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k-arc-connected flips

Let D = (V ,A) be a digraph.

Let k � 1 be an integer.

A k-arc-connected flip is a J ✓ A such that (D \ J) [ J�1
is (strongly) k-arc-connected.

That is,

|J \ �+(U)|+ |��(U)|� |J \ ��(U)| � k 8U ( V ,U 6= ;.

A 2-arc-connected flip:
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Weak Orientation Theorem

An important theorem in Graph Orientations and Submodular Optimization:

Theorem 1 (Nash-Williams ’69)

If the underlying graph of D is 2k-edge-connected, then D has a k-arc-connected flip.

Flash summary of the talk

1 We extend Theorem 1 by finding a k-arc-connected flip whose incidence vector is also a

submodular flow.

2 This is made possible by finding capacitated integral solutions to the intersection of two

submodular flow systems.
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Woodall’s conjecture
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Dicuts

Let D = (V ,A) be a digraph.

Definition

A dicut is a subset of the form �+(U) ✓ A where U 6= ;,V and ��(U) = ;.

Remark

D has a dicut , D is not strongly connected.
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Dijoins

Let D = (V ,A) be a digraph.

Definition

A dijoin is a J ✓ A that intersects every dicut at least once, i.e. D/J is 1-arc-connected.

Remark

J is a dijoin , D [ J�1
is 1-arc-connected.
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Packing dijoins

Remark

Minimum size of a dicut � maximum number of pairwise arc disjoint dijoins.
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Packing dijoins

Remark

Minimum size of a dicut � maximum number of pairwise arc disjoint dijoins.
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Packing dijoins

Remark

Minimum size of a dicut � maximum number of pairwise arc disjoint dijoins.

Conjecture (Woodall 1978)

Minimum size of a dicut = maximum number of pairwise arc disjoint dijoins.
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Packing dijoins

Remark

Minimum size of a dicut � maximum number of pairwise arc disjoint dijoins.

Conjecture (Woodall 1978)

Minimum size of a dicut = maximum number of pairwise arc disjoint dijoins.

1 Frank and Tardos 1984: Formulation as a common base packing problem for two matroids.

2 Schrijver 1980, Feofiloff and Younger 1987: Proved for source-sink connected digraphs.

3 Lee and Wakabayashi 2001: Proved for series-parallel digraphs.

4 Mészáros 2018: Proved for digraphs that are (⌧ � 1, 1)-partition-connected for ⌧ a prime

power.

5 A., Cornuéjols and Zlatin 2023: Reduced to nearly-⌧ -regular bipartite graphs.

6 Other interesting results by Cornuéjols and Guenin (2002), Shepherd and Vetta (2005), Lee and Williams (2006), Chudnovsky, Edwards,

Kim, Scott, and Seymour (2016)
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k-dijoins

Let D = (V ,A) be a digraph.

Definition

For an integer k � 1, a k-dijoin is an arc subset that intersects every dicut at least k times.
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k-dijoins

Let D = (V ,A) be a digraph.

Definition

For an integer k � 1, a k-dijoin is an arc subset that intersects every dicut at least k times.

Proposition

The following statements hold:

1 The union of a disjoint k-dijoin and `-dijoin is a (k + `)-dijoin.

2 Every k-arc-connected flip J is a k-dijoin.

Proof of 2. Let J be a k-arc-connected flip. For every dicut �+(U),

|J \ �+(U)| = |J \ �+(U)|+ |��(U)|� |J \ ��(U)| � k .

Thus, J is a k-dijoin.
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Decomposing into a k- and (⌧ � k)-dijoin

Suppose every dicut of D = (V ,A) has size � ⌧ , for some integer ⌧ � 2.

Conjecture (Woodall 1978)

A can be partitioned into ⌧ dijoins.
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Decomposing into a k- and (⌧ � k)-dijoin

Suppose every dicut of D = (V ,A) has size � ⌧ , for some integer ⌧ � 2.

Conjecture ("Weak Woodall")

A can be partitioned into a k- and a (⌧ � k)-dijoin, for all k 2 {1, . . . , ⌧ � 1}.
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Decomposing into a k- and (⌧ � k)-dijoin

Suppose every dicut of D = (V ,A) has size � ⌧ , for some integer ⌧ � 2.

