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Abstract. Let F be a binary clutter. We prove that if F is non-ideal,
then either F or its blocker b(F) has one of L7,O5,LC7 as a minor. L7 is
the non-ideal clutter of the lines of the Fano plane, O5 is the non-ideal
clutter of odd circuits of the complete graph K5, and the two-point Fano
LC7 is the ideal clutter whose sets are the lines, and their complements,
of the Fano plane that contain exactly one of two fixed points. In fact,
we prove the following stronger statement: if F is a minimally non-ideal
binary clutter different from L7,O5, b(O5), then through every element,
either F or b(F) has a two-point Fano minor.

1 Introduction

Let E be a finite set. A clutter F over ground set E(F) := E is a family of subsets
of E, where no subset is contained in another. We say that F is binary if the
symmetric difference of any odd number of sets in F contains a set of F. We say
that F is ideal if the polyhedron

Q(F) :=
{
x ∈ RE

+ :
∑

(xe : e ∈ C) ≥ 1 C ∈ F
}

has only integral extreme points; otherwise it is non-ideal. When is a binary
clutter ideal? We will be studying this question.

Let us describe some examples of ideal and non-ideal binary clutters. Given
a graph G and distinct vertices s, t, the clutter of st-paths of G over the edge-set
is binary. An immediate consequence of Menger’s theorem [12], as well as Ford
and Fulkerson’s theorem [6], is that this binary clutter is ideal [3]. The clutter
of lines of the Fano plane

L7 :=
{
{1, 2, 6}, {1, 4, 7}, {1, 3, 5}, {2, 5, 7}, {2, 3, 4}, {3, 6, 7}, {4, 5, 6}

}
is binary, and it is non-ideal as

(
1
3 ,

1
3 , . . . ,

1
3

)
is an extreme point of Q(L7). (See

Figure 1.) The clutter of odd circuits of K5 over its ten edges, denoted O5, is
also binary, and it is non-ideal as

(
1
3 ,

1
3 , . . . ,

1
3

)
is an extreme point of Q(O5).

We say that two clutters are isomorphic if relabeling the ground set of one
yields the other. There are two fundamental clutter operations that preserve
being binary and ideal, let us describe them. The blocker of F, denoted b(F),
is another clutter over the same ground set whose sets are the (inclusionwise)
minimal sets in {B ⊆ E : B ∩ C 6= ∅ ∀C ∈ F}. It is well-known that b(b(F)) =



F [5]. We may therefore call F, b(F) a blocking pair. A clutter F is binary if, and
only if, |B ∩C| is odd for all B ∈ b(F) and C ∈ F [9]. Hence, if F is binary, then
so is b(F). Lehman’s Width-Length Inequality shows that if F is ideal, then so
is b(F) [10]. In particular, since L7 and O5 are non-ideal, then so are b(L7) = L7

and b(O5). Let I, J be disjoint subsets of E. Denote by F \ I/J the clutter over
E− (I ∪ J) of minimal sets of {C − J : C ∈ F, C ∩ I = ∅}.1 We say that F \ I/J ,
and any clutter isomorphic to it, is a minor of F obtained after deleting I and
contracting J . If I ∪ J 6= ∅, then F \ I/J is a proper minor of F. It is well-known
that b(F \ I/J) = b(F)/I \ J [16]. If a clutter is binary, then so is every minor of
it, and if a clutter is ideal, then so is every minor of it [17].

Let F be a binary clutter. Regrouping what we discussed, if F or b(F) has one
of L7,O5 as a minor, then it is non-ideal. Seymour [17] (page 200) conjectures
the converse is also true:

The flowing conjecture. Let F be a non-ideal binary clutter. Then F or b(F)
has one of L7,O5 as a minor.
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Fig. 1. The Fano plane

The two-point Fano clutter, denoted by LC7, is
the clutter over ground set {1, . . . , 7} whose sets
are the lines, and their complements, of the Fano
plane that intersect {1, 4} exactly once, i.e. LC7

consists of {1, 2, 6}, {1, 3, 5}, {2, 3, 4}, {2, 5, 7} and
{3, 4, 5, 7}, {2, 4, 6, 7}, {1, 5, 6, 7}, {1, 3, 4, 6}. Observe
that changing the two points 1, 4 yields an isomor-
phic clutter. It can be readily checked that LC7 is
binary and ideal. In this paper, we prove the following
weakening of the flowing conjecture:

Theorem 1. Let F be a non-ideal binary clutter.
Then F or b(F) has one of L7,O5,LC7 as a minor.

