Arc connectivity and submodular flows in digraphs

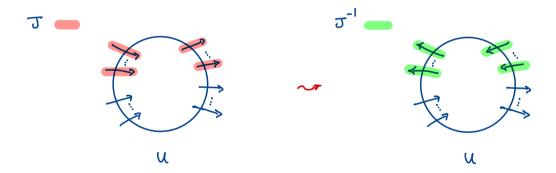
Ahmad Abdi, Gérard Cornuéjols, and Giacomo Zambelli

London School of Economics and Political Science

Oberseminar Diskrete Optimierung University of Bonn July 10, 2023 ¹

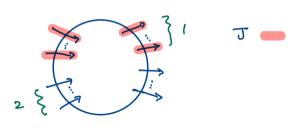
¹Paper available on the speaker's website

- Let D = (V, A) be a digraph.
- Let $k \ge 1$ be an integer.
- A *k*-arc-connected flip is a $J \subseteq A$ such that $(D \setminus J) \cup J^{-1}$ is (strongly) *k*-arc-connected.



- Let D = (V, A) be a digraph.
- Let $k \ge 1$ be an integer.
- A *k*-arc-connected flip is a $J \subseteq A$ such that $(D \setminus J) \cup J^{-1}$ is (strongly) *k*-arc-connected. That is,

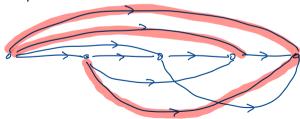
$$|J \cap \delta^{+}(U)| + |\delta^{-}(U)| - |J \cap \delta^{-}(U)| \ge k \qquad \forall U \subsetneq V, U \neq \emptyset.$$



- Let D = (V, A) be a digraph.
- Let $k \ge 1$ be an integer.
- A *k*-arc-connected flip is a $J \subseteq A$ such that $(D \setminus J) \cup J^{-1}$ is (strongly) *k*-arc-connected. That is,

$$|J \cap \delta^+(U)| + |\delta^-(U)| - |J \cap \delta^-(U)| \ge k$$
 $\forall U \subsetneq V, U \ne \emptyset.$

A 2-arc-connected flip:

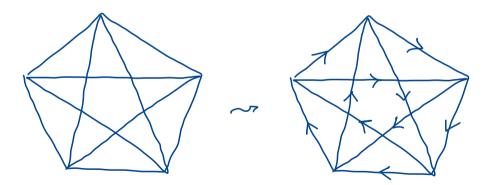


Weak Orientation Theorem

An important theorem in Graph Orientations and Submodular Optimization:

Theorem 1 (Nash-Williams '69)

If the underlying graph of D is 2k-edge-connected, then D has a k-arc-connected flip.



Weak Orientation Theorem

An important theorem in Graph Orientations and Submodular Optimization:

Theorem 1 (Nash-Williams '69)

If the underlying graph of D is 2k-edge-connected, then D has a k-arc-connected flip.

Flash summary of the talk

- We extend Theorem 1 by finding a k-arc-connected flip whose incidence vector is also a submodular flow.
- This is made possible by finding capacitated integral solutions to the intersection of two submodular flow systems.

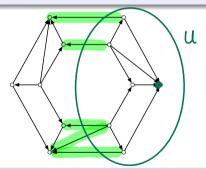
Woodall's conjecture

Dicuts

Let D = (V, A) be a digraph.

Definition

A dicut is a subset of the form $\delta^+(U) \subseteq A$ where $U \neq \emptyset$, V and $\delta^-(U) = \emptyset$.



Remark

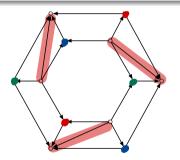
D has a dicut $\Leftrightarrow D$ is not strongly connected.

Dijoins

Let D = (V, A) be a digraph.

Definition

A dijoin is a $J \subseteq A$ that intersects every dicut at least once, i.e. D/J is 1-arc-connected.

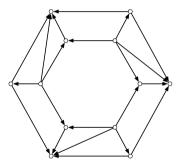


Remark

J is a dijoin $\Leftrightarrow D \cup J^{-1}$ is 1-arc-connected.

Remark

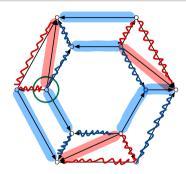
Minimum size of a dicut ≥ maximum number of pairwise arc disjoint dijoins.



