claim $1, e=u_{0} u_{k}$, where u_{0} is an internal vertex of B_{1} and u_{k} is an internal vertex of B_{k}.

Suppose for a contradiction that $G-\{e\}$ has two blocks that are not bridges. Then B_{i}, B_{j} for some distinct $i, j \in[k]$ are not bridges. In particular, B_{i} and B_{j} have cycles C_{i} and C_{j}, respectively. Here, both C_{i} and C_{j} have
at least two edges as $G-\{e\}$ has no loop. After contracting the edges of B_{ℓ} for $\ell \in[k]-\{i, j\}$ from $G-\{e\}$, the vertices in B_{1}, \ldots, B_{i-1} are identified with u_{i-1}, the vertices in B_{i+1}, \ldots, B_{j-1} are identified with u_{j-1}, and the vertices in B_{j+1}, \ldots, B_{k} are identified with u_{j}. Therefore, the resulting graph is $u_{i-1}, B_{i}, u_{j-1}, B_{j}$, u_{j}, where u_{i-1} and u_{j} are internal vertices of B_{i} and B_{j}, respectively, and u_{j-1} is the cut-vertex separating B_{i}, B_{j}. Notice that e connects u_{i-1} and u_{j} after the contraction, because u_{0}, u_{k} were identified with u_{i-1}, u_{j}, respectively (see Figure 4 for an illustration). We then delete the edges outside of the cycles C_{i}, C_{j}. After adding e back, we obtain a

Figure 4: $e=u_{i-1} u_{j}$
subdivision of K_{4} / e, a contradiction as G has no K_{4} / e as a graph minor. Therefore, at most one block of $G-\{e\}$ is a bridge.

If every block of $G-\{e\}$ is a bridge, then it follows from Claim 1 that G is a circuit. Thus we may assume that a block B of $G-\{e\}$ is a circuit or a subdivision of A_{t} for some $t \geq 3$. Then, by Claim 2, the other blocks of $G-\{e\}$ are bridges.

Claim 3. G is the union of B and a path P whose ends are two vertices in B and the other vertices are disjoint from $V(B)$.

Proof of Claim. It follows from Claim 1 that e and the bridges of $G-\{e\}$ form a path P connecting two vertices of B. An interior vertex of P, if exists, is in a block of $G-\{e\}$ other than B, so it is not contained in $V(B)$, as required.

As B is a circuit or a subdivision of A_{t} for some $t \geq 3, B$ is a disjoint union of internally vertex-disjoint $u v$-paths for some distinct $u, v \in V(B)$. Let P_{1}, \ldots, P_{t} be the $u v$-paths.

Claim 4. If $t=2, G$ is a subdivision of A_{3}.
Proof of Claim. If $t=2, B$ is a circuit and P connects two vertices on the cycle by Claim 3. So, G is the union of three internally vertex-disjoint paths connecting the two vertice, implying in turn that G is a subdivision of A_{3}. \diamond

By Claim 4, we may assume that $t \geq 3$. We will show that P is also a path connecting u and v, thereby proving that G is a subdivision of A_{t+1}, obtained from $u v$-paths P_{1}, \ldots, P_{t}, P.

Claim 5. P is an uv-path.
Proof of Claim. Suppose for a contradiction that P is not a $u v$-path. Then one of P 's two ends is not in $\{u, v\}$.
First, consider the case when one end of P is in $\{u, v\}$. Without loss of generality, we may assume that one end of P is u and the other end is $w \in V-\{u, v\}$. Without loss of generality, assume that w is on P_{1}. Then
the subgraph of G obtained after deleting the edges $E-E(P) \cup E\left(P_{1}\right) \cup E\left(P_{2}\right) \cup E\left(P_{3}\right)$ (see Figure 5 for an illustration) is a subdivision of K_{4} / e, contradicting the assumption that G has no K_{4} / e as a graph minor.

Figure 5: $w \notin\{u, v\}$

Now consider the case when both ends of P are not in $\{u, v\}$. Let the ends of P be $w_{1}, w_{2} \in V-\{u, v\}$. There are two cases to consider: w_{1}, w_{2} are on the same $u v$-path of B, or w_{1}, w_{2} are on different $u v$-paths. If w_{1}, w_{2} are on the same $u v$-path, we may assume that they are on P_{1} without loss of generality. In this case, deleting the edges $E-E(P) \cup E\left(P_{1}\right) \cup E\left(P_{2}\right) \cup E\left(P_{3}\right)$ and contracting the edges of the $u w_{1}$-path on P_{1} (see Figure 6 for an illustration), we obtain a subdivision of K_{4} / e, a contradiction.