What makes this result attractive is its relatively sim-
ple proof. The techniques used in the proof give hope
of resolving the flowing conjecture. An interesting fea-
ture of the proof is the interplay between the clutter F and its blocker b(F); if we
fail to find one of the desired minors in the clutter, we switch to the blocker and
find a desired minor there. Theorem 1 is a consequence of a stronger statement
stated in the next section.

2 Preliminaries and the main theorem

2.1 Minimally non-ideal binary clutters

A clutter is minimally non-ideal (mni) if it is non-ideal and every proper minor of
it is ideal. Notice that every non-ideal clutter has an mni minor, and if a clutter

1 Given sets A,B we denote by A−B the set {a ∈ A : a /∈ B} and, for element a, we
write A− a instead of A− {a}.



is mni, then so is its blocker. Justified by this observation, instead of working
with non-ideal binary clutters, we will work with mni binary clutters. The three
clutters L7,O5, b(O5) are mni, and the flowing conjecture predicts that these are
the only mni binary clutters. We will need the following result of the authors:

Theorem 2 ([1]). L7,O5 are the only mni binary clutters with a set of size 3.

We will also need the following intermediate result of Alfred Lehman on mni
clutters, stated only for binary clutters. Let F be a clutter over ground set E.
Denote by F̄ the clutter of minimum size sets of F. Denote by M(F) the 0 − 1
matrix whose columns are labeled by E and whose rows are the incidence vectors
of the sets of F. For an integer r ≥ 1, a square 0− 1 matrix is r-regular if every
row and every column has precisely r ones.

Theorem 3 ([11, 15, 2]). Let F be an mni binary clutter where n := |E(F)|,
and let K := b(F). Then

(1) M(F̄) and M(K̄) are square and non-singular matrices,

(2) M(F̄) is r-regular and M(K̄) is s-regular, for some integers r ≥ 3 and s ≥ 3
such that rs− n is even and rs− n ≥ 2,

(3) after possibly permuting the rows of M(K̄), we have that

M(F̄)M(K̄)> = J + (rs− n)I = M(K̄)>M(F̄).

Here, J denotes the all-ones matrix, and I the identity matrix. Given a ground
set E and a set C ⊆ E, denote by χC ⊆ {0, 1}E the incidence vector of C. We
will make use of the following corollary:

Corollary 4. Let F be an mni binary clutter. Then the following statements
hold:

(1) For C1, C2 ∈ F̄, the only sets of F contained in C1 ∪ C2 are C1, C2 ([7, 8]).

(2) Choose C1, C2, C3 ∈ F̄ and e ∈ E(F) such that C1∩C2 = C2∩C3 = C3∩C1 =
{e}. If C,C ′ are sets of F such that C∪C ′ ⊆ C1∪C2∪C3 and C∩C ′ ⊆ {e},
then {C,C ′} = {Ci, Cj} for some distinct i, j ∈ {1, 2, 3}.

Proof. (2) Denote by r the minimum size of a set in F. As F is binary, C14C24
C34C4C ′ contains another set C ′′ of F. Notice that C ′′∩C ⊆ {e} and C ′′∩C ′ ⊆
{e}. If k many of C,C ′, C ′′ contain e, then

3r−3 = |(C1∪C2∪C3)−e| ≥ |(C∪C ′∪C ′′)−e| = |C|+ |C ′|+ |C ′′|−k ≥ 3r−k,

implying in turn that k = 3 and equality must hold throughout. In particular,
C,C ′, C ′′ ∈ F̄ and χC1

+χC2
+χC3

= χC +χC′ +χC′′ , so as M(F̄) is non-singular
by Theorem 3 (1), we get that {C1, C2, C3} = {C,C ′, C ′′}. ut



2.2 Signed matroids

All matroids considered in this paper are binary; we follow the notation used
in Oxley [14]. Let M be a matroid over ground set E. Recall that a circuit is a
minimal dependent set of M and a cocircuit is a minimal dependent set of the
dual M?. A cycle is the symmetric difference of circuits, and a cocycle is the
symmetric difference of cocircuits. It is well-known that a nonempty cycle is a
disjoint union of circuits ([14], Theorem 9.1.2). Let Σ ⊆ E. The pair (M,Σ) is
called a signed matroid over ground set E. An odd circuit of (M,Σ) is a circuit
C of M such that |C ∩Σ| is odd.

Proposition 5 ([9, 13], also see [4]). The clutter of odd circuits of a signed
matroid is binary. Conversely, a binary clutter is the clutter of odd circuits of a
signed matroid.