Remark

Minimum size of a dicut ≥ maximum number of pairwise arc disjoint dijoins.

$$min = 4$$
 $max = 4$



Remark

Minimum size of a dicut \geq maximum number of pairwise arc disjoint dijoins.

Conjecture (Woodall 1978)

Minimum size of a dicut = maximum number of pairwise arc disjoint dijoins.

Remark

Minimum size of a dicut ≥ maximum number of pairwise arc disjoint dijoins.

Conjecture (Woodall 1978)

Minimum size of a dicut = maximum number of pairwise arc disjoint dijoins.

- Frank and Tardos 1984: Formulation as a common base packing problem for two matroids.
- Schrijver 1980, Feofiloff and Younger 1987: Proved for source-sink connected digraphs.
- Lee and Wakabayashi 2001: Proved for series-parallel digraphs.
- **Mészáros** 2018: Proved for digraphs that are $(\tau 1, 1)$ -partition-connected for τ a prime power.
- **3** A., Cornuéjols and Zlatin 2023: Reduced to nearly- τ -regular bipartite graphs.
- Other interesting results by Cornuéjols and Guenin (2002), Shepherd and Vetta (2005), Lee and Williams (2006), Chudnovsky, Edwards, Kim, Scott, and Seymour (2016)

Let D = (V, A) be a digraph.

Definition

For an integer $k \ge 1$, a k-dijoin is an arc subset that intersects every dicut at least k times.



Let D = (V, A) be a digraph.

Definition

For an integer $k \ge 1$, a k-dijoin is an arc subset that intersects every dicut at least k times.

Proposition

The following statements hold:

1 The union of a disjoint k-dijoin and ℓ -dijoin is a $(k + \ell)$ -dijoin.

Let D = (V, A) be a digraph.

Definition

For an integer $k \ge 1$, a k-dijoin is an arc subset that intersects every dicut at least k times.

Proposition

The following statements hold:

- **1** The union of a disjoint k-dijoin and ℓ -dijoin is a $(k + \ell)$ -dijoin.
- 2 Every k-arc-connected flip J is a k-dijoin.

Proof of 2. Let J be a k-arc-connected flip. For every dicut $\delta^+(U)$,

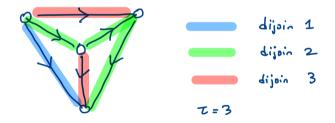
$$|J \cap \mathcal{E}^{\dagger}(\mathcal{U})| = |J \cap \delta^{+}(U)| + |\delta^{-}(U)| - |J \cap \delta^{-}(U)| \ge k.$$

Decomposing into a k- and $(\tau - k)$ -dijoin

Suppose every dicut of D=(V,A) has size $\geq \tau$, for some integer $\tau \geq 2$.

Conjecture (Woodall 1978)

A can be partitioned into τ dijoins.

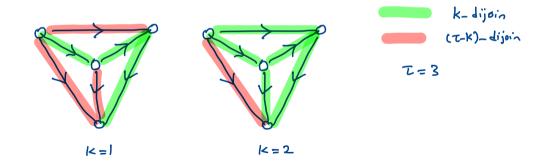


Decomposing into a k- and $(\tau - k)$ -dijoin

Suppose every dicut of D=(V,A) has size $\geq \tau$, for some integer $\tau \geq 2$.

Conjecture ("Weak Woodall")

A can be partitioned into a k- and a $(\tau - k)$ -dijoin, for all $k \in \{1, \dots, \tau - 1\}$.

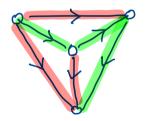


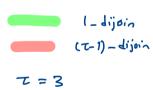
Decomposing into a k- and $(\tau - k)$ -dijoin

Suppose every dicut of D=(V,A) has size $\geq \tau$, for some integer $\tau \geq 2$.

Theorem 2 (A., Cornuéjols, Zlatin 2023)

A can be partitioned into a dijoin and a $(\tau - 1)$ -dijoin.





Summary

Theorem 1 (Nash-Williams '69)

If the underlying graph of D is 2k-edge-connected, then D has a k-arc-connected flip.

Theorem 2 (A., Cornuéjols, Zlatin 2023)

If every dicut of D=(V,A) has size $\geq \tau$, then A can be partitioned into a dijoin and a $(\tau-1)$ -dijoin.

