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The Petersen graph
Let G = (V, E) be a bridgeless cubic graph.

Fact
G is not necessarily 3-edge-colorable, i.e., E does not necessarily decompose into 3 perfect
matchings.
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Two conjectures in graph theory

Let G = (V, E) be a bridgeless cubic graph.

The Berge-Fulkerson conjecture (Fulkerson '71)

G has six perfect matchings using every edge exactly twice. That
is, (2,...,2)" € ZF is an integer conic combination of

{1pm : M a perfect matching}.

The 4-flow conjecture (Tutte '66)

If G has no Petersen graph as a minor, then G is 3-edge-colorable.
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Dropping nonnegativity

The matching lattice of G = (V,E) is

L(G) := the set of integer linear combinations of {1y : M C E perfect matching}.

Theorem (Seymour '79)
Let G = (V, E) be a bridgeless cubic graph. Then
0 (2,2,...,2)T € L(G),
e if G has no Petersen graph as a minor, then (1,1,...,1)T € L(G)!

Proof is graph-theoretic and inductive, but terse.
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Bases and description of the matching lattice

Theorem
Suppose G is matching-covered, i.e., every edge belongs to some perfect matching. Then
° (2,2,...,2)7T € L(G) (Lovasz '87)
o (1,1,...,1)T € L(G) if G is Petersen-free, in particular if G has no Petersen minor
(Lovasz '87)
@ L(G) has a lattice basis in {1y, : M C E perfect matching} (Carvalho, Lucchesi, and
Murty '02)

Potersen-Eee = no Peterse, brck
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Bases and description of the matching lattice

Theorem
Suppose G is matching-covered, i.e., every edge belongs to some perfect matching. Then
0 (2,2,...,2)" € L(G) (Lovasz '87)
o (1,1,...,1)" € L(G) if G is Petersen-free, in particular if G has no Petersen minor
(Lovasz '87)
@ L(G) has a lattice basis in {1y, : M C E perfect matching} (Carvalho, Lucchesi, and
Murty '02)

@ The proofs are structural graph-theoretic and inductive.

e Highly technical, long, and rely on many prerequisites in matching theory (3 papers and
~ 120 pages for the last one).

@ The crux in all the proofs is in finding the Petersen graph as a brick, a very special type of
a minor.
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Our contributions

@ simultaneous short proof for both results (= 10 pages) that is conceptually simple,
@ the first polyhedral proof of the results,
@ minimal dependence on matching-theoretic notions,

@ direct proof as it does not move to the dual lattice, unlike Lovasz.
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Our approach
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The perfect matching polytope

Theorem (Edmonds '65)
The perfect matching polytope P(G) is described by

x(o(v))=1 veV

x(@(U) 21 UCV,3<|UI<|V|-3o0dd (odd ar ineamality)
Xe>0 e€E

)
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Peeling the onion, step |

We show the main result follows relatively easily from the following:

The Integral Basis Theorem

Suppose G = (V, E) is Petersen-free. Then the linear hull of P(G) has an integral basis
B C {1pm : M a perfect matching}

that is, every integral vector in lin(P(G)) is an integer linear combination of B.
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Peeling the onion, step |

The Integral Basis Theorem

Suppose G = (V/, E) is Petersen-free. Then the linear hull of P(G) has an integral basis
B C {1y : M a perfect matching}.

Key Idea

Find a facet-defining inequality x(6(U)) > 1 such that G/U, G/U are Petersen-free
matching-covered, and there is a perfect matching M such that [M N §(U)| = 3.

M I ﬂ%@v

G G/u G/U
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Peeling the onion, step Il

Let G = (V, E) be a Petersen-free matching-covered graph.

Goal

Find a facet-defining inequality x(6(U)) > 1 such that G/U, G/U are Petersen-free
matching-covered, and there is a perfect matching M such that [M N §(U)| = 3.

The Intersection Theorem
The above can be guaranteed if P(G) has at least one facet defined by an odd cut inequality,
and dimension |E| — |V| =: d.

x(6(v))=1 veV
x(6(U))>1 UcCV,3<|U|<|V|—3odd
Xe>0 e€E
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Peeling the onion, step Il
Let G = (V, E) be a Petersen-free matching-covered graph.

Goal

Find a facet-defining inequality x(6(U)) > 1 such that G/U, G/U are Petersen-free
matching-covered, and there is a perfect matching M such that [M N §(U)| = 3.

The Intersection Theorem

The above can be guaranteed if P(G) has at least one facet defined by an odd cut inequality,
and dimension |E| — |V| =: d.

Key ldeas
@ If P(G) has a facet of the form x. > 0, apply induction to G \ e for a suitably chosen e.

v
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Peeling the onion, step Il
Let G = (V, E) be a Petersen-free matching-covered graph.

Goal

Find a facet-defining inequality x(6(U)) > 1 such that G/U, G/U are Petersen-free
matching-covered, and there is a perfect matching M such that [M N §(U)| = 3.

The Intersection Theorem

The above can be guaranteed if P(G) has at least one facet defined by an odd cut inequality,
and dimension |E| — |V| =: d.

Key ldeas
@ If P(G) has a facet of the form x. > 0, apply induction to G \ e for a suitably chosen e.

@ If P(G) has a (d — 2)-dimensional face F not described by any x. > 0, then apply
induction to G/U where x(6(U)) > 1 is a facet ‘derived’ from F.

v
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The base case: finding the Petersen graph

The Petersen Graph Lemma (Abdi and Silina '25+)
Suppose G is matching-covered where
@ P(G) has at least one facet defined by an odd cut inequality,
e |[M N (V)| # 3 for any perfect matching M and any
facet-defining inequality x(6(U)) > 1,
P(G) has dimension d = |E| — |V/,
P(G) has no facet of the form x. > 0,

every (d — 2)-dimensional face is described by some x. > 0,

@ minimum degree is at least 3.

Then G is the Petersen graph.
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Proof of the Petersen Graph Lemma
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The proof

e P(G) has dimension d = |E| — |V/|,
@ P(G) has no facet of the form x. >0,
e every (d — 2)-dimensional face is described by some x. > 0,

@ minimum degree > 3.

Noles: » % % Al

Query Lot | Qéjam—\{' to > d Lo cats

v:=|V|

e = |E|

f = 7 facets

t:= # (d —2)-faces
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The proof

e P(G) has dimension d = |E| — |V, vi=|V|

e P(G) has no facet of the form x. > 0, e:=|E|

@ every (d — 2)-dimensional face is described by some x. > 0, fi= # facets

@ minimum degree > 3. t:= # (d —2)-faces

e>t>—>(d+1>:<e_;+l) and 2e > 3v.
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Thus, v < 10, and if v = 10 then equality holds throughout.
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The proof

@ P(G) has at least one facet defined by an odd cut inequality,
e |[MN&(U)| # 3 for any perfect matching M and any facet-defining inequality x(6(U)) > 1.

=
fd d+1 e—v+1
v =10 and e—t—?—( ) >—( 5 ) and 2e = 3v.

= e =15, f =6, and G is a cubic graph.

= G must be
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Thank youl
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