Theorem 2 (A., Cornuéjols, Zlatin 2023)

A can be partitioned into a dijoin and a (⌧ � 1)-dijoin.
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Summary

Theorem 1 (Nash-Williams ’69)

If the underlying graph of D is 2k-edge-connected, then D has a k-arc-connected flip.

Theorem 2 (A., Cornuéjols, Zlatin 2023)

If every dicut of D = (V ,A) has size � ⌧ , then A can be partitioned into a dijoin and a

(⌧ � 1)-dijoin.

Remark

A k-arc-connected flip is a k-dijoin.
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A common extension of Theorems 1 and 2
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A common extension

Theorem 3 (A., Cornuéjols, Zambelli ’23+)

Let D = (V ,A) be a digraph such that for some integers ⌧ � 1 � k � 1 we have

|�+(U)|+
⇣⌧
k
� 1

⌘
|��(U)| � ⌧ 8U ( V ,U 6= ;.

Then A can be partitioned into a k-arc-connected flip and a (⌧ � k)-dijoin.
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A common extension

For ⌧ = 2k we recover:

Theorem 1 (Nash-Williams ’69)

If the underlying graph of D is 2k-edge-connected, then D has a k-arc-connected flip.
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A common extension

For ⌧ = 2k we recover:

Theorem 1 (Nash-Williams ’69)

If the underlying graph of D is 2k-edge-connected, then D has a k-arc-connected flip.

Why? The cut condition

|�+(U)|+
⇣⌧
k
� 1

⌘
|��(U)| � ⌧ 8U ( V ,U 6= ;.

becomes

|�+(U)|+ |��(U)| � ⌧ 8U ( V ,U 6= ;.
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A common extension

For k = 1 we recover:

Theorem 2 (A., Cornuéjols, Zlatin 2023)
If every dicut of D = (V ,A) has size � ⌧ , then A can be partitioned into a dijoin and a

(⌧ � 1)-dijoin.
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A common extension

For k = 1 we recover:

Theorem 2 (A., Cornuéjols, Zlatin 2023)

If every dicut of D = (V ,A) has size � ⌧ , then A can be partitioned into a dijoin and a

(⌧ � 1)-dijoin.

Why? The cut condition

|�+(U)|+
⇣⌧
k
� 1

⌘
|��(U)| � ⌧ 8U ( V ,U 6= ;.

becomes

|�+(U)| � ⌧ 8U ( V ,U 6= ; s.t. ��(U) = ;
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A common extension

"Weak Woodall" is true for ⌧ -edge-connected instances:

Theorem (A., Cornuéjols, Zambelli ’23+)

Suppose the underlying graph of D = (V ,A) is ⌧ -edge-connected. Then A can be partitioned

into a k- and a (⌧ � k)-dijoin, for all k 2 {1, . . . , ⌧ � 1}.
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A common extension

"Weak Woodall" is true for ⌧ -edge-connected instances:

Theorem (A., Cornuéjols, Zambelli ’23+)

Suppose the underlying graph of D = (V ,A) is ⌧ -edge-connected. Then A can be partitioned

into a k- and a (⌧ � k)-dijoin, for all k 2 {1, . . . , ⌧ � 1}.

Proof. We may assume ⌧ � 2k . The cut condition holds:

|�+(U)|+
⇣⌧
k
� 1

⌘
|��(U)| 8U ( V ,U 6= ;.
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A common extension

Theorem 3 (A., Cornuéjols, Zambelli ’23+)

Let D = (V ,A) be a digraph such that for some integers ⌧ � 1 � k � 1 we have

|�+(U)|+
⇣⌧
k
� 1

⌘
|��(U)| � ⌧ 8U ( V ,U 6= ;.

Then A can be partitioned into a k-arc-connected flip and a (⌧ � k)-dijoin.

Let’s prove this theorem. We need two ingredients.
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Ingredients
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Crossing families and submodular functions

Let C be a family of subsets of V , and let f : C ! Z be a function.