Remark

A k-arc-connected flip is a k-dijoin.

A common extension of Theorems 1 and 2

Theorem 3 (A., Cornuéjols, Zambelli '23+)

Let D = (V, A) be a digraph such that for some integers $\tau - 1 \ge k \ge 1$ we have

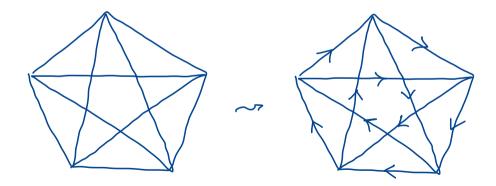
$$|\delta^+(U)| + \left(\frac{\tau}{k} - 1\right)|\delta^-(U)| \ge au \qquad \forall U \subsetneq V, U \ne \emptyset.$$

Then A can be partitioned into a k-arc-connected flip and a $(\tau - k)$ -dijoin.

For $\tau = 2k$ we recover:

Theorem 1 (Nash-Williams '69)

If the underlying graph of D is 2k-edge-connected, then D has a k-arc-connected flip.



For $\tau = 2k$ we recover:

Theorem 1 (Nash-Williams '69)

If the underlying graph of D is 2k-edge-connected, then D has a k-arc-connected flip.

Why? The cut condition

$$|\delta^+(U)| + \left(\frac{\tau}{k} - 1\right)|\delta^-(U)| \ge \tau \qquad \forall U \subsetneq V, U \neq \emptyset.$$

becomes

$$|\delta^+(U)| + |\delta^-(U)| \ge \tau \qquad \forall U \subsetneq V, U \ne \emptyset.$$

For k = 1 we recover:

Theorem 2 (A., Cornuéjols, Zlatin 2023)

If every dicut of D=(V,A) has size $\geq \tau$, then A can be partitioned into a dijoin and a $(\tau-1)$ -dijoin.

For k = 1 we recover:

Theorem 2 (A., Cornuéjols, Zlatin 2023)

If every dicut of D=(V,A) has size $\geq \tau$, then A can be partitioned into a dijoin and a $(\tau-1)$ -dijoin.

Why? The cut condition

$$|\delta^+(U)| + \left(\frac{\tau}{k} - 1\right)|\delta^-(U)| \ge au \qquad \forall U \subsetneq V, U \ne \emptyset.$$

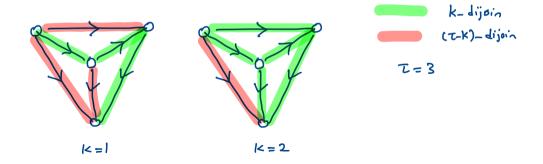
becomes

$$|\delta^+(U)| \ge \tau$$
 $\forall U \subsetneq V, U \ne \emptyset \text{ s.t. } \delta^-(U) = \emptyset$

"Weak Woodall" is true for τ -edge-connected instances:

Theorem (A., Cornuéjols, Zambelli '23+)

Suppose the underlying graph of D=(V,A) is τ -edge-connected. Then A can be partitioned into a k- and a $(\tau-k)$ -dijoin, for all $k\in\{1,\ldots,\tau-1\}$.



"Weak Woodall" is true for τ -edge-connected instances:

Theorem (A., Cornuéjols, Zambelli '23+)

Suppose the underlying graph of D=(V,A) is τ -edge-connected. Then A can be partitioned into a k- and a $(\tau-k)$ -dijoin, for all $k\in\{1,\ldots,\tau-1\}$.

Proof. We may assume $\tau \geq 2k$. The cut condition holds:

$$|\delta^{+}(U)| + \left(\frac{\tau}{k} - 1\right) |\delta^{-}(U)| \geqslant |\delta^{+}(U)| + |\delta^{-}(u)| \qquad \forall U \subsetneq V, U \neq \emptyset.$$

Theorem 3 (A., Cornuéjols, Zambelli '23+)

Let D = (V, A) be a digraph such that for some integers $\tau - 1 \ge k \ge 1$ we have

$$|\delta^+(U)| + \left(\frac{\tau}{k} - 1\right)|\delta^-(U)| \ge \tau \qquad \forall U \subsetneq V, U \neq \emptyset.$$

Then A can be partitioned into a k-arc-connected flip and a $(\tau - k)$ -dijoin.