A representation of a binary clutter F is a signed matroid whose clutter of odd
circuits is F. By the preceding proposition, every binary clutter has a repre-
sentation. For instance, L7 is represented as

(
F7, E(F7)

)
, where F7 is the Fano

matroid. A signature of (M,Σ) is any subset of the form Σ4D, where D is a
cocycle of M ; to resign is to replace (M,Σ) by (M,Σ4D). Notice that resigning
does not change the family of odd cycles. We say that two signed matroids are
isomorphic if one can be obtained from the other after a relabeling of the ground
set and a resigning.

Remark 6. Take an arbitrary element ω of F7. Then (F7, E(F7)−ω) represents
LC7.

Proof. Suppose E(F7) = {1, . . . , 7}, and since F7 is transitive, we may assume
that ω = 7. Consider the following representation of F7,1 0 0 0 1 1 1

0 1 0 1 0 1 1
0 0 1 1 1 0 1


where the columns are labeled 1, . . . , 7 from left to right. Since {2, 3, 5, 6} is
a cocycle of F7, (F7, {1, . . . , 6}) is isomorphic to (F7, {1, . . . , 6}4{2, 3, 5, 6}) =
(F7, {1, 4}). It can be readily checked that the odd circuits of (F7, {1, 4}) are
precisely the sets of LC7, thereby proving the remark. ut
Proposition 7 ([9, 13], also see [8]). In a signed matroid, the clutter of min-
imal signatures is the blocker of the clutter of odd circuits.

Let I, J be disjoint subsets of E. The minor (M,Σ)\I/J obtained after deleting I
and contracting J is the signed matroid defined as follows: if J contains an odd
circuit, then (M,Σ) \ I/J := (M \ I/J, ∅), and if J does not contain an odd
circuit, then there is a signature Σ′ of (M,Σ) disjoint from J by the preceding
proposition, and we let (M,Σ) \ I/J := (M \ I/J,Σ′ − I). Observe that minors
are defined up to resigning.

Proposition 8 ([13], also see [4]). Let F be a binary clutter represented as
(M,Σ), and take disjoint I, J ⊆ E(F). Then F \ I/J is represented as (M,Σ) \
I/J .



2.3 Hubs and the main theorem

Let (M,Σ) be a signed matroid, and take e ∈ E(M). An e-hub of (M,Σ) is a
triple (C1, C2, C3) satisfying the following conditions:

(h1) C1, C2, C3 are odd circuits such that, for distinct i, j ∈ {1, 2, 3}, Ci ∩Cj =
{e},

(h2) for distinct i, j ∈ {1, 2, 3}, the only nonempty cycles contained in Ci ∪ Cj

are Ci, Cj , Ci4Cj ,
(h3) a cycle contained in C1 ∪ C2 ∪ C3 is odd if and only if it contains e.

A strict e-hub is an e-hub (C1, C2, C3) such that the following holds:

(h4) if C,C ′ are odd cycles contained in C1 ∪ C2 ∪ C3 such that C ∩ C ′ = {e},
then for some distinct i, j ∈ {1, 2, 3}, {C,C ′} = {Ci, Cj}.

Given I ⊆ E, denote by M |I the minor M \ (E − I), and by (M,Σ)|I the
minor (M,Σ) \ (E − I). The following is the main result of the paper:

Theorem 9. Let F,K be a blocking pair of mni binary clutters over ground set
E, neither of which has a set of size 3. Let (M,Σ) represent F and let (N,Γ )
represent K. Then, for a given e ∈ E, the following statements hold:

(1) (M,Σ) has a strict e-hub (C1, C2, C3) and (N,Γ ) has a strict e-hub (B1, B2,
B3) where for i, j ∈ {1, 2, 3},

|Ci ∩Bj |
{
≥ 3 if i = j
= 1 if i 6= j,

(2) either M |(C1 ∪ C2 ∪ C3) or N |(B1 ∪B2 ∪B3) is non-graphic,
(3) if M |(C1∪C2∪C3) is non-graphic, then (M,Σ)\ I/J ∼= (F7, E(F7)−ω) for

some disjoint I, J ⊆ E−e, and similarly, if N |(B1∪B2∪B3) is non-graphic,
then (N,Γ ) \ I/J ∼= (F7, E(F7)− ω) for some disjoint I, J ⊆ E − e.