Definition

C is a crossing family if whenever U,W 2 C and U \W 6= ;,U [W 6= V , then

U \W ,U [W 2 C.

Definition

f is crossing submodular if whenever U,W 2 C and U \W 6= ;,U [W 6= V , then

f (U \W ) + f (U [W )  f (U) + f (W ).
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Crossing families and submodular functions

Definition

C is a crossing family if whenever U,W 2 C and U \W 6= ;,U [W 6= V , then

U \W ,U [W 2 C.

Definition

f is crossing submodular if whenever U,W 2 C and U \W 6= ;,U [W 6= V , then

f (U \W ) + f (U [W )  f (U) + f (W ).

Examples

{U ( V : U 6= ;}
{U ( V : U 6= ;, ��(U) = ;}
f (U) := |�+(U)|
f (U) := |�+(U)|� ↵
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Ingredient 1 from Submodular Optimization

Theorem (Edmonds, Frank, Fujishige; see Schrijver 2003, Frank 2011)

Let fi : Ci ! Z be a crossing submodular function, for i = 1, 2. Then

x 2 RV

1
>x = 0

X

v2U
xv  f1(U) 8U 2 C1

X

v2U
xv  f2(U) 8U 2 C2

is box-totally dual integral, and therefore box-integral. In particular, if it has a fractional

solution, it has an integral solution.
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Ingredient 2 from Network Flows

Let D = (V ,A) be a digraph, and b 2 ZV
s.t. 1

>b = 0.

Definition

A b-transshipment is a vector y 2 RA
s.t.

y(�+(u))� y(��(u)) = bu 8u 2 V .

Theorem (Hoffman, Gale; see Schrijver 2003)

Take c , d 2 ZA
with c  d such that

b(U)  d(�+(U))� c(��(U)) 8U 6= ;,V .

Then there exists a b-transshipment y? 2 ZA
such that c  y?  d .
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Proof of Theorem 3

Theorem 3 (A., Cornuéjols, Zambelli ’23+)

A can be decomposed into a k-arc-connected flip and a (⌧ � k)-dijoin if for every ; 6= U ( V ,

|�+(U)|+
⇣⌧
k
� 1

⌘
|��(U)| � ⌧.
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Proof of Theorem 3

Theorem 3 (A., Cornuéjols, Zambelli ’23+)

A can be decomposed into a k-arc-connected flip and a (⌧ � k)-dijoin if for every ; 6= U ( V ,

|�+(U)|+
⇣⌧
k
� 1

⌘
|��(U)| � ⌧.

Proof. We need to find a 0, 1 vector y such that

y(�+(U))� y(��(U))  |�+(U)|� k for every ; 6= U ( V ,

y(�+(U))� y(��(U))  |�+(U)|� (⌧ � k) for every dicut �+(U).

Ahmad Abdi, Gérard Cornuéjols, and Giacomo Zambelli Arc connectivity and submodular flows in digraphs



Proof continued

We know

|�+(U)|+
�
⌧
k � 1

�
|��(U)| � ⌧ for every ; 6= U ( V ,

Every dicut has size at least ⌧ .

Proof. Let ȳ 2 RA
assign

k
⌧ to every arc. Then

ȳ(�+(U))� ȳ(��(U))  |�+(U)|� k for every ; 6= U ( V ,

ȳ(�+(U))� ȳ(��(U))  |�+(U)|� (⌧ � k) for every dicut �+(U).
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Proof continued

Proof. Let ȳ 2 RA
assign

k
⌧ to every arc. Then

ȳ(�+(U))� ȳ(��(U))  |�+(U)|� k for every ; 6= U ( V ,

ȳ(�+(U))� ȳ(��(U))  |�+(U)|� (⌧ � k) for every dicut �+(U).