Figure 6: $w_{1}, w_{2} \notin\{u, v\}$

If w_{1}, w_{2} are on different $u v$-paths, we may assume that w_{1} is on P_{1} and w_{2} is on P_{2} without loss of generality. Deleting the edges $E-E(P) \cup E\left(P_{1}\right) \cup E\left(P_{2}\right) \cup E\left(P_{3}\right)$ and contracting the edges of P (see Figure 6 for an illustration), we obtain a subdivision of K_{4} / e, a contradiction as G has no K_{4} / e as a graph minor.

By Claims 3 and 5, P is an $u v$-path that is internally vertex-disjoint from P_{1}, \ldots, P_{t}, implying in turn that G is a subdivision of A_{t+1}. This finishes the proof.

B Proof of Lemma 6.3

Proof of Lemma 6.3. (1) By Lemma 6.2, C is a member of size 1 if and only if $C=\left\{\sigma+\alpha_{i}\right\}$ for some $i \in[n]$. Therefore, $\left\{\alpha_{1}+\sigma\right\}, \ldots,\left\{\alpha_{n}+\sigma\right\}$ are the members of size 1 in $\operatorname{local}(S, \alpha)$, as required.
(2) First, we will argue that a member of cardinality 2 contains none of $\alpha_{1}+\sigma, \ldots, \alpha_{n}+\sigma$. Let $\{u, v\}$ be a member of size 2 where $u \in U_{i}$ and $v \in U_{j}$ for some $i \neq j$. Then we get $u+v=\sigma+\alpha_{i}+\alpha_{j}$ by Lemma 6.2. If $u=\alpha_{i}+\sigma$, then $v=\alpha_{j}$, contradicting the assumption that $v \in U_{j}=G F(q)-\left\{\alpha_{j}\right\}$. Therefore, the members of cardinality 2 are contained in $U^{\prime}:=\left(U_{1}-\left\{\alpha_{1}+\sigma\right\}\right) \cup \cdots \cup\left(U_{n}-\left\{\alpha_{n}+\sigma\right\}\right)$. Notice that we have preserved
the symmetry between $U_{1}-\left\{\alpha_{1}+\sigma\right\}, \ldots, U_{n}-\left\{\alpha_{n}+\sigma\right\}$ and that $U_{1}-\left\{\alpha_{1}+\sigma\right\}$ is not different from the other $U_{i}-\left\{\alpha_{i}+\sigma\right\}$'s.

Observe that $U_{1}-\left\{\alpha_{1}+\sigma\right\}=G F(q)-\left\{\alpha_{1}, \alpha_{1}+\sigma\right\}$ has $q-2$ elements and that $U_{1}-\left\{\alpha_{1}+\sigma\right\}$ can be partitioned as $U_{1}-\left\{\alpha_{1}+\sigma\right\}=\left\{\beta_{1}^{1}, \beta_{1}^{1}+\sigma\right\} \cup \cdots \cup\left\{\beta_{1}^{\frac{q}{2}-1}, \beta_{1}^{\frac{q}{2}-1}+\sigma\right\}$, with $\frac{q}{2}-1$ sets of cardinality 2 , where $\beta_{1}^{1}, \ldots, \beta_{1}^{\frac{q}{2}-1}$ are distinct elements. For $i=2, \ldots, n$ and $j=1, \ldots, \frac{q}{2}-1$, we denote by $\beta_{i}^{j} \in U_{i}$ the element satisfying $\beta_{i}^{j}=\beta_{1}^{j}+\alpha_{1}+\alpha_{i}$.
Claim 1. $U_{i}-\left\{\alpha_{i}+\sigma\right\}=\left\{\beta_{i}^{1}, \beta_{i}^{1}+\sigma\right\} \cup \cdots \cup\left\{\beta_{i}^{\frac{q}{2}-1}, \beta_{i}^{\frac{q}{2}-1}+\sigma\right\}$ for $i=1, \ldots, n$.
Proof of Claim. We may assume that $i \geq 2$. Let j, ℓ be distinct indices in $\left[\frac{q}{2}-1\right]$. As $\beta_{1}^{j} \neq \beta_{1}^{\ell}$, we get $\beta_{i}^{j} \neq \beta_{i}^{\ell}$. Similarly, $\beta_{1}^{j} \neq \beta_{1}^{\ell}+\sigma$ implies $\beta_{i}^{j} \neq \beta_{i}^{\ell}+\sigma$. Therefore, $\beta_{i}^{1}, \beta_{i}^{1}+\sigma, \ldots, \beta_{i}^{\frac{q}{2}-1}, \beta_{i}^{\frac{q}{2}-1}+\sigma$ are distinct elements, so $\left\{\beta_{i}^{1}, \beta_{i}^{1}+\sigma\right\}, \cdots,\left\{\beta_{i}^{\frac{q}{2}-1}, \beta_{i}^{\frac{q}{2}-1}+\sigma\right\}$ partition $U_{i}-\left\{\alpha_{i}+\sigma\right\}$, as required.