Given this result, let us prove Theorem 1:

Proof (of Theorem 1). Let F be a non-ideal binary clutter, let F′ be an mni
minor of F, and let K′ := b(F′). If F′ has a set of size 3, then by Theorem 2,
F′ ∼= L7 or O5. If K′ has a set of size 3, then by Theorem 2, K′ ∼= L7 or O5. Thus,
if one of F′,K′ has a set of size 3, then either F or b(F) has one of L7,O5 as a
minor. We may therefore assume that neither F′ nor K′ has a set of size 3. Let
(M,Σ) represent F′ and let (N,Γ ) represent K′, whose existence are guaranteed
by Proposition 5. It then follows from Theorem 9 (2)-(3) that either (M,Σ) or
(N,Γ ) has an (F7, E(F7) − ω) minor. By Remark 6 and Proposition 8, we see
that either F′ or K′ has an LC7 minor, implying in turn that either F or b(F)
has an LC7 minor, as required. ut

In the remainder of this paper, we prove Theorem 9.



3 Proof of Theorem 9 part (1)

Let F,K be blocking mni binary clutters over ground set E, neither of which
has a set of size 3. By Theorem 3, there are integers r ≥ 4 and s ≥ 4 such that
M(F̄) is r-regular, M(K̄) is s-regular, and after possibly permuting the rows of
M(K̄), M(F̄)M(K̄)> = J + (rs− n)I = M(K̄)>M(F̄). Thus, there is a labeling
F̄ = {C1, . . . , Cn} and K̄ = {B1, . . . , Bn} so that, for all i, j ∈ {1, . . . , n},

(?) |Ci ∩Bj | =
{
rs− n+ 1 if i = j
1 if i 6= j

and for all g, h ∈ E,

(�) |{i ∈ {1, . . . , n} : g ∈ Ci, h ∈ Bi}| =
{
rs− n+ 1 if g = h
1 if g 6= h.

Take an element e ∈ E. Since rs−n ≥ 2, we may assume by (�) that e ∈ Ci∩Bi

for i ∈ {1, 2, 3}. Recall that (M,Σ) represents F and that (N,Γ ) represents K.
We will show that (C1, C2, C3) is a strict e-hub of (M,Σ).

Claim 1. C1, C2, C3 are odd circuits of (M,Σ) such that, for distinct i, j ∈
{1, 2, 3}, Ci ∩ Cj = {e}, i.e. (h1) holds.

Proof of Claim. By definition, C1, C2, C3 are odd circuits of (M,Σ). To see C1∩
C2 = {e}, notice that if f ∈ (C1 ∩ C2) − e, then {1, 2} ⊆ {i ∈ {1, . . . , n} : f ∈
Ci, e ∈ Bi}, which cannot be the case as the latter set has size 1 by (�). Similarly,
C2 ∩ C3 = C3 ∩ C1 = {e}. ♦

Claim 2. For distinct i, j ∈ {1, 2, 3}, the only nonempty cycles of M contained
in Ci ∪ Cj are Ci, Cj , Ci4Cj, so (h2) holds.

Proof of Claim. By symmetry, we may only analyze the cycles of M contained in
C1∪C2. By Corollary 4 (1), the only odd circuits of (M,Σ) contained in C1∪C2

are C1, C2. We first show that C1, C2 are the only odd cycles of (M,Σ) in C1∪C2.
Suppose otherwise. Let A be an odd cycle different from C1, C2. Write C as the
disjoint union of circuits A1, . . . , Ak for some k ≥ 2. Since |Σ∩A| =

∑k
i=1 |Σ∩Ai|

and |Σ ∩A| is odd, we may assume that |Σ ∩A1| is odd, so A1 ∈ {C1, C2}, and
we may assume that A1 = C1. But then A2 ⊆ C2 − e, a contradiction as both
A2, C2 are circuits of M . Let C be a nonempty cycle of M contained in C1 ∪C2.
If C is an odd cycle of (M,Σ), then as we just showed, C ∈ {C1, C2}. Otherwise,
C is an even cycle, so C4C1 is an odd cycle, so C4C1 ∈ {C1, C2}, implying in
turn that C = C14C2, as required. ♦

Claim 3. Every odd cycle of (M,Σ) contained in C1 ∪ C2 ∪ C3 uses e, so (h3)
holds.

Proof of Claim. Since s ≥ 4 and M(K̄) is s-regular, there is a B ∈ K̄−{B1, B2,
B3} such that e ∈ B. Then, for each i ∈ {1, 2, 3}, |B ∩ Ci| = 1 by (?), so
B ∩ (C1 ∪ C2 ∪ C3) = {e}. It follows from Proposition 7 that B is a signature
of (M,Σ). Thus, if C is an odd cycle of (M,Σ) contained in C1 ∪C2 ∪C3, then
|C ∩B| is odd and therefore nonzero, so e ∈ C. ♦



Claim 4. If C,C ′ are odd cycles of (M,Σ) contained in C1 ∪C2 ∪C3 such that
C ∩C ′ = {e}, then for some distinct i, j ∈ {1, 2, 3}, {C,C ′} = {Ci, Cj}, so (h4)
holds.