Let's prove this theorem. We need two ingredients.

Ingredients

Crossing families and submodular functions

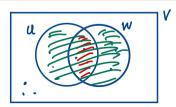
Let C be a family of subsets of V, and let $f: C \to \mathbb{Z}$ be a function.

Definition

 \mathcal{C} is a crossing family if whenever $U, W \in \mathcal{C}$ and $U \cap W \neq \emptyset, U \cup W \neq V$, then $U \cap W, U \cup W \in \mathcal{C}$.

Definition

f is crossing submodular if whenever $U, W \in \mathcal{C}$ and $U \cap W \neq \emptyset, U \cup W \neq V$, then $f(U \cap W) + f(U \cup W) \leq f(U) + f(W)$.



Crossing families and submodular functions

Definition

 \mathcal{C} is a crossing family if whenever $U, W \in \mathcal{C}$ and $U \cap W \neq \emptyset, U \cup W \neq V$, then $U \cap W, U \cup W \in \mathcal{C}$.

Definition

f is crossing submodular if whenever $U, W \in \mathcal{C}$ and $U \cap W \neq \emptyset, U \cup W \neq V$, then $f(U \cap W) + f(U \cup W) \leq f(U) + f(W)$.

Examples

- $\{U \subsetneq V : U \neq \emptyset\}$
- $\{U \subsetneq V : U \neq \emptyset, \delta^-(U) = \emptyset\}$
- $f(U) := |\delta^+(U)|$
- $f(U) := |\delta^{+}(U)| \alpha$

Ingredient 1 from Submodular Optimization

Theorem (Edmonds, Frank, Fujishige; see Schrijver 2003, Frank 2011)

Let $f_i: C_i \to \mathbb{Z}$ be a crossing submodular function, for i = 1, 2. Then

$$x \in \mathbb{R}^V$$

$$\mathbf{1}^\top x = 0$$

$$\mathbf{x} (\mathcal{U}) := \sum_{v \in U} x_v \le f_1(U) \quad \forall U \in \mathcal{C}_1$$

$$\sum_{v \in U} x_v \le f_2(U) \quad \forall U \in \mathcal{C}_2$$

is box-totally dual integral, and therefore box-integral. In particular, if it has a fractional solution, it has an integral solution.

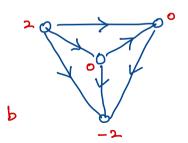
Ingredient 2 from Network Flows

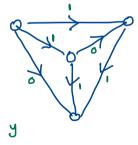
Let D = (V, A) be a digraph, and $b \in \mathbb{Z}^V$ s.t. $1^\top b = 0$.

Definition

A *b*-transshipment is a vector $y \in \mathbb{R}^A$ s.t.

$$y(\delta^+(u)) - y(\delta^-(u)) = b_u \quad \forall u \in V.$$





Ingredient 2 from Network Flows

Let D = (V, A) be a digraph, and $b \in \mathbb{Z}^V$ s.t. $1^T b = 0$.

Definition

A *b*-transshipment is a vector $y \in \mathbb{R}^A$ s.t.

$$y(\delta^+(u)) - y(\delta^-(u)) = b_u \quad \forall u \in V.$$

Theorem (Hoffman, Gale; see Schrijver 2003)

Take $c, d \in \mathbb{Z}^A$ with $c \leq d$ such that

$$b(U) \leq d(\delta^+(U)) - c(\delta^-(U)) \qquad \forall U \neq \emptyset, V.$$

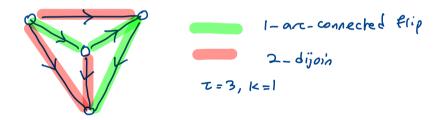
Then there exists a *b*-transshipment $y^* \in \mathbb{Z}^A$ such that $c \leq y^* \leq d$.