By Claim 1, each element in U^{\prime} is β_{i}^{j} or $\beta_{i}^{j}+\sigma$ for some $i \in[n]$ and $j \in\left[\frac{q}{2}-1\right]$. Now we are ready to characterize what the members of size 2 are.

Claim 2. Let u, v be distinct elements in U^{\prime}. Then $\{u, v\}$ is a member in $\operatorname{local}(S, \alpha)$ if and only if for some $j \in\left[\frac{q}{2}-1\right]$ and distinct $i, k \in[n]$, we have $u=\beta_{i}^{j}$ and $v=\beta_{k}^{j}+\sigma$ or $u=\beta_{i}^{j}+\sigma$ and $v=\beta_{k}^{j}$.

Proof of Claim. (\Leftarrow) Without loss of generality, we may assume that $j=1, i=1$, and $k=2$. As $\beta_{2}^{1}=$ $\beta_{1}^{1}+\alpha_{1}+\alpha_{2}$, we have $\beta_{1}^{1}+\beta_{2}^{1}+\sigma=\alpha_{1}+\alpha_{2}+\sigma$. So, by Lemma $6.2,\{u, v\}$ is a member.
(\Rightarrow) Without loss of generality, we may assume that $u \in U_{1}, v \in U_{2}$. Then $u=\beta_{1}^{j}$ or $u=\beta_{1}^{j}+\sigma$ for some $j \in\left[\frac{q}{2}-1\right]$. If $u=\beta_{1}^{j}$, then by Lemma 6.2, $v=\beta_{1}^{j}+\alpha_{1}+\alpha_{2}+\sigma=\beta_{2}^{j}+\sigma$. Similarly, if $u=\beta_{1}^{j}+\sigma$, we can argue that $v=\beta_{2}^{j}$, as required.

For $j \in\left[\frac{q}{2}-1\right]$, let G_{j} denote the graph induced by the elements in $\left\{\beta_{1}^{j}, \ldots, \beta_{n}^{j}\right\} \cup\left\{\beta_{1}^{j}+\sigma, \ldots, \beta_{n}^{j}+\sigma\right\}$. By Claim 2, the edge set of G_{j} is precisely $\left\{\left\{\beta_{i}^{j}, \beta_{k}^{j}+\sigma\right\}: i \neq k\right\}$. Moreover, Claim 2 also implies that there is no edge between G_{j} and G_{ℓ} if $j \neq \ell$, as required.

[^0]: ${ }^{1}$ Department of Mathematics, London School of Economics and Political Science, London WC2A 2AE, UK, a. abdi1@1se.ac.uk
 ${ }^{2}$ Department of Industrial and Systems Engineering, KAIST, Daejeon 34126, Republic of Korea, dabeenl@kaist.ac.kr
 *Corresponding author

[^1]: ${ }^{1}$ Given clutters $\mathcal{C}, \mathcal{C}^{\prime}$, we say that \mathcal{C} is isomorphic to \mathcal{C}^{\prime} and write $\mathcal{C} \cong \mathcal{C}^{\prime}$ if \mathcal{C}^{\prime} can be obtained from \mathcal{C} after relabeling the elements of \mathcal{C}.