Proof of Claim. Let D,D′ be odd circuits contained in C,C ′, respectively. It
follows from Corollary 4 (2) that, for some distinct i, j ∈ {1, 2, 3}, {D,D′} =
{Ci, Cj}. Since there is no even cycle contained in (C1 ∪C2 ∪C3)− (Ci4Cj), it
follows that D = C and D′ = C ′, and the claim follows. ♦

Hence, (C1, C2, C3) is a strict e-hub of (M,Σ). Similarly, (B1, B2, B3) is a strict
e-hub of (N,Γ ). This finishes the proof of Theorem 9 part (1). ut

4 Hypergraphs, the trifold, and graphic hubs

Let M be a binary matroid over ground set E. By definition, the cycles of M
form a linear space modulo 2, so there is a 0−1 matrix A such that the incidence
vectors of the cycles in M are

{
x ∈ {0, 1}E : Ax ≡ 0 (mod 2)

}
. The matrix A

is referred to as a representation of M . Notice that elementary row operations
modulo 2 applied to A yield another representation, and if a ∈ {0, 1}E belongs

to the row space of A modulo 2, then

(
A
a>

)
is also a representation.

A hypergraphic representation of M is a representation where every column
has an even number of ones. If a> is the sum of the rows of A modulo 2,

then

(
A
a>

)
is a hypergraphic representation. In particular, a binary matroid

always has a hypergraphic representation. A hypergraph is a pair G = (V,E),
where V is a finite set of vertices and E is a family of even subsets of V ,
called edges. Note that if A is a hypergraphic representation of M , then A
may be thought of as a hypergraph whose vertices are labeled by the rows and
whose edges are labeled by the columns. For instance, the Fano matroid F7

may be represented as a hypergraph on vertices {1, . . . , 4} and edges
{
T ⊆

{1, . . . , 4} : |T | ∈ {2, 4}
}

. Denote by S8 the binary matroid represented as

1 2

34

1 2

4

3

5

Fig. 2. The hypergraph on the left represents F7, and the one on the right represents S8.
Line segments represent edges of size 2, and square vertices form the edges of size 4.

the hypergraph displayed in Figure 2, which has vertices {1, . . . , 5} and edges



{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {2, 3, 4, 5}. Label γ := {2, 3, 4, 5} ∈
E(S8). A trifold is any signed matroid isomorphic to

(
S8, E(S8)− γ

)
.

Remark 10. A trifold has an (F7, E(F7)) minor.

Proof. Observe that S8/γ ∼= F7, implying in turn that (S8, E(S8) − γ)/γ ∼=
(F7, E(F7)). ut

Given a hypergraph G = (V,E) and F ⊆ E, let oddG(F ) := 4(e : e ∈
F ) ⊆ V . Observe that oddG(F ) is an even subset of V . We will make use of the
following remark throughout the paper:

Remark 11. Let M be a binary matroid over ground set E∪{e}, where M \e is
represented by the hypergraph G = (V,E). If for some F ⊆ E, F ∪{e} is a cycle
of M , then the hypergraph on vertices V and edges E∪{oddG(F )} represents M .

Recall that a binary matroid is graphic if it can be represented by a graph.
We will also need the following result, whose proof is straight-forward:

Proposition 12. Take a signed matroid (M,Σ), e ∈ E(M) and an e-hub (C1,
C2, C3). Then there is a signature Σ′ such that Σ′ ∩ (C1 ∪ C2 ∪ C3) = {e}.
Moreover, the following statements are equivalent:

(i) M |(C1 ∪ C2 ∪ C3) is graphic,
(ii) C1, C2, C3, C14C24C3 are the only odd cycles contained in C1 ∪C2 ∪C3.

5 Proof of Theorem 9 part (2)

Let F,K be blocking mni binary clutters over ground set E, neither of which
has a set of size 3. Recall that (M,Σ) represents F and that (N,Γ ) represents
K. Take an element e ∈ E. By Theorem 9 part (1), (M,Σ) has a (strict) e-hub
(C1, C2, C3) and (N,Γ ) has a (strict) e-hub (B1, B2, B3), where for i ∈ {1, 2, 3},
|Ci ∩Bi| ≥ 3 and, for distinct i, j ∈ {1, 2, 3}, Ci ∩Bj = {e}. By Proposition 12,
after a possible resigning of (M,Σ), we may assume that Σ∩(C1∪C2∪C3) = {e}.
Notice further that by Proposition 7, the odd circuits of (N,Γ ) are (minimal)
signatures of (M,Σ). We need to show that either M |(C1 ∪C2 ∪C3) or N |(B1 ∪
B2 ∪B3) is non-graphic. Suppose otherwise. Since N |(B1 ∪B2 ∪B3) is graphic,
it follows from Proposition 12 that B1, B2, B3 are the only odd circuits of (N,Γ )
contained in B1 ∪ B2 ∪ B3. In other words, the only sets of K contained in
B1 ∪B2 ∪B3 are B1, B2, B3.