Proof of Theorem 3

Theorem 3 (A., Cornuéjols, Zambelli '23+)

A can be decomposed into a k-arc-connected flip and a $(\tau - k)$ -dijoin if for every $\emptyset \neq U \subsetneq V$,

$$|\delta^+(U)| + \left(\frac{\tau}{k} - 1\right) |\delta^-(U)| \ge \tau.$$



Proof of Theorem 3

Theorem 3 (A., Cornuéjols, Zambelli '23+)

A can be decomposed into a k-arc-connected flip and a $(\tau - k)$ -dijoin if for every $\emptyset \neq U \subsetneq V$,

$$|\delta^+(U)| + \left(\frac{\tau}{k} - 1\right)|\delta^-(U)| \ge \tau.$$

Proof. We need to find a 0, 1 vector y such that

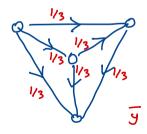
- $y(\delta^+(U)) y(\delta^-(U)) \le |\delta^+(U)| k$ for every $\emptyset \ne U \subsetneq V$,
- $y(\delta^+(U)) y(\delta^-(U)) \le |\delta^+(U)| (\tau k)$ for every dicut $\delta^+(U)$.

We know

- $|\delta^+(U)| + (\frac{\tau}{k} 1) |\delta^-(U)| \ge \tau$ for every $\emptyset \ne U \subsetneq V$,
- Every dicut has size at least τ .

Proof. Let $\bar{y} \in \mathbb{R}^A$ assign $\frac{k}{\tau}$ to every arc. Then

- $\bar{\mathbf{y}}(\delta^+(U)) \bar{\mathbf{y}}(\delta^-(U)) \le |\delta^+(U)| k$ for every $\emptyset \ne U \subsetneq V$,
- $\overline{y}(\delta^+(U)) \overline{y}(\delta^-(U)) \le |\delta^+(U)| (\tau k)$ for every dicut $\delta^+(U)$.

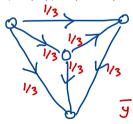


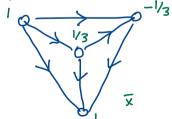
Proof. Let $\bar{y} \in \mathbb{R}^A$ assign $\frac{k}{\tau}$ to every arc. Then

- $\bar{\mathbf{y}}(\delta^+(U)) \bar{\mathbf{y}}(\delta^-(U)) \le |\delta^+(U)| k$ for every $\emptyset \ne U \subsetneq V$,
- $\overline{y}(\delta^+(U)) \overline{y}(\delta^-(U)) \le |\delta^+(U)| (\tau k)$ for every dicut $\delta^+(U)$.

For each vertex v, let $\bar{x}_v := \bar{y}(\delta^+(v)) - \bar{y}(\delta^-(v))$. Then

- 1. $1^{\top}\bar{x} = 0$,
- 2. $\bar{x}(U) \leq |\delta^+(U)| k$ for every $\emptyset \neq U \subsetneq V$,
- 3. $\bar{x}(U) \leq |\delta^+(U)| (\tau k)$ for every dicut $\delta^+(U)$.





Proof. Let $\bar{y} \in \mathbb{R}^A$ assign $\frac{k}{\tau}$ to every arc. Then

- $\bar{\mathbf{y}}(\delta^+(U)) \bar{\mathbf{y}}(\delta^-(U)) \le |\delta^+(U)| k$ for every $\emptyset \ne U \subsetneq V$,
- $\overline{y}(\delta^+(U)) \overline{y}(\delta^-(U)) \le |\delta^+(U)| (\tau k)$ for every dicut $\delta^+(U)$.

For each vertex v, let $\bar{x}_v := \bar{y}(\delta^+(v)) - \bar{y}(\delta^-(v))$. Then

- 1. $1^{\top}\bar{x} = 0$,
- 2. $\bar{x}(U) \leq |\delta^+(U)| k$ for every $\emptyset \neq U \subsetneq V$,
- 3. $\bar{x}(U) \leq |\delta^+(U)| (\tau k)$ for every dicut $\delta^+(U)$.

Consequence of Ingredient 1

We can make \bar{x} integral!

Proof. Let $\bar{y} \in \mathbb{R}^A$ assign $\frac{k}{\tau}$ to every arc. Then

- $\bar{\mathbf{y}}(\delta^+(U)) \bar{\mathbf{y}}(\delta^-(U)) \le |\delta^+(U)| k$ for every $\emptyset \ne U \subsetneq V$,
- $\overline{y}(\delta^+(U)) \overline{y}(\delta^-(U)) \le |\delta^+(U)| (\tau k)$ for every dicut $\delta^+(U)$.