For each vertex v , let x̄v := ȳ(�+(v))� ȳ(��(v)). Then

1. 1
>x̄ = 0,

2. x̄(U)  |�+(U)|� k for every ; 6= U ( V ,

3. x̄(U)  |�+(U)|� (⌧ � k) for every dicut �+(U).
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Proof continued

Proof. Let ȳ 2 RA
assign

k
⌧ to every arc. Then

ȳ(�+(U))� ȳ(��(U))  |�+(U)|� k for every ; 6= U ( V ,

ȳ(�+(U))� ȳ(��(U))  |�+(U)|� (⌧ � k) for every dicut �+(U).

For each vertex v , let x̄v := ȳ(�+(v))� ȳ(��(v)). Then

1. 1
>x̄ = 0,

2. x̄(U)  |�+(U)|� k for every ; 6= U ( V ,

3. x̄(U)  |�+(U)|� (⌧ � k) for every dicut �+(U).

Consequence of Ingredient 1

We can make x̄ integral!

But, can we make ȳ 0, 1?
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Proof continued

Proof. Let ȳ 2 RA
assign

k
⌧ to every arc. Then
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Proof continued

There exists b 2 ZV
such that

1. 1
>b = 0,

2. b(U)  |�+(U)|� k for every ; 6= U ( V ,

3. b(U)  |�+(U)|� (⌧ � k) for every dicut �+(U)

Consequence of Ingredient 2

Since b(U)  |�+(U)| for every ; 6= U ( V , there exists a b-transshipment y? 2 {0, 1}A, i.e.

y?(�+(v))� y?(��(v)) = bv for every vertex v .

Then,

y?(�+(U))� y?(��(U))  |�+(U)|� k for every ; 6= U ( V ,

y?(�+(U))� y?(��(U))  |�+(U)|� (⌧ � k) for every dicut �+(U),

as required.
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Digging a little deeper
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A more powerful theorem

Theorem 4 (A., Cornuéjols, Zambelli ’23+)

Let D = (V ,A) be a digraph, and ⌧, k integers with ⌧ � 1 � k � 1. Let f : C ! Z be a

crossing submodular function. Suppose the system

y(�+(U))� y(��(U))  |�+(U)|� k 8U ( V ,U 6= ;
y(�+(U))� y(��(U))  f (U) 8U 2 C

is satisfied at ȳ = k
⌧ 1. Then the system has a 0, 1 solution.
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A more powerful theorem

Theorem 4 (A., Cornuéjols, Zambelli ’23+)

Let D = (V ,A) be a digraph, and ⌧, k integers with ⌧ � 1 � k � 1. Let f : C ! Z be a

crossing submodular function. Suppose the system

y(�+(U))� y(��(U))  |�+(U)|� k 8U ( V ,U 6= ;
y(�+(U))� y(��(U))  f (U) 8U 2 C

is satisfied at ȳ = k
⌧ 1. Then the system has a 0, 1 solution.

For f (U) := |�+(U)|� (⌧ � k) defined on every dicut �+(U), this gives

Theorem 3 (A., Cornuéjols, Zambelli ’23+)

A can be decomposed into a k-arc-connected flip and a (⌧ � k)-dijoin if for every ; 6= U ( V ,

|�+(U)|+
⇣⌧
k
� 1

⌘
|��(U)| � ⌧.
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Applications

For ⌧ = 2k , Theorem 4 gives

Theorem (A., Cornuéjols, Zambelli ’23+)

Let D = (V ,A) be a digraph whose underlying graph is 2k-edge-connected. Let f : C ! Z be

a crossing submodular function such that

f (U) � 1

2
(|�+(U)|� |��(U)|) 8U 2 C.

Then there is a k-arc-connected flip J ✓ A such that

f (U) � |J \ �+(U)|� |J \ ��(U)| 8U 2 C.

Corollary (Nash-Williams ’69)

Every 2k-edge-connected graph has a k-arc-connected orientation such that at every node, the

out- and in-degrees differ by at most one.
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Applications

For ⌧ = 2k , Theorem 4 gives

Theorem (A., Cornuéjols, Zambelli ’23+)

Let D = (V ,A) be a digraph whose underlying graph is 2k-edge-connected. Let f : C ! Z be

a crossing submodular function such that

f (U) � 1

2
(|�+(U)|� |��(U)|) 8U 2 C.