Claim 1. There is an odd circuit C of (M,Σ) such that e /∈ C and, for each
i ∈ {1, 2, 3}, C ∩Bi ⊆ Ci.

Proof of Claim. Let B be the union of (B1 ∪B2 ∪B3)− (C1 ∪C2 ∪C3) and {e}.
Since B1 ∩ C1 6= {e}, it follows that B1 6⊆ B. Similarly, B2 6⊆ B and B3 6⊆ B.
Thus, since the only sets of K contained in B1 ∪ B2 ∪ B3 are B1, B2, B3, we
get that B does not contain a set of K = b(F). In other words, there is a set



C ∈ F such that C ∩ B = ∅. By definition, C is an odd circuit of (M,Σ).
Clearly, e /∈ C. Consider the intersection C ∩ B1. Since C ∩ B = ∅, it follows
that C ∩B1 ⊆ C1 ∪C2 ∪C3. Moreover, as B1 ∩C2 = B1 ∩C3 = {e}, we see that
C ∩B1 ⊆ C1. Similarly, C ∩B2 ⊆ C2 and C ∩B3 ⊆ C3. ♦

Since e /∈ C, we get that C ∩ Σ ⊆ C − (C1 ∪ C2 ∪ C3), and as C is odd, it
follows that C 6⊆ C1 ∪ C2 ∪ C3.

Claim 2. (M,Σ)|(C1 ∪ C2 ∪ C3 ∪ C) has a trifold minor.

Proof sketch. Let S be a minimal subset of C − (C1 ∪ C2 ∪ C3) such that (m1)
M |(C1 ∪ C2 ∪ C3 ∪ S) has a cycle containing S, and (m2) |S ∩Σ| is odd. Note
that S is well-defined, since C − (C1 ∪ C2 ∪ C3) satisfies both (m1)-(m2). Let

(M ′, Σ′) := (M,Σ)|(C1 ∪ C2 ∪ C3 ∪ S).

The minimality of S implies that the elements of S are in series in M ′. In
particular, after a possible resigning, we may assume that Σ′∩(C1∪C2∪C3∪S) =
{e, f} for some element f ∈ S. Let

(M ′′, {e, f}) := (M ′, Σ′)/(S − f).

Since B1 is a signature for (M,Σ), and B1 ∩ (C1 ∪ C2 ∪ C3 ∪ C) = B1 ∩ C1 by
our choice of C, it follows that B1 ∩C1 is a signature for (M ′′, {e, f}). We have
M ′′ \ f = M ′/(S − f) \ f = M ′ \ S = M |(C1 ∪ C2 ∪ C3), where the second
equality follows from the fact that the elements of M ′ in S are in series. Since
M |(C1∪C2∪C3) is graphic, M ′′ \f may be represented as a graph G = (V,C1∪
C2 ∪ C3). It follows from (h2) that the circuits C1, C2, C3 are pairwise vertex-
disjoint except at the ends of e = {x, y} ⊆ V . By (m1), M |(C1 ∪ C2 ∪ C3 ∪ S)
has a cycle containing S, so M ′′ has a cycle P ∪{f}, for some P ⊆ C1∪C2∪C3.
By replacing P by P4C1, if necessary, we may assume that e /∈ P . For each
i ∈ {1, 2, 3}, let Pi := P ∩Ci and Qi := Ci−(Pi∪{e}). After possibly rearranging
the edges of G within each series class Ci − e, we may assume that each Pi is a
path that starts from x. It follows from Remark 11 that M ′′ is represented as
the hypergraph on vertices V and edges C1 ∪ C2 ∪ C3 ∪ {oddG(P )}. We may
therefore label f = oddG(P ), and represent M ′′ with the following hypergraph

P1

P2

P3

e

Q1

Q2

Q3

where f consists of the square vertices. Since P∪{f} is an odd cycle of (M ′′, {e, f}),
it must contain an odd number of edges of the signature B1 ∩ C1, implying in
turn that each of P1, Q1 contains an odd number of edges of B1, so P1 6= ∅ and
Q1 6= ∅. Similarly, for each i ∈ {1, 2, 3}, Pi 6= ∅ and Qi 6= ∅, so there are pi ∈ Pi



and qi ∈ Qi. Since {e, p1, p2, p3, q1, q2, q3} is a signature for (M ′′, {e, f}), we see
that

(M ′′, {e, f}) ∼= (M ′′, {e, p1, p2, p3, q1, q2, q3}).