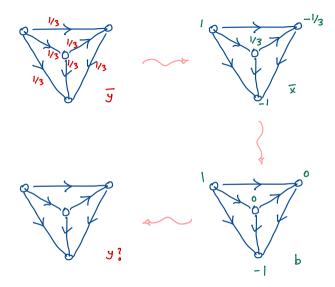
For each vertex v, let $\bar{x}_v := \bar{y}(\delta^+(v)) - \bar{y}(\delta^-(v))$. Then

- 1. $1^{\top}\bar{x} = 0$,
- 2. $\bar{x}(U) \leq |\delta^+(U)| k$ for every $\emptyset \neq U \subsetneq V$,
- 3. $\bar{x}(U) \leq |\delta^+(U)| (\tau k)$ for every dicut $\delta^+(U)$.

Consequence of Ingredient 1

We can make \bar{x} integral!

But, can we make \bar{y} 0,1?



There exists $b \in \mathbb{Z}^V$ such that

- 1. $1^{\top}b = 0$,
- 2. $b(U) \leq |\delta^+(U)| k$ for every $\emptyset \neq U \subsetneq V$,
- 3. $b(U) \leq |\delta^+(U)| (\tau k)$ for every dicut $\delta^+(U)$

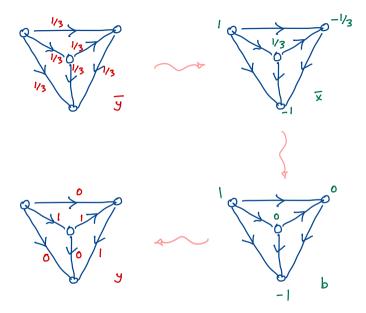
Consequence of Ingredient 2

Since $b(U) \le |\delta^+(U)|$ for every $\emptyset \ne U \subsetneq V$, there exists a b-transshipment $y^* \in \{0,1\}^A$, i.e. $y^*(\delta^+(v)) - y^*(\delta^-(v)) = b_v$ for every vertex v.

Then,

- $v^*(\delta^+(U)) v^*(\delta^-(U)) < |\delta^+(U)| k$ for every $\emptyset \neq U \subseteq V$.
 - $y^*(\delta^+(U)) y^*(\delta^-(U)) \le |\delta^+(U)| (\tau k)$ for every discut $\delta^+(U)$,

as required.



Digging a little deeper

A more powerful theorem

Theorem 4 (A., Cornuéjols, Zambelli '23+)

Let D=(V,A) be a digraph, and τ,k integers with $\tau-1\geq k\geq 1$. Let $f:\mathcal{C}\to\mathbb{Z}$ be a crossing submodular function. Suppose the system

$$y(\delta^{+}(U)) - y(\delta^{-}(U)) \le |\delta^{+}(U)| - k \qquad \forall U \subsetneq V, U \ne \emptyset$$

$$y(\delta^{+}(U)) - y(\delta^{-}(U)) \le f(U) \qquad \forall U \in \mathcal{C}$$

is satisfied at $\bar{y} = \frac{k}{\tau}1$. Then the system has a 0,1 solution.

A more powerful theorem

Theorem 4 (A., Cornuéjols, Zambelli '23+)

Let D=(V,A) be a digraph, and τ,k integers with $\tau-1\geq k\geq 1$. Let $f:\mathcal{C}\to\mathbb{Z}$ be a crossing submodular function. Suppose the system

$$y(\delta^{+}(U)) - y(\delta^{-}(U)) \le |\delta^{+}(U)| - k$$
 $\forall U \subsetneq V, U \ne \emptyset$
 $y(\delta^{+}(U)) - y(\delta^{-}(U)) \le f(U)$ $\forall U \in \mathcal{C}$

is satisfied at $\bar{y} = \frac{k}{\tau} 1$. Then the system has a 0,1 solution.