Then there is a k-arc-connected flip J ✓ A such that

f (U) � |J \ �+(U)|� |J \ ��(U)| 8U 2 C.

Corollary (Nash-Williams ’69)

Every 2k-edge-connected graph has a k-arc-connected orientation such that at every node, the

out- and in-degrees differ by at most one.
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Discussion

We find a 0, 1 solution to

y(�+(U))� y(��(U))  |�+(U)|� k 8 ; 6= U ( V

y(�+(U))� y(��(U))  f (U) 8 U 2 C,
the intersection of two ‘submodular flow’ systems. This is surprising...

Folklore facts

Let D = (V ,A) be a digraph, and let fi : Ci ! Z be a crossing submodular function, for

i = 1, 2. Consider the system

y 2 RA

y(�+(U))� y(��(U))  f1(U) 8U 2 C1

y(�+(U))� y(��(U))  f2(U) 8U 2 C2.

This system is not necessarily integral, let alone box-totally dual integral. Moreover, finding a

0, 1 solution to this system is an NP-hard task.
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A surprising phenomenon
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Intersection of two submodular flow systems

Let D = (V ,A) be a digraph.

Let fi : Ci ! Z be a crossing submodular function, for i = 1, 2.

Theorem 5 (A., Cornuéjols, Zambelli ’23+)

1 Suppose mini=1,2 fi (U)  0 for all U 6= ;,V s.t. �+(U) = ��(U) = ;. Then

y(�+(U))� y(��(U))  f1(U) 8U 2 C1

y(�+(U))� y(��(U))  f2(U) 8U 2 C2

is totally dual integral, and hence integral.

2 Take c , d 2 ZA
satisfying c  d and

min
i=1,2

fi (U)  d(�+(U))� c(��(U)) 8U 6= ;,V .

Then every nonempty face of the feasible region contains y? 2 ZA
with c  y?  d .
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Applications

Theorem 4 (A., Cornuéjols, Zambelli ’23+)

Let D = (V ,A) be a digraph, and ⌧, k integers with ⌧ � 1 � k � 1. Let f : C ! Z be a

crossing submodular function. Suppose the system

y(�+(U))� y(��(U))  |�+(U)|� k 8U ( V ,U 6= ;
y(�+(U))� y(��(U))  f (U) 8U 2 C

is satisfied at ȳ = k
⌧ 1. Then the system has a 0, 1 solution.
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Applications

Theorem (Edmonds and Giles 1977)

Let D = (V ,A) be a digraph, and f : C ! Z a crossing submodular function. The system

y(�+(U))� y(��(U))  f (U) 8U 2 C

is box-totally dual integral, and hence box-integral.
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A cute application

Theorem (A., Cornuéjols, Zambelli ’23+)

Let D = (V ,A) be a weakly connected digraph. Let fi : Ci ! Z be a crossing submodular

function, for i = 1, 2. Then

y(�+(U))� y(��(U))  f1(U) 8U 2 C1

y(�+(U))� y(��(U))  f2(U) 8U 2 C2

is totally dual integral.

Proposition

This system is not necessarily box-integral.
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A cute application

Theorem (A., Cornuéjols, Zambelli ’23+)

Let D = (V ,A) be a weakly connected digraph. Let fi : Ci ! Z be a crossing submodular

function, for i = 1, 2. Then

y(�+(U))� y(��(U))  f1(U) 8U 2 C1

y(�+(U))� y(��(U))  f2(U) 8U 2 C2

is totally dual integral.

Proposition

This system is not necessarily box-integral.

Proposition (Goemans and Pan)

This system is not necessarily box-half-integral.
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A conjecture
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Tree Orientation Conjecture

Let C be a family of subsets of V .

Definition
C is a lattice family if U \W ,U [W 2 C for all U,W 2 C.

Tree Orientation Conjecture
Let T = (V ,E ) be a tree, and let C be a lattice family over ground set V . Suppose

|�T (U)| � 2 8U 2 C,U 6= ;,V .

Then there is an orientation
�!
T of T such that

�+�!
T
(U), ���!

T
(U) 6= ; 8U 2 C,U 6= ;,V .
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Thanks!
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