Observe however that the right signed matroid has a trifold minor, obtained
after contracting each Ci−{e, pi, qi}. As a result, (M,Σ)|(C1∪C2∪C3∪C) has
a trifold minor. ♦

However, by Remark 10, a trifold has an (F7, E(F7)) minor, so (M,Σ) has
an (F7, E(F7)) minor. As a consequence, Proposition 8 implies that F has an L7

minor. Since F is mni, we must have that F ∼= L7, but F has no set of size 3, a
contradiction. This finishes the proof of Theorem 9 part (2). ut

6 Non-graphic strict hubs

In this section, we prove the following result needed for Theorem 9 part (3):

Proposition 13. Take a signed matroid (M,Σ), e ∈ E(M) and a strict e-
hub (C1, C2, C3) such that M |(C1 ∪ C2 ∪ C3) is non-graphic. Then there exist
I ⊆ C3 − e and distinct g1, g2 ∈ (C3 − I)− e where

(1) (C1, C2, C3 − I) is an e-hub of (M,Σ)/I,
(2) (M/I)|

(
C1 ∪ C2 ∪ {gi}

)
has a circuit containing gi, for each i ∈ {1, 2},

(3) (M/I)|
(
C1 ∪ C2 ∪ {g1, g2}

)
is non-graphic.

Proof sketch. By Proposition 12, after a possible resigning, we may assume that
Σ ∩ (C1 ∪ C2 ∪ C3) = {e}. Let I be a maximal subset of C3 − e such that
every cycle of M |(C1 ∪C2 ∪ I) is disjoint from I. Let (M ′, {e}) := (M,Σ)|(C1 ∪
C2 ∪ C3)/I and C ′

3 := C3 − I. Then (C1, C2, C
′
3) is an e-hub of (M ′, {e}), and

as M |(C1 ∪ C2 ∪ C3) is non-graphic, it follows from Proposition 12 that M ′ is
non-graphic. Moreover, the maximality of I implies that, for each g ∈ C ′

3 − e,
there is a cycle Dg of M ′|(C1 ∪C2 ∪{g}) using g, where after possibly replacing
Dg by Dg4C1, we may assume that e /∈ Dg. Note that Dg4C14C2 is another
cycle of M ′|(C1 ∪C2 ∪ {g}) that uses g and excludes e. For each such g, refer to
Dg − g and (Dg4C14C2)− g as the outer joins of g. Notice that an outer join
intersects both C1, C2. As 4

(
Dg − g : g ∈ C ′

3 − e
)

is either C1 − e or C2 − e by
(h2), there exist h1, h2 ∈ C ′

3−{e} and respective outer joins Jh1 , Jh2 that cross,
that is, Jh1 ∩ Jh2 6= ∅, Jh1 − Jh2 6= ∅, Jh2 − Jh1 6= ∅ and Jh1 ∪ Jh2 6= C14C2. If
M ′|(C1 ∪C2 ∪ {h1, h2}) is non-graphic, then we are done. Otherwise, it may be
represented as a graph H = (V,C1∪C2∪{h1, h2}), displayed below (left figure),
where C1 = {e} ∪ P1 ∪Q1 ∪ R1, C2 = {e} ∪ P2 ∪Q2 ∪ R2, Jh1

= P1 ∪ P2 ∪Q2,
and Jh2

= P1 ∪ P2 ∪ Q1. Notice that Pi, Qi, Ri 6= ∅ for each i ∈ {1, 2}. Let
D1 := {e, h1} ∪ P1 ∪ R2 and D2 := {e, h2} ∪ {P2, R1}. For i ∈ {1, 2}, let D′

i

be a cycle of M such that Di ⊆ D′
i ⊆ Di ∪ I; as D′

i ∩ Σ = {e}, D′
i is an odd

cycle of (M,Σ). Note further, for i ∈ {1, 2}, that D′
i is different from C1, C2, C3.