For $f(U) := |\delta^+(U)| - (\tau - k)$ defined on every dicut $\delta^+(U)$, this gives

Theorem 3 (A., Cornuéjols, Zambelli '23+)

A can be decomposed into a k-arc-connected flip and a $(\tau-k)$ -dijoin if for every $\emptyset \neq U \subsetneq V$,

$$|\delta^+(U)| + \left(\frac{\tau}{k} - 1\right)|\delta^-(U)| \ge \tau.$$

Applications

For $\tau = 2k$, Theorem 4 gives

Theorem (A., Cornuéjols, Zambelli '23+)

Let D=(V,A) be a digraph whose underlying graph is 2k-edge-connected. Let $f:\mathcal{C}\to\mathbb{Z}$ be a crossing submodular function such that

$$f(U) \geq \frac{1}{2}(|\delta^+(U)| - |\delta^-(U)|) \qquad \forall U \in \mathcal{C}.$$

Then there is a k-arc-connected flip $J \subseteq A$ such that

$$f(U) \ge |J \cap \delta^+(U)| - |J \cap \delta^-(U)| \quad \forall U \in \mathcal{C}.$$

Applications

For $\tau = 2k$, Theorem 4 gives

Theorem (A., Cornuéjols, Zambelli '23+)

Let D=(V,A) be a digraph whose underlying graph is 2k-edge-connected. Let $f:\mathcal{C}\to\mathbb{Z}$ be a crossing submodular function such that

$$f(U) \geq rac{1}{2}(|\delta^+(U)| - |\delta^-(U)|) \qquad orall U \in \mathcal{C}.$$

Then there is a k-arc-connected flip $J \subseteq A$ such that

$$f(U) \ge |J \cap \delta^+(U)| - |J \cap \delta^-(U)| \quad \forall U \in \mathcal{C}.$$

Corollary (Nash-Williams '69)

Every 2k-edge-connected graph has a k-arc-connected orientation such that at every node, the out- and in-degrees differ by at most one.

Discussion

We find a 0,1 solution to

$$y(\delta^{+}(U)) - y(\delta^{-}(U)) \le |\delta^{+}(U)| - k \quad \forall \emptyset \ne U \subsetneq V$$

$$y(\delta^{+}(U)) - y(\delta^{-}(U)) \le f(U) \qquad \forall U \in \mathcal{C},$$

the intersection of two 'submodular flow' systems. This is surprising...

Discussion

We find a 0,1 solution to

$$y(\delta^{+}(U)) - y(\delta^{-}(U)) \le |\delta^{+}(U)| - k \quad \forall \emptyset \ne U \subsetneq V$$

$$y(\delta^{+}(U)) - y(\delta^{-}(U)) \le f(U) \qquad \forall U \in \mathcal{C},$$

the intersection of two 'submodular flow' systems. This is surprising...

Folklore facts

Let D = (V, A) be a digraph, and let $f_i : C_i \to \mathbb{Z}$ be a crossing submodular function, for i = 1, 2. Consider the system

$$y \in \mathbb{R}^{A}$$
$$y(\delta^{+}(U)) - y(\delta^{-}(U)) \le f_{1}(U) \quad \forall U \in C_{1}$$
$$y(\delta^{+}(U)) - y(\delta^{-}(U)) \le f_{2}(U) \quad \forall U \in C_{2}.$$

This system is not necessarily integral, let alone box-totally dual integral. Moreover, finding a 0,1 solution to this system is an NP-hard task.

A surprising phenomenon

Intersection of two submodular flow systems

- Let D = (V, A) be a digraph.
- Let $f_i: C_i \to \mathbb{Z}$ be a crossing submodular function, for i = 1, 2.

Theorem 5 (A., Cornuéjols, Zambelli '23+)

• Suppose $\min_{i=1,2} f_i(U) \leq 0$ for all $U \neq \emptyset$, V s.t. $\delta^+(U) = \delta^-(U) = \emptyset$. Then

$$y(\delta^+(U)) - y(\delta^-(U)) \le f_1(U) \quad \forall U \in C_1$$

 $y(\delta^+(U)) - y(\delta^-(U)) \le f_2(U) \quad \forall U \in C_2$

is totally dual integral, and hence integral.

Intersection of two submodular flow systems

- Let D = (V, A) be a digraph.
- Let $f_i: C_i \to \mathbb{Z}$ be a crossing submodular function, for i = 1, 2.

Theorem 5 (A., Cornuéjols, Zambelli '23+)

• Suppose $\min_{i=1,2} f_i(U) \leq 0$ for all $U \neq \emptyset$, V s.t. $\delta^+(U) = \delta^-(U) = \emptyset$. Then

$$y(\delta^+(U)) - y(\delta^-(U)) \le f_1(U) \quad \forall U \in C_1$$

 $y(\delta^+(U)) - y(\delta^-(U)) \le f_2(U) \quad \forall U \in C_2$

is totally dual integral, and hence integral.

2 Take $c, d \in \mathbb{Z}^A$ satisfying $c \leq d$ and

$$\min_{i=1,2} f_i(U) \le d(\delta^+(U)) - c(\delta^-(U)) \qquad \forall U \ne \emptyset, V.$$

Then every nonempty face of the feasible region contains $y^* \in \mathbb{Z}^A$ with $c \leq y^* \leq d$.

Applications

Theorem 4 (A., Cornuéjols, Zambelli '23+)

Let D=(V,A) be a digraph, and τ,k integers with $\tau-1\geq k\geq 1$. Let $f:\mathcal{C}\to\mathbb{Z}$ be a crossing submodular function. Suppose the system

$$y(\delta^{+}(U)) - y(\delta^{-}(U)) \le |\delta^{+}(U)| - k \qquad \forall U \subsetneq V, U \ne \emptyset$$

$$y(\delta^{+}(U)) - y(\delta^{-}(U)) \le f(U) \qquad \forall U \in \mathcal{C}$$

is satisfied at $\bar{y} = \frac{k}{\tau}1$. Then the system has a 0,1 solution.

Applications

Theorem (Edmonds and Giles 1977)

Let D=(V,A) be a digraph, and $f:\mathcal{C}\to\mathbb{Z}$ a crossing submodular function. The system

$$y(\delta^+(U)) - y(\delta^-(U)) \le f(U) \qquad \forall U \in C$$

is box-totally dual integral, and hence box-integral.

A cute application

Theorem (A., Cornuéjols, Zambelli '23+)

Let D = (V, A) be a weakly connected digraph. Let $f_i : C_i \to \mathbb{Z}$ be a crossing submodular function, for i = 1, 2. Then

$$y(\delta^+(U)) - y(\delta^-(U)) \le f_1(U) \quad \forall U \in C_1$$

 $y(\delta^+(U)) - y(\delta^-(U)) \le f_2(U) \quad \forall U \in C_2$

is totally dual integral.

A cute application

Theorem (A., Cornuéjols, Zambelli '23+)

Let D = (V, A) be a weakly connected digraph. Let $f_i : C_i \to \mathbb{Z}$ be a crossing submodular function, for i = 1, 2. Then

$$y(\delta^+(U)) - y(\delta^-(U)) \le f_1(U) \quad \forall U \in C_1$$

 $y(\delta^+(U)) - y(\delta^-(U)) \le f_2(U) \quad \forall U \in C_2$

is totally dual integral.

Proposition

This system is not necessarily box-integral.

A cute application

Theorem (A., Cornuéjols, Zambelli '23+)

Let D = (V, A) be a weakly connected digraph. Let $f_i : C_i \to \mathbb{Z}$ be a crossing submodular function, for i = 1, 2. Then

$$y(\delta^+(U)) - y(\delta^-(U)) \le f_1(U) \quad \forall U \in C_1$$

 $y(\delta^+(U)) - y(\delta^-(U)) \le f_2(U) \quad \forall U \in C_2$

is totally dual integral.

Proposition

This system is not necessarily box-integral.

Proposition (Goemans and Pan)

This system is **not** necessarily box-half-integral.

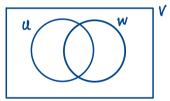
A conjecture

Tree Orientation Conjecture

Let C be a family of subsets of V.

Definition

 \mathcal{C} is a lattice family if $U \cap W$, $U \cup W \in \mathcal{C}$ for all $U, W \in \mathcal{C}$.



Tree Orientation Conjecture

Let C be a family of subsets of V.

Definition

 \mathcal{C} is a lattice family if $U \cap W$, $U \cup W \in \mathcal{C}$ for all $U, W \in \mathcal{C}$.

Tree Orientation Conjecture

Let T = (V, E) be a tree, and let C be a lattice family over ground set V. Suppose

$$|\delta_{\mathcal{T}}(U)| \geq 2 \quad \forall U \in \mathcal{C}, U \neq \emptyset, V.$$

Then there is an orientation \overrightarrow{T} of T such that

$$\delta^+_{\overrightarrow{T}}(U), \delta^-_{\overrightarrow{T}}(U) \neq \emptyset \quad \forall U \in \mathcal{C}, U \neq \emptyset, V.$$

Thanks!