Thus, since (C1, C2, C3) is a strict e-hub of (M,Σ) and therefore satisfies (h4),
we must have that {e} ( D′

1 ∩D′
2. Because D1 ∩D2 = {e}, there is an element



f ∈ I such that {e, f} ⊆ D′
1 ∩ D′

2. Consider now the minor (M,Σ)/(I − f);
note that D1 ∪ {f} and D2 ∪ {f} are odd cycles of this signed matroid. We
may represent M/(I − f) as a hypergraph G = (V ∪ {w}, C1 ∪C2 ∪ {h1, h2, f})
obtained from H by adding a vertex w, displayed below (right figure), where
the square vertices form the edge h1. Now let J := I4{f, h2}. Observe that
(M/J)|(C1 ∪ C2 ∪ {f, h1}) is non-graphic, as it has an F7 minor obtained after
contracting P1∪R2 and contracting each of Q1, R1, P2, Q2 to a single edge. Thus,
J ⊆ C ′

3 − {e} and f, h1 satisfy (3), and it can be readily checked that they also
satisfy (1)-(2).

h1 h2
e

P1

Q1

R1 R2

Q2

P2
h2

f

w

ut

7 A sketch of the proof of Theorem 9 part (3)

Let F,K be blocking mni clutters over ground set E, neither of which has a set
of size 3, where (M,Σ) represents F and (N,Γ ) represents K. By Theorem 9
part (1), (M,Σ) has a strict e-hub (C1, C2, C3) and (N,Γ ) has a strict e-hub
(B1, B2, B3) such that for i ∈ {1, 2, 3}, |Ci ∩ Bi| ≥ 3 and, for distinct i, j ∈
{1, 2, 3}, Ci ∩Bj = {e}. Assume further that M |(C1 ∪ C2 ∪ C3) is non-graphic.
We need to show that (M,Σ) has an (F7, E(F7) − ω) minor going through e.
By Proposition 12, after a possible resigning, we may assume that Σ ∩ (C1 ∪
C2 ∪ C3) = {e}. By Proposition 13, there exist I ⊆ C3 − e and distinct g1, g2 ∈
(C3 − I)− e such that (1)-(3) hold. For each i ∈ {1, 2}, after possibly replacing
Di by Di4C1, we may assume that e /∈ Di; as (C1, C2, C3 − I) is an e-hub of
(M,Σ)/I, it follows from (h2) that Di ∩ C1 6= ∅ and Di ∩ C2 6= ∅. Notice that,
for each i ∈ {1, 2}, Bi ∩ I = ∅, so Bi is a signature of (M,Σ)/I.

Claim 1. There exists an odd circuit C of (M,Σ)/I such that e /∈ C and, for
each i ∈ {1, 2}, C ∩Bi ⊆ Ci.

Let (M ′, Σ) := (M,Σ)/I. Let S be a minimal subset of C − (C1 ∪ C2)
such that (m1) M ′|(C1 ∪ C2 ∪ S) has a cycle containing S, and (m2) |S ∩ Σ|
is odd. Note that S is well-defined as C − (C1 ∪ C2) satisfies (m1)-(m2). The
minimality of S implies that S ∩{g1, g2} = ∅, and the elements of S are in series
in M ′|(C1 ∪C2 ∪{g1, g2}∪S). Thus, there exists a signature Σ′ of (M ′, Σ) such
that Σ′ ∩ (C1 ∪C2 ∪ {g1, g2} ∪ S) = {e, f}, for some f ∈ S. Consider the minor

(M ′′, {e, f}) := (M ′, Σ′)|(C1 ∪ C2 ∪ {g1, g2} ∪ S)/(S − f).

For each i ∈ {1, 2}, our choice of C implies that Bi ∩ S = ∅, so Bi ∩ (C1 ∪ C2 ∪
{g1, g2}) = Bi ∩ Ci is a signature of (M ′′, {e, f}).



Claim 2. If M ′′ \ gi is graphic for each i ∈ {1, 2}, then (M ′′, {e, f}) has an
(F7, E(F7)) minor.

Assume that M ′′ \ gi is graphic for each i ∈ {1, 2}. Then by the preceding
claim, (M ′′, {e, f}) has an (F7, E(F7)) minor, implying in turn that (M,Σ) has
an (F7, E(F7)) minor. So by Proposition 8, F has an L7 minor, and since F is mni,
this means F ∼= L7, which cannot be as F has no set of size 3. Hence, by symmetry,
we may assume that M ′′ \ g2 is non-graphic. Thus, there exists I ⊆ C14C2 such
that M ′′ \g2/I ∼= F7. Then (M ′′, {e, f})\g2/I ∼= (F7, E(F7)−ω), and so (M,Σ)
has an (F7, E(F7) − ω) minor going through e, as required. This finishes the
proof of Theorem 9 part (3). ut
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